Unverified Commit 823657ed authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

GEMM+Bias+ReLU+Add (#76)

* tweak conv for odd C

* update script

* clean up elementwise op

* fix build

* clean up

* added example for gemm+bias+relu+add

* added example for gemm+bias+relu

* add profiler for gemm_s_shuffle; re-org files

* add profiler

* fix build

* clean up

* clean up

* clean up

* fix build
parent 690c75a7
...@@ -198,6 +198,7 @@ enable_cppcheck( ...@@ -198,6 +198,7 @@ enable_cppcheck(
) )
add_subdirectory(host) add_subdirectory(host)
add_subdirectory(device_operation)
add_subdirectory(example) add_subdirectory(example)
add_subdirectory(profiler) add_subdirectory(profiler)
add_subdirectory(test) add_subdirectory(test)
...@@ -7,178 +7,99 @@ namespace element_wise { ...@@ -7,178 +7,99 @@ namespace element_wise {
struct PassThrough struct PassThrough
{ {
template <typename T> __host__ __device__ void operator()(float& y, const float& x) const { y = x; }
__host__ __device__ void operator()(T& y, const T& x) const
{
y = x;
}
// TODO remove this __host__ __device__ void operator()(half_t& y, const half_t& x) const { y = x; }
template <typename T>
__host__ __device__ constexpr T operator()(T v) const
{
return v;
}
}; };
struct AddRelu struct AddRelu
{ {
template <typename T> __host__ __device__ constexpr void operator()(float& y, const float& x0, const float& x1) const
__host__ __device__ constexpr void operator()(T& y, const T& x0, const T& x1) const
{ {
T a = x0 + x1; const float a = x0 + x1;
y = a > 0 ? a : 0; y = a > 0 ? a : 0;
} }
// TODO remove this __host__ __device__ constexpr void
template <typename T1> operator()(half_t& y, const half_t& x0, const half_t& x1) const
__host__ constexpr float operator()(float v0, T1 v1) const
{ {
float b = v0 + v1; const half_t a = x0 + x1;
float c = b > 0 ? b : 0; y = a > 0 ? a : 0;
return c;
} }
};
// TODO remove this struct AddHardswish
template <typename T1> {
__device__ constexpr float operator()(float v0, T1 v1) const __host__ __device__ constexpr void operator()(float& y, const float& x0, const float& x1) const
{ {
#if 0 float a = x0 + x1;
float a = v1 + v0; float b = a + float{3};
float b = max(a, float(0)); float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
y = c;
return b; }
#else
float b = v1 + v0;
float c = b > 0 ? b : 0;
return c; __host__ __device__ constexpr void
#endif operator()(half_t& y, const half_t& x0, const half_t& x1) const
{
float a = x0 + x1;
float b = a + float{3};
float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
y = c;
} }
}; };
struct AddReluAdd struct AddReluAdd
{ {
template <typename T> __host__ __device__ constexpr void
__host__ __device__ constexpr void operator()(T& y, const T& x0, const T& x1, const T& x2) const operator()(half_t& y, const half_t& x0, const half_t& x1, const half_t& x2) const
{ {
T a = x0 + x1; half_t a = x0 + x1;
T b = a > 0 ? a : 0; half_t b = a > 0 ? a : 0;
y = b + x2; y = b + x2;
} }
// TODO remove this __host__ __device__ constexpr void
template <typename T1, typename T2> operator()(float& y, const float& x0, const float& x1, const float& x2) const
__host__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{ {
float b = v0 + v1; float a = x0 + x1;
float c = b > 0 ? b : 0; float b = a > 0 ? a : 0;
float d = c + v2; float c = b + x2;
y = c;
return d;
} }
// TODO remove this __host__ __device__ constexpr void
template <typename T1, typename T2> operator()(half_t& y, const float& x0, const half_t& x1, const half_t& x2) const
__device__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{ {
#if 0 float a = x0 + x1;
float a = v1 + v0; float b = a > 0 ? a : 0;
float b = max(a, float(0)); float c = b + x2;
float c = b + v2; y = c;
return c;
#else
float b = v1 + v2;
float c = (v0 > -v1) ? b + v0 : v2;
return c;
#endif
} }
}; };
} // namespace element_wise struct AddHardswishAdd
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace element_wise {
struct AddLeakyReluAdd
{ {
template <typename T1, typename T2> __host__ __device__ constexpr void
__host__ constexpr float operator()(float v0, T1 v1, T2 v2) const operator()(float& y, const float& x0, const float& x1, const float& x2) const
{ {
float a = v0 + v1; float a = x0 + x1;
float b = 0.1 * a; float b = a + float{3};
float c = b > 0 ? b : 0; float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
float d = c + v2; float d = c + x2;
y = d;
return d;
} }
template <typename T1, typename T2> __host__ __device__ constexpr void
__device__ constexpr float operator()(float v0, T1 v1, T2 v2) const operator()(half_t& y, const half_t& x0, const half_t& x1, const half_t& x2) const
{ {
#if 0 float a = x0 + x1;
// this use not too many registers, but use fp64 mul float b = a + float{3};
float a = v0 + v1; float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
float b = 0.1 * a; float d = c + x2;
float c = b > 0 ? b : 0; y = d;
float d = c + v2;
return d;
#elif 0
// this spill register
float a = v0 + v1;
float b = float(0.1) * a;
float c = b > 0 ? b : 0;
float d = c + v2;
return d;
#elif 0
// this use lots of registers (but no spill)
constexpr float alpha = 0.1;
constexpr float alpha_inv = 1.0 / alpha;
float a = v2 * alpha_inv;
float b = v1 + v0;
float c = b > 0 ? b : 0;
float d = alpha * (a + c);
return d;
#elif 1
// this use lots of registers (but no spill), 89 Tflops
constexpr float alpha = 0.1;
constexpr float alpha_inv = 1.0 / alpha;
float a = v2 * alpha_inv;
float b = v1 + v0;
float c = max(b, float(0));
float d = alpha * (a + c);
return d;
#elif 1
// this spill registers, 89 Tflops
float a = v0 + v1;
float alpha = 0.1;
float b;
asm volatile("\n \
v_mul_f32_e32 %0, %1, %2 \n \
"
: "=v"(b)
: "s"(alpha), "v"(a));
float c = b > 0 ? b : 0;
float d = c + v2;
return d;
#endif
} }
}; };
} // namespace element_wise } // namespace element_wise
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
......
...@@ -199,9 +199,13 @@ struct ThreadwiseTensorSliceTransfer_v1r3 ...@@ -199,9 +199,13 @@ struct ThreadwiseTensorSliceTransfer_v1r3
constexpr index_t src_offset = src_desc.CalculateOffset( constexpr index_t src_offset = src_desc.CalculateOffset(
src_slice_origin_idx + dst_data_idx + i * dst_scalar_step_in_vector); src_slice_origin_idx + dst_data_idx + i * dst_scalar_step_in_vector);
// apply element-wise operation and type convert SrcData dst_v;
dst_vector.template AsType<DstData>()(i) =
type_convert<DstData>(dst_element_op_(src_buf[Number<src_offset>{}])); // apply element-wise operation
dst_element_op_(dst_v, src_buf[Number<src_offset>{}]);
// apply type convert
dst_vector.template AsType<DstData>()(i) = type_convert<DstData>(dst_v);
}); });
const bool is_dst_valid = const bool is_dst_valid =
......
...@@ -293,7 +293,9 @@ struct ThreadwiseTensorSliceTransfer_v1r4 ...@@ -293,7 +293,9 @@ struct ThreadwiseTensorSliceTransfer_v1r4
dst_vector.template AsType<DstData>()(Number<0>{}) = type_convert<DstData>(dst_v); dst_vector.template AsType<DstData>()(Number<0>{}) = type_convert<DstData>(dst_v);
#else #else
// apply element-wise operation in DstData type // apply element-wise operation in DstData type
const DstData dst_v = dst_element_op_(src_v, dst0_v, dst1_v); DstData dst_v;
dst_element_op_(dst_v, src_v, dst0_v, dst1_v);
dst_vector.template AsType<DstData>()(Number<0>{}) = dst_v; dst_vector.template AsType<DstData>()(Number<0>{}) = dst_v;
#endif #endif
......
...@@ -207,8 +207,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1 ...@@ -207,8 +207,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// apply SrcElementwiseOperation on src_vector_container // apply SrcElementwiseOperation on src_vector_container
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) { static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
src_vector_container.template AsType<SrcData>()(i) = SrcData src_v;
src_element_op_(src_vector_container.template AsType<SrcData>()[i]);
src_element_op_(src_v, src_vector_container.template AsType<SrcData>()[i]);
src_vector_container.template AsType<SrcData>()(i) = src_v;
}); });
// copy data from src_vector_container into src_thread_scratch_ // copy data from src_vector_container into src_thread_scratch_
...@@ -452,10 +455,13 @@ struct ThreadwiseTensorSliceTransfer_v3r1 ...@@ -452,10 +455,13 @@ struct ThreadwiseTensorSliceTransfer_v3r1
auto dst_vector_container = dst_vector_type{ auto dst_vector_container = dst_vector_type{
dst_thread_scratch_.template GetAsType<dst_vector_t>(dst_data_idx_seq)}; dst_thread_scratch_.template GetAsType<dst_vector_t>(dst_data_idx_seq)};
// apply DstElementwiseOperation on dst_vector_container
static_for<0, DstScalarPerVector, 1>{}([&](auto i) { static_for<0, DstScalarPerVector, 1>{}([&](auto i) {
dst_vector_container.template AsType<DstData>()(i) = DstData dst_v;
dst_element_op_(dst_vector_container.template AsType<DstData>()[i]);
// apply DstElementwiseOperation
dst_element_op_(dst_v, dst_vector_container.template AsType<DstData>()[i]);
dst_vector_container.template AsType<DstData>()(i) = dst_v;
}); });
// copy data from dst_vector_container to dst_buf // copy data from dst_vector_container to dst_buf
......
include_directories(BEFORE
include
${PROJECT_SOURCE_DIR}/host/host_tensor/include
${PROJECT_SOURCE_DIR}/device/include
${PROJECT_SOURCE_DIR}/device_operation/include
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/composable_kernel/include
${PROJECT_SOURCE_DIR}/composable_kernel/include/utility
${PROJECT_SOURCE_DIR}/composable_kernel/include/tensor_description
${PROJECT_SOURCE_DIR}/composable_kernel/include/tensor_operation
${PROJECT_SOURCE_DIR}/composable_kernel/include/problem_transform
${PROJECT_SOURCE_DIR}/external/rocm/include
)
# device_gemm_instance
set(DEVICE_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp;
)
# device_gemm_bias_relu_instance
set(DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instance.cpp;
)
# device_gemm_bias_relu_add_instance
set(DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instance.cpp;
)
# device_conv2d_fwd_instance
set(DEVICE_CONV2D_FWD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instance.cpp;
)
# device_conv2d_fwd_bias_relu_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp;
)
# device_conv2d_fwd_bias_relu_add_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instance.cpp;
)
# device_conv2d_fwd_bias_relu_atomic_add_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp;
)
add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE})
add_library(device_gemm_bias_relu_instance SHARED ${DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE})
add_library(device_gemm_bias_relu_add_instance SHARED ${DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_instance SHARED ${DEVICE_CONV2D_FWD_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_atomic_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE})
target_include_directories(device_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_gemm_bias_relu_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_gemm_bias_relu_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_conv2d_fwd_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_conv2d_fwd_bias_relu_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_conv2d_fwd_bias_relu_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_conv2d_fwd_bias_relu_atomic_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_compile_features(device_gemm_instance PUBLIC)
target_compile_features(device_gemm_bias_relu_instance PUBLIC)
target_compile_features(device_gemm_bias_relu_add_instance PUBLIC)
target_compile_features(device_conv2d_fwd_instance PUBLIC)
target_compile_features(device_conv2d_fwd_bias_relu_instance PUBLIC)
target_compile_features(device_conv2d_fwd_bias_relu_add_instance PUBLIC)
target_compile_features(device_conv2d_fwd_bias_relu_atomic_add_instance PUBLIC)
set_target_properties(device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_gemm_bias_relu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_gemm_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_conv2d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_conv2d_fwd_bias_relu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_conv2d_fwd_bias_relu_atomic_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
install(TARGETS device_gemm_instance LIBRARY DESTINATION lib)
install(TARGETS device_gemm_bias_relu_instance LIBRARY DESTINATION lib)
install(TARGETS device_gemm_bias_relu_add_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_atomic_add_instance LIBRARY DESTINATION lib)
...@@ -451,14 +451,14 @@ struct ...@@ -451,14 +451,14 @@ struct
} }
} }
using ABCGridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N( using GridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1})); 1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>; using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(GridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>; using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(GridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>; using CGridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I2])>;
using C0GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I3])>; using C0GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I3])>;
using C1GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I4])>; using C1GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I4])>;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3< using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3<
......
#ifndef DEVICE_GEMM_BIAS_ACTIVATION_HPP
#define DEVICE_GEMM_BIAS_ACTIVATION_HPP
#include <iostream>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmBiasActivation : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasActivationPtr = std::unique_ptr<
DeviceGemmBiasActivation<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmBiasActivationAdd : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
ck::index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasActivationAddPtr =
std::unique_ptr<DeviceGemmBiasActivationAdd<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -424,7 +424,8 @@ struct DeviceGemmXdl_C_Shuffle ...@@ -424,7 +424,8 @@ struct DeviceGemmXdl_C_Shuffle
index_t StrideC, index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) override
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b), static_cast<const BDataType*>(p_b),
...@@ -454,7 +455,7 @@ struct DeviceGemmXdl_C_Shuffle ...@@ -454,7 +455,7 @@ struct DeviceGemmXdl_C_Shuffle
auto str = std::stringstream(); auto str = std::stringstream();
// clang-format off // clang-format off
str << "DeviceGemmXdl" str << "DeviceGemmXdl_C_Shuffle"
<< "<" << "<"
<< BlockSize << ", " << BlockSize << ", "
<< MPerBlock << ", " << MPerBlock << ", "
......
#ifndef DEVICE_GEMM_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP #ifndef DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_HPP
#define DEVICE_GEMM_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP #define DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_HPP
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include "device.hpp" #include "device.hpp"
#include "device_base.hpp" #include "device_gemm_bias_activation.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp" #include "common_header.hpp"
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
#include "tensor_descriptor.hpp" #include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp" #include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r5.hpp" #include "gridwise_gemm_xdlops_v3r2.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename ADataType, // C[M, N] = activate(A[M, K] * B[K, N] + C0[N])
typename BDataType, template <
typename CDataType, typename ADataType,
typename AccDataType, typename BDataType,
typename ALayout, typename CDataType,
typename BLayout, typename AccDataType,
typename CLayout, typename ALayout,
typename AElementwiseOperation, typename BLayout,
typename BElementwiseOperation, typename CLayout,
typename CElementwiseOperation, typename AElementwiseOperation,
ck::index_t BlockSize, typename BElementwiseOperation,
ck::index_t MPerBlock, typename CElementwiseOperation,
ck::index_t NPerBlock, ck::index_t BlockSize,
ck::index_t K0PerBlock, ck::index_t MPerBlock,
ck::index_t K1, ck::index_t NPerBlock,
ck::index_t MPerXDL, ck::index_t K0PerBlock,
ck::index_t NPerXDL, ck::index_t K1,
ck::index_t MXdlPerWave, ck::index_t MPerXDL,
ck::index_t NXdlPerWave, ck::index_t NPerXDL,
typename ABlockTransferThreadClusterLengths_K0_M_K1, ck::index_t MXdlPerWave,
typename ABlockTransferThreadClusterArrangeOrder, ck::index_t NXdlPerWave,
typename ABlockTransferSrcAccessOrder, typename ABlockTransferThreadClusterLengths_K0_M_K1,
ck::index_t ABlockTransferSrcVectorDim, typename ABlockTransferThreadClusterArrangeOrder,
ck::index_t ABlockTransferSrcScalarPerVector, typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferDstScalarPerVector_K1, ck::index_t ABlockTransferSrcVectorDim,
bool ABlockLdsAddExtraM, ck::index_t ABlockTransferSrcScalarPerVector,
typename BBlockTransferThreadClusterLengths_K0_N_K1, ck::index_t ABlockTransferDstScalarPerVector_K1,
typename BBlockTransferThreadClusterArrangeOrder, bool ABlockLdsAddExtraM,
typename BBlockTransferSrcAccessOrder, typename BBlockTransferThreadClusterLengths_K0_N_K1,
ck::index_t BBlockTransferSrcVectorDim, typename BBlockTransferThreadClusterArrangeOrder,
ck::index_t BBlockTransferSrcScalarPerVector, typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferDstScalarPerVector_K1, ck::index_t BBlockTransferSrcVectorDim,
bool BBlockLdsAddExtraN, ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t CThreadTransferSrcDstVectorDim, ck::index_t BBlockTransferDstScalarPerVector_K1,
ck::index_t CThreadTransferDstScalarPerVector> bool BBlockLdsAddExtraN,
struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceGemmXdl_C_Shuffle_Bias_Activation
: public DeviceGemmBiasActivation<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{ {
using DeviceOp = DeviceGemmXdl_C_Shuffle_Bias_Activation;
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{}; static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA) static auto MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N(
index_t M, index_t N, index_t K, index_t StrideA, index_t StrideB, index_t StrideC)
{ {
assert(K % K1 == 0); assert(K % K1 == 0);
const index_t K0 = K / K1; const index_t K0 = K / K1;
// A[K0, M, K1]
const auto a_grid_desc_m_k = [&]() { const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value) if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{ {
...@@ -83,15 +94,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -83,15 +94,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
make_tuple(Sequence<1>{}, Sequence<0>{}), make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{})); make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_k0_m_k1; // B[K0, N, K1]
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() { const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value) if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{ {
...@@ -110,33 +113,36 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -110,33 +113,36 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{})); make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_k0_n_k1; // C[M, N]
} const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC) // C0[N]: assume a contiguous vector
{ const auto c0_grid_desc_m_n =
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value) make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I0, I1));
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1)); return make_tuple(
} a_grid_desc_k0_m_k1, b_grid_desc_k0_n_k1, c_grid_desc_m_n, c0_grid_desc_m_n);
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
} }
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1)); using GridDescs =
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1)); decltype(MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N(1, 1, 1, 1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using C0GridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// hardcoding using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(GridDescs{}[I0])>;
// TODO: fix this using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(GridDescs{}[I1])>;
using C1GridDesc_M_N = using CGridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I2])>;
decltype(make_naive_tensor_descriptor(make_tuple(1, 1), make_tuple(I1, I0))); using C0GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I3])>;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5< using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2<
BlockSize, BlockSize,
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
...@@ -146,7 +152,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -146,7 +152,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
C0GridDesc_M_N, C0GridDesc_M_N,
C1GridDesc_M_N,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
...@@ -174,20 +179,10 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -174,20 +179,10 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
BBlockTransferDstScalarPerVector_K1, BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun, false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN, BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder, CShuffleMXdlPerWavePerShuffle,
CThreadTransferSrcDstVectorDim, CShuffleNXdlPerWavePerShuffle,
CThreadTransferDstScalarPerVector>; CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
CBlockTransferScalarPerVector_NWaveNPerXdl>;
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C0GridDesc_M_N{}));
using C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C1GridDesc_M_N{}));
using Block2CTileMap = decltype(GridwiseGemm::MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -196,7 +191,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -196,7 +191,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
const BDataType* p_b_grid, const BDataType* p_b_grid,
CDataType* p_c_grid, CDataType* p_c_grid,
const CDataType* p_c0_grid, const CDataType* p_c0_grid,
const CDataType* p_c1_grid,
index_t M, index_t M,
index_t N, index_t N,
index_t K, index_t K,
...@@ -212,15 +206,12 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -212,15 +206,12 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
p_b_grid_{p_b_grid}, p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid}, p_c_grid_{p_c_grid},
p_c0_grid_{p_c0_grid}, p_c0_grid_{p_c0_grid},
p_c1_grid_{p_c1_grid},
a_grid_desc_k0_m_k1_{}, a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{}, b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{}, c_grid_desc_m_n_{},
c0_grid_desc_m_n_{}, c0_grid_desc_m_n_{},
c1_grid_desc_m_n_{}, c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{}, c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{}, block_2_ctile_map_{},
M01_{M01}, M01_{M01},
N01_{N01}, N01_{N01},
...@@ -228,33 +219,26 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -228,33 +219,26 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
b_element_op_{b_element_op}, b_element_op_{b_element_op},
c_element_op_{c_element_op} c_element_op_{c_element_op}
{ {
a_grid_desc_k0_m_k1_ = const auto descs = DeviceOp::MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N(
DeviceGemmXdl_two_extra_source_reduce::MakeAGridDescriptor_K0_M_K1(M, K, StrideA); M, N, K, StrideA, StrideB, StrideC);
b_grid_desc_k0_n_k1_ =
DeviceGemmXdl_two_extra_source_reduce::MakeBGridDescriptor_K0_N_K1(K, N, StrideB); a_grid_desc_k0_m_k1_ = descs[I0];
c_grid_desc_m_n_ = b_grid_desc_k0_n_k1_ = descs[I1];
DeviceGemmXdl_two_extra_source_reduce::MakeCGridDescriptor_M_N(M, N, StrideC); c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3];
// assume C0 has same layout as C
// TODO: fix this
c0_grid_desc_m_n_ =
DeviceGemmXdl_two_extra_source_reduce::MakeCGridDescriptor_M_N(M, N, StrideC);
// hardcoding C1 layout
// TODO: fix this
c1_grid_desc_m_n_ = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, I0));
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m_n_);
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c0_grid_desc_m_n_);
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c1_grid_desc_m_n_); GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01); block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
...@@ -265,16 +249,17 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -265,16 +249,17 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
const BDataType* p_b_grid_; const BDataType* p_b_grid_;
CDataType* p_c_grid_; CDataType* p_c_grid_;
const CDataType* p_c0_grid_; const CDataType* p_c0_grid_;
const CDataType* p_c1_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_; AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_; BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_; C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_; typename GridwiseGemm::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_; CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_; c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_; typename GridwiseGemm::
Block2CTileMap block_2_ctile_map_; C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
index_t M01_; index_t M01_;
index_t N01_; index_t N01_;
AElementwiseOperation a_element_op_; AElementwiseOperation a_element_op_;
...@@ -285,7 +270,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -285,7 +270,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
// Invoker // Invoker
struct Invoker : public BaseInvoker struct Invoker : public BaseInvoker
{ {
using Argument = DeviceGemmXdl_two_extra_source_reduce::Argument; using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1) float Run(const Argument& arg, int nrepeat = 1)
{ {
...@@ -303,9 +288,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -303,9 +288,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0) std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
} }
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
...@@ -328,83 +310,81 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -328,83 +310,81 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
if(has_main_k0_block_loop) if(has_main_k0_block_loop)
{ {
const auto kernel = kernel_gemm_xdlops_v2r5< const auto kernel = kernel_gemm_xdlops_v3r2<
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::AGridDesc_K0_M_K1>, remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::BGridDesc_K0_N_K1>, remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t< remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>, typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t< remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>, typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::Block2CTileMap>, remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
true>; true>;
ave_time = launch_and_time_kernel(kernel, ave_time = launch_and_time_kernel(
nrepeat, kernel,
dim3(grid_size), nrepeat,
dim3(BlockSize), dim3(grid_size),
0, dim3(BlockSize),
arg.p_a_grid_, 0,
arg.p_b_grid_, arg.p_a_grid_,
arg.p_c_grid_, arg.p_b_grid_,
arg.p_c0_grid_, arg.p_c_grid_,
arg.p_c1_grid_, arg.p_c0_grid_,
arg.a_grid_desc_k0_m_k1_, arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.a_element_op_,
arg.a_element_op_, arg.b_element_op_,
arg.b_element_op_, arg.c_element_op_,
arg.c_element_op_, arg.block_2_ctile_map_);
arg.block_2_ctile_map_);
} }
else else
{ {
const auto kernel = kernel_gemm_xdlops_v2r5< const auto kernel = kernel_gemm_xdlops_v3r2<
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::AGridDesc_K0_M_K1>, remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::BGridDesc_K0_N_K1>, remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t< remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>, typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t< remove_reference_t<
DeviceGemmXdl_two_extra_source_reduce::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>, typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
remove_reference_t<DeviceGemmXdl_two_extra_source_reduce::Block2CTileMap>, remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
false>; false>;
ave_time = launch_and_time_kernel(kernel, ave_time = launch_and_time_kernel(
nrepeat, kernel,
dim3(grid_size), nrepeat,
dim3(BlockSize), dim3(grid_size),
0, dim3(BlockSize),
arg.p_a_grid_, 0,
arg.p_b_grid_, arg.p_a_grid_,
arg.p_c_grid_, arg.p_b_grid_,
arg.p_c0_grid_, arg.p_c_grid_,
arg.p_c1_grid_, arg.p_c0_grid_,
arg.a_grid_desc_k0_m_k1_, arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_, arg.a_element_op_,
arg.a_element_op_, arg.b_element_op_,
arg.b_element_op_, arg.c_element_op_,
arg.c_element_op_, arg.block_2_ctile_map_);
arg.block_2_ctile_map_);
} }
return ave_time; return ave_time;
...@@ -442,7 +422,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -442,7 +422,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
const BDataType* p_b, const BDataType* p_b,
CDataType* p_c, CDataType* p_c,
const CDataType* p_c0, const CDataType* p_c0,
const CDataType* p_c1,
index_t M, index_t M,
index_t N, index_t N,
index_t K, index_t K,
...@@ -457,7 +436,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -457,7 +436,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
p_b, p_b,
p_c, p_c,
p_c0, p_c0,
p_c1,
M, M,
N, N,
K, K,
...@@ -478,7 +456,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -478,7 +456,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
const void* p_b, const void* p_b,
void* p_c, void* p_c,
const void* p_c0, const void* p_c0,
const void* p_c1,
index_t M, index_t M,
index_t N, index_t N,
index_t K, index_t K,
...@@ -487,13 +464,13 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -487,13 +464,13 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
index_t StrideC, index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) CElementwiseOperation c_element_op,
index_t KBatch = 1) override
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b), static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c), static_cast<CDataType*>(p_c),
static_cast<const CDataType*>(p_c0), static_cast<const CDataType*>(p_c0),
static_cast<const CDataType*>(p_c1),
M, M,
N, N,
K, K,
...@@ -508,7 +485,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -508,7 +485,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
} }
// polymorphic // polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{ {
return std::make_unique<Invoker>(Invoker{}); return std::make_unique<Invoker>(Invoker{});
} }
...@@ -518,7 +495,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -518,7 +495,7 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
auto str = std::stringstream(); auto str = std::stringstream();
// clang-format off // clang-format off
str << "DeviceGemmXdl_two_extra_source_reduce" str << "DeviceGemmXdl_C_Shuffle_Bias_Activation"
<< "<" << "<"
<< BlockSize << ", " << BlockSize << ", "
<< MPerBlock << ", " << MPerBlock << ", "
......
#ifndef DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_bias_activation_add.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// C[M, N] = activate(A[M, K] * B[K, N] + C0[N]) + C1[M, N]
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
: public DeviceGemmBiasActivationAdd<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
using DeviceOp = DeviceGemmXdl_C_Shuffle_Bias_Activation_Add;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
// A[K0, M, K1]
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_k0_m_k1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B[K0, N, K1]
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto b_grid_desc_k0_n_k1 =
transform_tensor_descriptor(b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C[M, N]
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
// C0[N]: assume a contiguous vector
const auto c0_grid_desc_m_n =
make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I0, I1));
// C1[M, N]: residual tensor: assume same layout as C
const auto c1_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC1, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC1));
}
}();
return make_tuple(a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
c_grid_desc_m_n,
c0_grid_desc_m_n,
c1_grid_desc_m_n);
}
using GridDescs =
decltype(MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(1, 1, 1, 1, 1, 1, 1));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(GridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(GridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I2])>;
using C0GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I3])>;
using C1GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I4])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
CBlockTransferScalarPerVector_NWaveNPerXdl>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
const CDataType* p_c0_grid,
const CDataType* p_c1_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_c0_grid_{p_c0_grid},
p_c1_grid_{p_c1_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c0_grid_desc_m_n_{},
c1_grid_desc_m_n_{},
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
const auto descs = DeviceOp::MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(
M, N, K, StrideA, StrideB, StrideC, StrideC1);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4];
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_);
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const CDataType* p_c0_grid_;
const CDataType* p_c1_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const CDataType* p_c0,
const CDataType* p_c1,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_c0,
p_c1,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
1,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t KBatch = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<const CDataType*>(p_c0),
static_cast<const CDataType*>(p_c1),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
1,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmXdl_C_Shuffle_Bias_Activation_Add"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -118,7 +118,12 @@ using device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_odd_c_f16_ins ...@@ -118,7 +118,12 @@ using device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_odd_c_f16_ins
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8> DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 256, 128, 64, 2, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 256, 256, 64, 2, 4, 32, 32, 4, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 128, 64, 2, 4, 32, 32, 2, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddReluAdd, ConvFwdOddC, 128, 64, 64, 2, 4, 32, 32, 1, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
......
...@@ -120,7 +120,12 @@ using device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_odd_c_f16_instanc ...@@ -120,7 +120,12 @@ using device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_odd_c_f16_instanc
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8> DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 256, 128, 64, 2, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 256, 256, 64, 2, 4, 32, 32, 4, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 128, 64, 2, 4, 32, 32, 2, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, AddRelu, MemorySet, ConvFwdOddC, 128, 64, 64, 2, 4, 32, 32, 1, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
......
...@@ -116,7 +116,12 @@ using device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_odd_c_f16_instances = std:: ...@@ -116,7 +116,12 @@ using device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_odd_c_f16_instances = std::
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 4, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>, DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8> DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 2, 8>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 256, 128, 64, 2, 4, 32, 32, 2, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 256, 256, 64, 2, 4, 32, 32, 4, 1, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 32, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 128, 64, 2, 4, 32, 32, 2, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvFwdOddC, 128, 64, 64, 2, 4, 32, 32, 1, 2, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<2, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation_add.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
// c[m, n] = ReLU(a[k, m] * b[k, n] + c0[n]) + c1[m, n]
using device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
//#########################################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#########################################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#########################################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmBiasActivationAddPtr<PassThrough, PassThrough, AddReluAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation_add.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
// c[m, n] = ReLU(a[k, m] * b[n, k] + c0[n]) + c1[m, n]
using device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
//#########################################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#########################################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#########################################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AddReluAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmBiasActivationAddPtr<PassThrough, PassThrough, AddReluAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment