Unverified Commit 7e9a9d32 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

[Bf16 & int8] [example & ckprofiler] (#100)



* Add int8 of mk_nk_mn to the ckProfiler

* Add example of int8 gemm

* Fix typo, use ushort instead of half_t for bfloat16

* replace ushortXXX_t to bhalfXXX_t

* rename ushort to bhalf_t

* Add bf16 example

* Add bf16 gemm to ckProfiler

* Fix alignment

* Fix typo

* Add unit test for gemm_xdl int8

* Add gemm_xdl fp32 unit test

* Add gemm_xdl bf16 unit test

* fix build

* fix build issue due to merge conflict

* Fix build

* Fix build error
Co-authored-by: default avatarrocking <chunylai@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent 0c79af12
...@@ -20,8 +20,10 @@ enum GemmMatrixLayout ...@@ -20,8 +20,10 @@ enum GemmMatrixLayout
enum GemmDataType enum GemmDataType
{ {
F32_F32_F32, // 0 F32_F32_F32, // 0
F16_F16_F16, // 1 F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
}; };
int profile_gemm(int argc, char* argv[]) int profile_gemm(int argc, char* argv[])
...@@ -29,7 +31,7 @@ int profile_gemm(int argc, char* argv[]) ...@@ -29,7 +31,7 @@ int profile_gemm(int argc, char* argv[])
if(!(argc == 14 || argc == 15)) if(!(argc == 14 || argc == 15))
{ {
printf("arg1: tensor operation (gemm: GEMM)\n"); printf("arg1: tensor operation (gemm: GEMM)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n"); printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n"); printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
...@@ -221,6 +223,46 @@ int profile_gemm(int argc, char* argv[]) ...@@ -221,6 +223,46 @@ int profile_gemm(int argc, char* argv[])
(StrideC < 0) ? N : StrideC, (StrideC < 0) ? N : StrideC,
KBatch); KBatch);
} }
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else else
{ {
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented"); throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
...@@ -28,7 +28,7 @@ int profile_gemm_bias_2d(int argc, char* argv[]) ...@@ -28,7 +28,7 @@ int profile_gemm_bias_2d(int argc, char* argv[])
{ {
if(!(argc == 16 || argc == 17)) if(!(argc == 16 || argc == 17))
{ {
printf("arg1: tensor operation (gemm: GEMM+Bias)\n"); printf("arg1: tensor operation (gemm: GEMM+Bias_2d)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n"); printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
......
...@@ -34,3 +34,21 @@ foreach(TEST ${TESTS}) ...@@ -34,3 +34,21 @@ foreach(TEST ${TESTS})
message("adding test ${BASE_NAME}") message("adding test ${BASE_NAME}")
add_test_executeable(test_${BASE_NAME} ${TEST}) add_test_executeable(test_${BASE_NAME} ${TEST})
endforeach(TEST ${TESTS}) endforeach(TEST ${TESTS})
# test_gemm_xdl_fp32
set(GEMM_XDL_FP32_SOURCE gemm_xdl/test_gemm_fp32.cpp)
add_executable(test_gemm_xdl_fp32 ${GEMM_XDL_FP32_SOURCE})
target_link_libraries(test_gemm_xdl_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_fp32 PRIVATE device_gemm_instance)
# test_gemm_xdl_bf16
set(GEMM_XDL_BF16_SOURCE gemm_xdl/test_gemm_bf16.cpp)
add_executable(test_gemm_xdl_bf16 ${GEMM_XDL_BF16_SOURCE})
target_link_libraries(test_gemm_xdl_bf16 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_bf16 PRIVATE device_gemm_instance)
# test_gemm_xdl_int8
set(GEMM_XDL_INT8_SOURCE gemm_xdl/test_gemm_int8.cpp)
add_executable(test_gemm_xdl_int8 ${GEMM_XDL_INT8_SOURCE})
target_link_libraries(test_gemm_xdl_int8 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_int8 PRIVATE device_gemm_instance)
...@@ -202,9 +202,9 @@ int main(int argc, char* argv[]) ...@@ -202,9 +202,9 @@ int main(int argc, char* argv[])
ck::tensor_operation::device::device_conv2d_fwd_instance:: ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs); add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
} }
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ushort> && else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ushort> && ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ushort>) ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::bhalf_t>)
{ {
ck::tensor_operation::device::device_conv2d_fwd_instance:: ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs); add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
...@@ -298,7 +298,7 @@ int main(int argc, char* argv[]) ...@@ -298,7 +298,7 @@ int main(int argc, char* argv[])
} }
else if(data_type == 2) else if(data_type == 2)
{ {
res = Run(ushort(), ushort(), ushort()); Run(ck::bhalf_t(), ck::bhalf_t(), ck::bhalf_t());
} }
else if(data_type == 3) else if(data_type == 3)
{ {
......
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
namespace ck {
namespace gemm_util {
struct GemmParams
{
GemmParams()
: M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
{
}
ck::index_t M;
ck::index_t N;
ck::index_t K;
ck::index_t StrideA;
ck::index_t StrideB;
ck::index_t StrideC;
float alpha;
float beta;
};
template <typename GemmInstance,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
const Tensor<BDataType>& B,
Tensor<CDataType>& C,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
auto ref_gemm = GemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
template <typename DeviceGemmPtr_,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
const ck::gemm_util::GemmParams& params,
const Tensor<ADataType>& A,
const Tensor<BDataType>& B,
Tensor<CDataType>& C,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(A.mData.data());
b_k_n_device_buf.ToDevice(B.mData.data());
auto invoker_ptr = gemmPtr->MakeInvokerPointer();
auto argument_ptr =
gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
params.M,
params.N,
params.K,
params.StrideA,
params.StrideB,
params.StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
invoker_ptr->Run(argument_ptr.get());
c_m_n_device_buf.FromDevice(C.mData.data());
}
} // namespace gemm_util
} // namespace ck
#endif
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
using BF16 = ck::bhalf_t;
using ADataType = BF16;
using BDataType = BF16;
using CDataType = BF16;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
// use fp32 host kernel to verify bf16 device kernel
Tensor<ADataType> a_m_k_bf16(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n_bf16(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_device_bf16(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> a_m_k_fp32(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<float> b_k_n_fp32(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<float> c_m_n_host_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> c_m_n_device_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);
return std::make_tuple(a_m_k_bf16,
b_k_n_bf16,
c_m_n_device_bf16,
a_m_k_fp32,
b_k_n_fp32,
c_m_n_host_fp32,
c_m_n_device_fp32);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a_bf16 = std::get<0>(host_tensors);
const Tensor<BDataType>& b_bf16 = std::get<1>(host_tensors);
Tensor<CDataType>& c_device_bf16 = std::get<2>(host_tensors);
Tensor<float>& a_fp32 = std::get<3>(host_tensors);
Tensor<float>& b_fp32 = std::get<4>(host_tensors);
Tensor<float>& c_host_fp32 = std::get<5>(host_tensors);
Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
// use fp32 host kernel to verify bf16 device kernel
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<float, float, float, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a_bf16, b_bf16, c_device_bf16, a_element_op, b_element_op, c_element_op);
bf16_to_f32_(c_device_bf16, c_device_fp32);
// Assert
bool res = test_util::check_err(
c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
} // anonymous namespace
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = test_util::check_err(
c_device.mData, c_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
} // anonymous namespace
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using AccDataType = int32_t;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = test_util::check_err(c_device.mData, c_host.mData, "Error: incorrect results!");
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
} // anonymous namespace
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment