Unverified Commit 8784a72e authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Modularize ckProfiler operations (#514)



* Re-structure ckProfiler source files

* Rename profiler.cpp to main.cpp

* Modularize ckProfiler operations

* Add description for profiler operations

* Use longer name to avoid name collision

* Use macro to delay expansion

* Use std::move() to avoid object copying

* Prohibit users from calling dtor

* Use macro to eliminate redundant code

* Make friend function hidden

* Add missing include directive <iostream>

* Fix wrong include directives

* Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test
Co-authored-by: default avatarQianfeng Zhang <Qianfeng.Zhang@amd.com>
parent ad541ad6
# ckProfiler
set(PROFILER_SOURCES
profiler.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
profile_batched_gemm_gemm.cpp
profile_batched_gemm_add_relu_gemm_add.cpp
profile_batched_gemm_reduce.cpp
profile_grouped_gemm.cpp
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
profile_conv_bwd_data.cpp
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
)
set(PROFILER_EXECUTABLE ckProfiler)
add_executable(${PROFILER_EXECUTABLE} ${PROFILER_SOURCES})
target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
...@@ -7,7 +7,8 @@ ...@@ -7,7 +7,8 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_batched_gemm_impl.hpp" #include "profiler/profile_batched_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout enum struct GemmMatrixLayout
{ {
...@@ -25,12 +26,15 @@ enum struct GemmDataType ...@@ -25,12 +26,15 @@ enum struct GemmDataType
INT8_INT8_INT8, // 3 INT8_INT8_INT8, // 3
}; };
#define OP_NAME "batched_gemm"
#define OP_DESC "Batched GEMM"
int profile_batched_gemm(int argc, char* argv[]) int profile_batched_gemm(int argc, char* argv[])
{ {
if(argc != 18) if(argc != 18)
{ {
// clang-format off // clang-format off
printf("arg1: tensor operation (batched_gemm: Batched GEMM)\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"); printf("arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n");
printf("arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];\n"); printf("arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];\n");
printf(" 1: A[g, m, k] * B[g, n, k] = C[g, m, n];\n"); printf(" 1: A[g, m, k] * B[g, n, k] = C[g, m, n];\n");
...@@ -195,3 +199,5 @@ int profile_batched_gemm(int argc, char* argv[]) ...@@ -195,3 +199,5 @@ int profile_batched_gemm(int argc, char* argv[])
return 1; return 1;
} }
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_batched_gemm_add_relu_gemm_add_impl.hpp" #include "profiler/profile_batched_gemm_add_relu_gemm_add_impl.hpp"
#include "profiler_operation_registry.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -14,6 +15,9 @@ using F32 = float; ...@@ -14,6 +15,9 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
#define OP_NAME "batched_gemm_add_relu_gemm_add"
#define OP_DESC "Batched GEMM+Add+Relu+GEMM+Add"
int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[]) int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
{ {
enum struct GemmMatrixLayout enum struct GemmMatrixLayout
...@@ -109,8 +113,7 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[]) ...@@ -109,8 +113,7 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
} }
else else
{ {
printf("arg1: tensor operation (batched_gemm_add_relu_gemm_add: " printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
"Batched_GEMM+Add+Relu+Gemm+Add)\n");
printf("arg2: data type (1: fp16)\n"); printf("arg2: data type (1: fp16)\n");
printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] " printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] "
"= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = " "= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = "
...@@ -207,3 +210,5 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[]) ...@@ -207,3 +210,5 @@ int profile_batched_gemm_add_relu_gemm_add(int argc, char* argv[])
return 0; return 0;
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_add_relu_gemm_add);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_batched_gemm_gemm_impl.hpp" #include "profiler/profile_batched_gemm_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -14,6 +15,9 @@ using F32 = float; ...@@ -14,6 +15,9 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
#define OP_NAME "batched_gemm_gemm"
#define OP_DESC "Batched GEMM+GEMM"
int profile_batched_gemm_gemm(int argc, char* argv[]) int profile_batched_gemm_gemm(int argc, char* argv[])
{ {
enum struct GemmMatrixLayout enum struct GemmMatrixLayout
...@@ -101,7 +105,7 @@ int profile_batched_gemm_gemm(int argc, char* argv[]) ...@@ -101,7 +105,7 @@ int profile_batched_gemm_gemm(int argc, char* argv[])
} }
else else
{ {
printf("arg1: tensor operation (batched_gemm_gemm: Batched_GEMM+Gemm)\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (1: fp16)\n"); printf("arg2: data type (1: fp16)\n");
printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] " printf("arg3: matrix layout (0: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[n, o] + D1[m, o] "
"= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = E1[m, " "= E1[m, o]; 1: Relu(A0[m, k] * B0[n, k] + D0[m, n]) * B1[o, n] + D1[m, o] = E1[m, "
...@@ -179,3 +183,5 @@ int profile_batched_gemm_gemm(int argc, char* argv[]) ...@@ -179,3 +183,5 @@ int profile_batched_gemm_gemm(int argc, char* argv[])
return 0; return 0;
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_gemm);
...@@ -6,7 +6,11 @@ ...@@ -6,7 +6,11 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_batched_gemm_reduce_impl.hpp" #include "profiler/profile_batched_gemm_reduce_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "batched_gemm_reduce"
#define OP_DESC "Batched GEMM+Reduce"
int profile_batched_gemm_reduce(int argc, char* argv[]) int profile_batched_gemm_reduce(int argc, char* argv[])
{ {
...@@ -26,7 +30,7 @@ int profile_batched_gemm_reduce(int argc, char* argv[]) ...@@ -26,7 +30,7 @@ int profile_batched_gemm_reduce(int argc, char* argv[])
if(argc != 15) if(argc != 15)
{ {
printf("arg1: tensor operation (batched_gemm_reduce: BatchedGEMM+Reduce)\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n"); printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
...@@ -151,3 +155,5 @@ int profile_batched_gemm_reduce(int argc, char* argv[]) ...@@ -151,3 +155,5 @@ int profile_batched_gemm_reduce(int argc, char* argv[])
return 0; return 0;
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_reduce);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <getopt.h> #include <getopt.h>
#include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_batchnorm_backward_impl.hpp" #include "profiler/profile_batchnorm_backward_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t; using ck::index_t;
...@@ -202,3 +203,5 @@ int profile_batchnorm_backward(int argc, char* argv[]) ...@@ -202,3 +203,5 @@ int profile_batchnorm_backward(int argc, char* argv[])
return 0; return 0;
} }
REGISTER_PROFILER_OPERATION("bnorm_bwd", "Batchnorm backward", profile_batchnorm_backward);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <getopt.h> #include <getopt.h>
#include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_batchnorm_forward_impl.hpp" #include "profiler/profile_batchnorm_forward_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t; using ck::index_t;
...@@ -214,3 +215,5 @@ int profile_batchnorm_forward(int argc, char* argv[]) ...@@ -214,3 +215,5 @@ int profile_batchnorm_forward(int argc, char* argv[])
return 0; return 0;
} }
REGISTER_PROFILER_OPERATION("bnorm_fwd", "Batchnorm forward", profile_batchnorm_forward);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_conv_bwd_data_impl.hpp" #include "profiler/profile_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace { namespace {
...@@ -24,10 +25,13 @@ enum struct ConvDataType ...@@ -24,10 +25,13 @@ enum struct ConvDataType
INT8_INT8_INT8, // 3 INT8_INT8_INT8, // 3
}; };
#define OP_NAME "conv_bwd_data"
#define OP_DESC "Convolution Backward Data"
static void print_helper_msg() static void print_helper_msg()
{ {
std::cout std::cout
<< "arg1: tensor operation (conv_bwd_data: Convolution Backward Data)\n" << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n" << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n" << " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n" << " 2: Input bf16, Weight bf16, Output bf16\n"
...@@ -182,3 +186,5 @@ int profile_conv_bwd_data(int argc, char* argv[]) ...@@ -182,3 +186,5 @@ int profile_conv_bwd_data(int argc, char* argv[])
return 1; return 1;
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_bwd_data);
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include "profiler/include/profile_conv_fwd_impl.hpp" #include "profiler/profile_conv_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace { namespace {
...@@ -24,11 +25,14 @@ enum struct ConvDataType ...@@ -24,11 +25,14 @@ enum struct ConvDataType
INT8_INT8_INT8, // 3 INT8_INT8_INT8, // 3
}; };
#define OP_NAME "conv_fwd"
#define OP_DESC "Convolution Forward"
static void print_helper_msg() static void print_helper_msg()
{ {
std::cout std::cout
// clang-format-off // clang-format-off
<< "arg1: tensor operation (conv_fwd: Convolution Forward)\n" << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n" << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n" << " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n" << " 2: Input bf16, Weight bf16, Output bf16\n"
...@@ -184,3 +188,5 @@ int profile_conv_fwd(int argc, char* argv[]) ...@@ -184,3 +188,5 @@ int profile_conv_fwd(int argc, char* argv[])
return 1; return 1;
} }
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_conv_fwd);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment