Unverified Commit 500fa995 authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Clean up conv example, Instances, profiler and test (#324)

* convnd_fwd fp16 example

* update example

* update example

* update instance

* updating refernce conv

* update reference conv

* update conv fwd profiler

* update conv 1d and 3d instance

* update include path

* clean

* update profiler for conv bwd data and weight

* update conv bwd weight

* clean

* update conv example

* update profiler for conv bwd weight

* update ckprofiler for conv bwd data

* fix reference conv bwd data bug; update conv bwd data test

* update examples

* fix initialization issue

* update test for conv fwd

* clean

* clean

* remove test case too sensitive to error threshhold

* fix test

* clean

* fix build

* adding conv multiple d

* adding conv multiple D

* add matrix padder

* add gemm padding to convnd

* adding group conv

* update gemm multi-d

* refactor

* refactor

* refactor

* clean

* clean

* refactor

* refactor

* reorg

* add ds

* add bias

* clean

* add G

* adding group

* adding group

* adding group

* update Tensor

* clean

* update example

* update DeviceGemmMultipleD_Xdl_CShuffle

* update conv bwd-data and bwd-weight

* upate contraction example

* update gemm and batch gemm with e permute

* fix example build

* instance for grouped conv1d

* update example

* adding group conv instance

* update gemm bilinear instance

* update gemm+add+add+fastgelu instance

* update profiler

* update profiler

* update test

* update test and client example

* clean

* add grouped conv into profiler

* update profiler

* clean

* add test grouped conv, update all conv test to gtest

* update test
parent 85978e02
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_convnd_bwd_data_impl.hpp"
namespace {
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // namespace
int profile_convnd_bwd_data(int argc, char* argv[], int num_dim_spatial)
{
const int preParams = 10;
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + preParams;
if(cmdline_nargs != argc)
{
printf("arg1: tensor operation (conv[1|2|3]d_bwd_data: BackwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: time kernel (0=n0, 1=yes)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);
auto Run = [&](auto input_type, auto wei_type, auto out_type, auto acc_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using AccDataType = decltype(acc_type);
switch(num_dim_spatial)
{
case 1:
ck::profiler::profile_convnd_bwd_data_impl<1,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_);
break;
case 2:
ck::profiler::profile_convnd_bwd_data_impl<2,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_);
break;
case 3:
ck::profiler::profile_convnd_bwd_data_impl<3,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_);
break;
default: break;
}
};
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(float{}, float{}, float{}, float{});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::half_t{}, ck::half_t{}, ck::half_t{}, float{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{}, float{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(int8_t{}, int8_t{}, int8_t{}, int32_t{});
}
else
{
std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
return 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_convnd_bwd_weight_impl.hpp"
namespace {
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
};
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // namespace
int profile_convnd_bwd_weight(int argc, char* argv[], int num_dim_spatial)
{
const int preParams = 11;
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + preParams;
if(cmdline_nargs != argc)
{
printf("arg1: tensor operation (convnd[1|2|3]d_bwd_weight: BackwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16, 2: bf16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: time kernel (0=n0, 1=yes)\n");
printf("arg10: splitk\n");
printf("arg11 to 25: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
ck::index_t split_k = std::stoi(argv[10]);
split_k = std::max(1, split_k);
ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);
auto Run = [&](auto input_type, auto wei_type, auto out_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
switch(num_dim_spatial)
{
case 1:
ck::profiler::profile_convnd_bwd_weight_impl<1,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
case 2:
ck::profiler::profile_convnd_bwd_weight_impl<2,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
case 3:
ck::profiler::profile_convnd_bwd_weight_impl<3,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
default: break;
}
};
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(float{}, float{}, float{});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::half_t{}, ck::half_t{}, ck::half_t{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{});
}
else
{
std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
return 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/fill.hpp"
namespace {
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum struct ConvDataLayout
{
NCHW, // 0
NHWC, // 1
};
namespace ctl = ck::tensor_layout::convolution;
template <int NDim, ConvDataLayout DataLayout>
struct ConvolutionLayouts;
template <>
struct ConvolutionLayouts<1, ConvDataLayout::NHWC>
{
typedef ctl::NWC Input;
typedef ctl::KXC Weight;
typedef ctl::NWK Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NHWC>
{
typedef ctl::NHWC Input;
typedef ctl::KYXC Weight;
typedef ctl::NHWK Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NHWC>
{
typedef ctl::NDHWC Input;
typedef ctl::KZYXC Weight;
typedef ctl::NDHWK Output;
};
template <>
struct ConvolutionLayouts<1, ConvDataLayout::NCHW>
{
typedef ctl::NCW Input;
typedef ctl::KCX Weight;
typedef ctl::NKW Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NCHW>
{
typedef ctl::NCHW Input;
typedef ctl::KCYX Weight;
typedef ctl::NKHW Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NCHW>
{
typedef ctl::NCDHW Input;
typedef ctl::KCZYX Weight;
typedef ctl::NKDHW Output;
};
void print_use_msg()
{
std::cout << "arg1: tensor operation (conv_fwd: ForwardConvolution)\n"
<< "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
<< "arg3: data layout (0: NCHW; 1: NHWC)\n"
<< "arg4: verification (0=no, 1=yes)\n"
<< "arg5: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: run kernel # of times (>1)\n"
<< "arg8: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_params(int num_dim_spatial, int argc, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 9;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(1);
}
int arg_idx = 9;
return ck::utils::conv::parse_conv_params(num_dim_spatial, arg_idx, argv);
}
template <int NDim,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename ConvLayouts>
void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
bool do_verification,
bool do_log,
bool time_kernel,
int init_method,
ConvLayouts)
{
using namespace std::placeholders;
using namespace ck::utils;
std::unique_ptr<OpInstance<OutDataType, InDataType, WeiDataType>> conv_instance;
switch(init_method)
{
case 0:
conv_instance =
std::make_unique<conv::ConvFwdOpInstance<InDataType,
WeiDataType,
OutDataType,
typename ConvLayouts::Input,
typename ConvLayouts::Weight,
typename ConvLayouts::Output>>(params, false);
break;
case 1:
conv_instance = std::make_unique<
conv::ConvFwdOpInstance<InDataType,
WeiDataType,
OutDataType,
typename ConvLayouts::Input,
typename ConvLayouts::Weight,
typename ConvLayouts::Output,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::utils::FillUniformDistributionIntegerValue<int>,
ck::utils::FillUniformDistributionIntegerValue<int>>>(
params,
true,
ck::utils::FillUniformDistributionIntegerValue<int>{},
ck::utils::FillUniformDistributionIntegerValue<int>{});
break;
case 2:
conv_instance = std::make_unique<
conv::ConvFwdOpInstance<InDataType,
WeiDataType,
OutDataType,
typename ConvLayouts::Input,
typename ConvLayouts::Weight,
typename ConvLayouts::Output,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::utils::FillUniformDistribution<InDataType>,
ck::utils::FillUniformDistribution<WeiDataType>>>(
params,
true,
ck::utils::FillUniformDistribution<InDataType>{},
ck::utils::FillUniformDistribution<WeiDataType>{});
break;
default: throw std::runtime_error("Unsupported init method!");
}
auto reference_conv_fwd_fun = std::bind(
conv::run_reference_convolution_forward<NDim, InDataType, WeiDataType, OutDataType>,
params,
_1,
_2,
_3);
OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(
*conv_instance, reference_conv_fwd_fun, do_verification);
auto best_conf = run_engine.Profile(
conv::ConvolutionFwdInstances<InDataType, WeiDataType, OutDataType>::template Get<NDim>(),
time_kernel,
do_verification,
do_log);
std::cout << "Best configuration parameters:"
<< "\nname: " << best_conf.best_op_name << "\navg_time: " << best_conf.best_avg_time
<< "\ntflops: " << best_conf.best_tflops << "\nGB/s: " << best_conf.best_gb_per_sec
<< std::endl;
}
template <int NDim>
void profile_convnd_instances(ConvDataType data_type,
ConvDataLayout data_layout,
const ck::utils::conv::ConvParams& params,
bool do_verification,
bool do_log,
bool time_kernel,
int init_method)
{
switch(data_layout)
{
case ConvDataLayout::NHWC: {
switch(data_type)
{
case ConvDataType::F32_F32_F32:
profile_convnd_instances_impl<NDim, float, float, float>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
break;
case ConvDataType::F16_F16_F16:
profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
break;
case ConvDataType::BF16_BF16_BF16:
profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
break;
case ConvDataType::INT8_INT8_INT8:
profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
break;
}
break;
}
case ConvDataLayout::NCHW: {
switch(data_type)
{
case ConvDataType::F32_F32_F32:
profile_convnd_instances_impl<NDim, float, float, float>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
break;
case ConvDataType::F16_F16_F16:
profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
break;
case ConvDataType::BF16_BF16_BF16:
profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
break;
case ConvDataType::INT8_INT8_INT8:
profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
params,
do_verification,
do_log,
time_kernel,
init_method,
ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
break;
}
break;
}
}
}
} // namespace
int profile_convnd_fwd(int argc, char* argv[])
{
using namespace ck::utils::conv;
ConvDataType data_type{ConvDataType::F32_F32_F32};
ConvDataLayout data_layout{ConvDataLayout::NHWC};
bool do_verification{true};
int init_method{2};
bool do_log{false};
bool time_kernel{false};
int num_dim_spatial{2};
ConvParams params;
if(argc >= 4)
{
data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
data_layout = static_cast<ConvDataLayout>(std::stoi(argv[3]));
}
if(argc >= 9)
{
do_verification = std::stoi(argv[4]);
init_method = std::stoi(argv[5]);
do_log = std::stoi(argv[6]);
time_kernel = std::stoi(argv[7]);
num_dim_spatial = std::stoi(argv[8]);
}
if(argc >= 10)
{
params = parse_params(num_dim_spatial, argc, argv);
}
// TODO Print nice message what is being profiled.
switch(num_dim_spatial)
{
case 1:
profile_convnd_instances<1>(
data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
break;
case 2:
profile_convnd_instances<2>(
data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
break;
case 3:
profile_convnd_instances<3>(
data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
break;
default:
throw std::runtime_error("profile_conv_fwd: unsupported num_dim_spatial value: " +
std::to_string(num_dim_spatial));
}
return 0;
}
......@@ -24,21 +24,27 @@ enum struct GemmDataType
INT8_INT8_INT8, // 3
};
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (gemm: GEMM)\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< " 2: A[k, m] * B[k, n] = C[m, n];\n"
<< " 3: A[k, m] * B[n, k] = C[m, n])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< "arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n"
<< std::endl;
}
int profile_gemm(int argc, char* argv[])
{
if(argc != 14)
{
printf("arg1: tensor operation (gemm: GEMM)\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
print_helper_msg();
exit(1);
}
......@@ -109,67 +115,67 @@ int profile_gemm(int argc, char* argv[])
if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Row{}, Row{});
return profile(Row{}, Row{}, Row{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Col{}, Row{});
return profile(Row{}, Col{}, Row{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Row{}, Row{});
return profile(Col{}, Row{}, Row{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Col{}, Row{});
return profile(Col{}, Col{}, Row{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
return profile(Row{}, Row{}, Row{}, F16{}, F16{}, F32{}, F16{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
return profile(Row{}, Col{}, Row{}, F16{}, F16{}, F32{}, F16{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Row{}, Row{});
return profile(Col{}, Row{}, Row{}, F16{}, F16{}, F32{}, F16{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{});
return profile(Col{}, Col{}, Row{}, F16{}, F16{}, F32{}, F16{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(BF16{}, BF16{}, F32{}, BF16{}, Row{}, Row{}, Row{});
return profile(Row{}, Row{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(BF16{}, BF16{}, F32{}, BF16{}, Row{}, Col{}, Row{});
return profile(Row{}, Col{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(BF16{}, BF16{}, F32{}, BF16{}, Col{}, Row{}, Row{});
return profile(Col{}, Row{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(BF16{}, BF16{}, F32{}, BF16{}, Col{}, Col{}, Row{});
return profile(Col{}, Col{}, Row{}, BF16{}, BF16{}, F32{}, BF16{});
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(INT8{}, INT8{}, INT32{}, INT8{}, Row{}, Row{}, Row{});
return profile(Row{}, Row{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(INT8{}, INT8{}, INT32{}, INT8{}, Row{}, Col{}, Row{});
return profile(Row{}, Col{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(INT8{}, INT8{}, INT32{}, INT8{}, Col{}, Row{}, Row{});
return profile(Col{}, Row{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(INT8{}, INT8{}, INT32{}, INT8{}, Col{}, Col{}, Row{});
return profile(Col{}, Col{}, Row{}, INT8{}, INT8{}, INT32{}, INT8{});
}
else
{
......
......@@ -75,7 +75,9 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
auto e_type,
auto a_layout,
auto b_layout,
auto de_layout) {
auto d0_layout,
auto d1_layout,
auto e_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
......@@ -85,13 +87,15 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using DELayout = decltype(de_layout);
using D0Layout = decltype(d0_layout);
using D1Layout = decltype(d1_layout);
using ELayout = decltype(e_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideD0 = ck::is_same_v<DELayout, Row> ? N : M;
const int DefaultStrideD1 = ck::is_same_v<DELayout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<DELayout, Row> ? N : M;
const int DefaultStrideD0 = ck::is_same_v<D0Layout, Row> ? N : M;
const int DefaultStrideD1 = ck::is_same_v<D1Layout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<ELayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_add_add_fastgelu_impl<ADataType,
BDataType,
......@@ -101,7 +105,9 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
EDataType,
ALayout,
BLayout,
DELayout>(
D0Layout,
D1Layout,
ELayout>(
do_verification,
init_method,
do_log,
......@@ -120,22 +126,22 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
if(data_type == MatrixDataType::F16_F16_F16_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Row{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::MK_NK_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Col{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Row{}, Col{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::KM_KN_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Row{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16_F16 &&
layout == MatrixLayout::KM_NK_MN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Col{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, F16{}, Col{}, Col{}, Row{}, Row{}, Row{});
}
else
{
......
......@@ -77,21 +77,23 @@ int profile_gemm_bilinear(int argc, char* argv[])
auto e_type,
auto a_layout,
auto b_layout,
auto de_layout) {
auto d_layout,
auto e_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using DDataType = decltype(d_type);
using EDataType = decltype(e_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using DELayout = decltype(de_layout);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using DLayout = decltype(d_layout);
using ELayout = decltype(e_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideD = ck::is_same_v<DELayout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<DELayout, Row> ? N : M;
const int DefaultStrideD = ck::is_same_v<DLayout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<ELayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_bilinear_impl<ADataType,
BDataType,
......@@ -100,7 +102,8 @@ int profile_gemm_bilinear(int argc, char* argv[])
EDataType,
ALayout,
BLayout,
DELayout>(
DLayout,
ELayout>(
do_verification,
init_method,
do_log,
......@@ -120,19 +123,19 @@ int profile_gemm_bilinear(int argc, char* argv[])
if(data_type == MatrixDataType::F16_F16_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Row{}, Row{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16 && layout == MatrixLayout::MK_NK_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Row{}, Col{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Row{}, Col{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16 && layout == MatrixLayout::KM_KN_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Row{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::F16_F16_F16_F16 && layout == MatrixLayout::KM_NK_MN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Col{}, Row{});
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Col{}, Row{}, Row{});
}
else
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_grouped_conv_fwd_impl.hpp"
namespace {
enum struct ConvLayout
{
GNHWC_GKYXC_GNHWK, // 0
NHWGC_KYXGC_NHWGK, // 1
};
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
static void print_helper_msg()
{
std::cout
// clang-format off
<< "arg1: tensor operation (grouped_conv_fwd: Grouped Convolution Forward)\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8)\n"
<< "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
<< " 1: Input[N, Hi, Wi, G, C], Weight[K, Y, X, G, C], Output[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
// clang-format on
}
} // namespace
int profile_grouped_conv_fwd(int argc, char* argv[])
{
// 8 for control, 1 for num_dim_spatial
if(argc < 9)
{
print_helper_msg();
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ConvLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int num_dim_spatial = std::stoi(argv[8]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
{
print_helper_msg();
return 1;
}
const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using INT8 = int8_t;
//
using GNWC = ck::tensor_layout::convolution::GNWC;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GNDHWC = ck::tensor_layout::convolution::GNDHWC;
using GKXC = ck::tensor_layout::convolution::GKXC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GKZYXC = ck::tensor_layout::convolution::GKZYXC;
using GNWK = ck::tensor_layout::convolution::GNWK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GNDHWK = ck::tensor_layout::convolution::GNDHWK;
//
using NWGC = ck::tensor_layout::convolution::NWGC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using NDHWGC = ck::tensor_layout::convolution::NDHWGC;
using KXGC = ck::tensor_layout::convolution::KXGC;
using KYXGC = ck::tensor_layout::convolution::KYXGC;
using KZYXGC = ck::tensor_layout::convolution::KZYXGC;
using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
constexpr auto I1 = ck::Number<1>{};
constexpr auto I2 = ck::Number<2>{};
constexpr auto I3 = ck::Number<3>{};
auto profile = [&](auto num_dim_spatial_tmp,
auto in_layout,
auto wei_layout,
auto out_layout,
auto in_type,
auto wei_type,
auto out_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
using WeiLayout = decltype(wei_layout);
using OutLayout = decltype(out_layout);
using InDataType = decltype(in_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
};
// GNHWC_GKYXC_GNHWK
if(num_dim_spatial == 1 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
}
}
// NHWGC_KYXGC_NHWGK
else if(num_dim_spatial == 1 && layout == ConvLayout::NHWGC_KYXGC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, NWGC{}, KXGC{}, NWGK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, NWGC{}, KXGC{}, NWGK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I1, NWGC{}, KXGC{}, NWGK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I1, NWGC{}, KXGC{}, NWGK{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_KYXGC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, KYXGC{}, NHWGK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, KYXGC{}, NHWGK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGC{}, KYXGC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I2, NHWGC{}, KYXGC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_KYXGC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, KZYXGC{}, NDHWGK{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, KZYXGC{}, NDHWGK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I3, NDHWGC{}, KZYXGC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8)
{
return profile(I3, NDHWGC{}, KZYXGC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
......@@ -83,7 +83,7 @@ int profile_grouped_gemm(int argc, char* argv[])
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
......@@ -102,7 +102,7 @@ int profile_grouped_gemm(int argc, char* argv[])
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
......@@ -121,7 +121,7 @@ int profile_grouped_gemm(int argc, char* argv[])
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
......@@ -140,7 +140,7 @@ int profile_grouped_gemm(int argc, char* argv[])
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
......
......@@ -11,7 +11,7 @@
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "profiler/include/profile_reduce_impl.hpp"
#include "profiler/include/data_type_enum.hpp"
......
......@@ -15,12 +15,11 @@ int profile_grouped_gemm(int, char*[]);
int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_convnd_fwd(int argc, char* argv[]);
int profile_convnd_bwd_data(int, char*[], int);
int profile_conv_bwd_data(int, char*[]);
int profile_conv_bwd_weight(int, char*[]);
int profile_grouped_conv_fwd(int, char*[]);
int profile_normalization(int, char*[]);
int profile_reduce(int, char*[]);
int profile_convnd_bwd_weight(int, char*[], int);
static void print_helper_message()
{
......@@ -34,13 +33,12 @@ static void print_helper_message()
" batched_gemm: Batched GEMM\n"
" batched_gemm_reduce: Batched GEMM+Reduce\n"
" grouped_gemm: Grouped GEMM\n"
" conv_fwd: ForwardConvolution\n"
" conv_fwd: Convolution Forward\n"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n"
" conv1d_bwd_data: BackwardConvolution data 1 dim\n"
" conv2d_bwd_data: BackwardConvolution data 2 dim\n"
" conv3d_bwd_data: BackwardConvolution data 3 dim\n"
" conv2d_bwd_weight: Backward Weight Convolution 2d\n"
" conv_bwd_data: Convolution Backward Data\n"
" conv_bwd_weight: Convolution Backward Weight\n"
" grouped_conv_fwd: Grouped Convolution Forward\n"
" reduce: Reduce\n");
// clang-format on
}
......@@ -53,8 +51,7 @@ int main(int argc, char* argv[])
return 0;
}
if(strcmp(argv[1], "gemm") == 0)
else if(strcmp(argv[1], "gemm") == 0)
{
return profile_gemm(argc, argv);
}
......@@ -92,7 +89,7 @@ int main(int argc, char* argv[])
}
else if(strcmp(argv[1], "conv_fwd") == 0)
{
return profile_convnd_fwd(argc, argv);
return profile_conv_fwd(argc, argv);
}
else if(strcmp(argv[1], "conv_fwd_bias_relu") == 0)
{
......@@ -102,33 +99,17 @@ int main(int argc, char* argv[])
{
return profile_conv_fwd_bias_relu_add(argc, argv);
}
else if(strcmp(argv[1], "conv1d_bwd_data") == 0)
{
return profile_convnd_bwd_data(argc, argv, 1);
}
else if(strcmp(argv[1], "conv2d_bwd_data") == 0)
{
return profile_convnd_bwd_data(argc, argv, 2);
}
else if(strcmp(argv[1], "conv3d_bwd_data") == 0)
else if(strcmp(argv[1], "conv_bwd_data") == 0)
{
return profile_convnd_bwd_data(argc, argv, 3);
return profile_conv_bwd_data(argc, argv);
}
else if(strcmp(argv[1], "conv2d_bwd_weight") == 0)
else if(strcmp(argv[1], "conv_bwd_weight") == 0)
{
return profile_conv_bwd_weight(argc, argv);
}
else if(strcmp(argv[1], "convnd1d_bwd_weight") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 1);
}
else if(strcmp(argv[1], "convnd2d_bwd_weight") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 2);
}
else if(strcmp(argv[1], "convnd3d_bwd_weight") == 0)
else if(strcmp(argv[1], "grouped_conv_fwd") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 3);
return profile_grouped_conv_fwd(argc, argv);
}
else if(strcmp(argv[1], "reduce") == 0)
{
......
......@@ -41,11 +41,11 @@ add_subdirectory(gemm_reduce)
add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(grouped_gemm)
add_subdirectory(convnd_fwd)
add_subdirectory(reduce)
add_subdirectory(conv2d_bwd_weight)
add_subdirectory(convnd_fwd)
add_subdirectory(convnd_bwd_weight)
add_subdirectory(convnd_bwd_data)
add_subdirectory(grouped_convnd_fwd)
add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_subdirectory(layernorm)
add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
target_link_libraries(test_batched_gemm_fp16 PRIVATE host_tensor)
target_link_libraries(test_batched_gemm_fp16 PRIVATE utility)
target_link_libraries(test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance)
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE host_tensor)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE utility)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE device_batched_gemm_reduce_instance)
add_test_executable(test_conv2d_bwd_data conv2d_bwd_data.cpp)
target_link_libraries(test_conv2d_bwd_data PRIVATE host_tensor)
target_link_libraries(test_conv2d_bwd_data PRIVATE device_conv2d_bwd_data_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using DeviceConvBwdDataNoOpPtr =
DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i)
{
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff)
{
return false;
}
}
return true;
}
int main(int argc, char* argv[])
{
int data_type = 0;
int init_method = 0;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1)
{
data_type = 1;
init_method = 1;
}
else if(argc == 3)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
}
else if(argc == 18)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
N = std::stoi(argv[3]);
K = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
conv_stride_h = std::stoi(argv[10]);
conv_stride_w = std::stoi(argv[11]);
conv_dilation_h = std::stoi(argv[12]);
conv_dilation_w = std::stoi(argv[13]);
in_left_pad_h = std::stoi(argv[14]);
in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
}
else
{
printf("arg1: data type (0=fp32, 1=fp16, 2= bfp16, 3= int8_t )\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
auto Run = [&](auto input_type, auto wei_type, auto out_type, auto acc_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using AccDataType = decltype(acc_type);
using ReferenceConvBwdInstance =
ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
WeiDataType,
OutDataType,
AccDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
};
Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
Tensor<InDataType> in_n_c_hi_wi_host_result(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<InDataType> in_n_c_hi_wi_device_result(f_host_tensor_descriptor(N, C, Hi, Wi));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) *
in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// reset input to zero
in_n_c_hi_wi_device_result.GenerateTensorValue(GeneratorTensor_1<InDataType>{0});
in_device_buf.ToDevice(in_n_c_hi_wi_device_result.mData.data());
// get host result
{
auto ref_conv = ReferenceConvBwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
wei_k_c_y_x,
out_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::
DeviceConvBwdDataPtr<PassThrough, PassThrough, PassThrough>;
// add device Conv instances
std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
{
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::bhalf_t>)
{
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
{
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
// profile device Conv instances
bool success = true;
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get(), 1);
in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());
if(!check_out(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result))
{
std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
success = false;
}
else
{
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
}
else
{
std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
}
}
if(success)
{
std::cout << "test conv2d bwd : Pass" << std::endl;
return 0;
}
else
{
std::cout << "test conv2d bwd: Fail " << std::endl;
return -1;
}
};
if(data_type == 0)
{
return Run(F32(), F32(), F32(), F32());
}
else if(data_type == 1)
{
return Run(F16(), F16(), F16(), F32());
}
else if(data_type == 2)
{
return Run(BF16(), BF16(), BF16(), F32());
}
else if(data_type == 3)
{
return Run(INT8(), INT8(), INT8(), int());
}
else
{
return 1;
}
}
#add_test_executable(test_conv2d_bwd_weight conv2d_bwd_weight.cpp)
#target_link_libraries(test_conv2d_bwd_weight PRIVATE host_tensor device_conv2d_bwd_weight_instance conv_util)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>
#include "test/convnd_fwd/conv_util.hpp"
#include "profiler/include/profile_conv_bwd_weight_impl.hpp"
int test_self()
{
bool pass = true;
std::vector<ck::utils::conv::ConvParams> params;
params.push_back({2, 128, 256, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
params.push_back({2, 128, 256, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
params.push_back({2, 128, 256, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
for(auto& param : params)
{
// f32
pass &= ck::profiler::profile_conv_bwd_weight_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
1, // init_method
false, // do_log
false, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// fp16
pass &= ck::profiler::profile_conv_bwd_weight_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
1, // init_method
false, // do_log
false, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
}
return pass;
}
int main(int argc, char* argv[])
{
int data_type = 1;
int init_method = 1;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
ck::index_t split_k = 1;
bool pass = true;
if(argc == 1)
{
pass = test_self();
}
else
{
if(argc == 3)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
}
else if(argc == 19)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
N = std::stoi(argv[3]);
K = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
conv_stride_h = std::stoi(argv[10]);
conv_stride_w = std::stoi(argv[11]);
conv_dilation_h = std::stoi(argv[12]);
conv_dilation_w = std::stoi(argv[13]);
in_left_pad_h = std::stoi(argv[14]);
in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
split_k = std::stoi(argv[18]);
}
else
{
printf("arg1: data type (0=fp32, 1=fp16, 2= bfp16, 3= int8_t )\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
ck::utils::conv::ConvParams param{2,
N,
K,
C,
{Y, X},
{Hi, Wi},
{conv_stride_h, conv_stride_w},
{conv_dilation_h, conv_dilation_w},
{in_left_pad_h, in_left_pad_w},
{in_right_pad_h, in_right_pad_w}};
if(data_type == 0)
{
pass = ck::profiler::profile_conv_bwd_weight_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
init_method,
false, // do_log
false, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
split_k);
}
else if(data_type == 1)
{
pass = ck::profiler::profile_conv_bwd_weight_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
init_method,
false, // do_log
false, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
split_k);
}
else
{
std::cout << "Not support data type" << std::endl;
return 1;
}
}
if(pass)
{
std::cout << "test conv2d bwd weight : Pass" << std::endl;
return 0;
}
else
{
std::cout << "test conv2d bwd weight: Fail " << std::endl;
return -1;
}
}
add_gtest_executable(test_conv_util conv_util.cpp)
target_link_libraries(test_conv_util PRIVATE host_tensor conv_util)
target_link_libraries(test_conv_util PRIVATE utility)
......@@ -10,198 +10,147 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
namespace {
class TestConvUtil : public ::testing::Test
{
public:
void SetNDParams(std::size_t ndims)
void SetNDParams(std::size_t ndims, std::size_t s, std::size_t d, std::size_t p)
{
conv_params.num_dim_spatial_ = ndims;
conv_params.filter_spatial_lengths_ = std::vector<ck::index_t>(ndims, 3);
conv_params.input_spatial_lengths_ = std::vector<ck::index_t>(ndims, 71);
conv_params.conv_filter_strides_ = std::vector<ck::index_t>(ndims, 2);
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_left_pads_ = std::vector<ck::index_t>(ndims, 1);
conv_params.input_right_pads_ = std::vector<ck::index_t>(ndims, 1);
conv_params = ck::utils::conv::ConvParam(ndims,
2,
128,
192,
256,
std::vector<ck::index_t>(ndims, 3),
std::vector<ck::index_t>(ndims, 71),
std::vector<ck::index_t>(ndims, s),
std::vector<ck::index_t>(ndims, d),
std::vector<ck::index_t>(ndims, p),
std::vector<ck::index_t>(ndims, p));
}
protected:
// ------- default 2D -------
// input NCHW {128,192,71,71},
// weights KCYX {256,192,3,3},
// stride {2,2},
// dilations {1,1},
// padding {{1,1}, {1,1}}
ck::utils::conv::ConvParams conv_params;
// input GNCHW {2, 128, 192, 71, 71},
// weights GKCYX {2, 256, 192, 3, 3},
// stride {s, s},
// dilations {d, d},
// padding {{p, p}, {p, p}
ck::utils::conv::ConvParam conv_params;
};
} // namespace
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths2D)
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths1D)
{
ck::utils::conv::ConvParams conv_params;
// stride 2, dilation 1, pad 1
SetNDParams(1, 2, 1, 1);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor."));
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 1, dilation 1, pad 1
SetNDParams(1, 1, 1, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71, 71}, "Error: ConvParams 2D stride {1,1}."));
out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 1, pad 2
SetNDParams(1, 2, 1, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}."));
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 2, pad 2
SetNDParams(1, 2, 2, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36}, "Error: ConvParams 2D dilation {2,2}."));
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D dilation {2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 3, dilation 2, pad 1
SetNDParams(1, 3, 2, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}."));
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths1D)
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths2D)
{
SetNDParams(1);
// stride 2, dilation 1, pad 1
SetNDParams(2, 2, 1, 1);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D."));
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 1, dilation 1, pad 1
SetNDParams(2, 1, 1, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}."));
out_spatial_len, std::vector<ck::index_t>{71, 71}, "Error: ConvParams 2D stride {1,1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 1, pad 2
SetNDParams(2, 2, 1, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}."));
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 2, pad 2
SetNDParams(2, 2, 2, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D dilation {2}."));
out_spatial_len, std::vector<ck::index_t>{36, 36}, "Error: ConvParams 2D dilation {2,2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 3, dilation 2, pad 1
SetNDParams(2, 3, 2, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}."));
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}."));
}
TEST_F(TestConvUtil, ConvParamsGetOutputSpatialLengths3D)
{
SetNDParams(3);
// stride 2, dilation 1, pad 1
SetNDParams(3, 2, 1, 1);
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36, 36}, "Error: ConvParams 3D."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 1, dilation 1, pad 1
SetNDParams(3, 1, 1, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{71, 71, 71},
"Error: ConvParams 3D stride {1, 1, 1}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_left_pads_ = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 1, pad 2
SetNDParams(3, 2, 1, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37, 37},
"Error: ConvParams 3D padding left/right {2, 2, 2}."));
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 2, dilation 2, pad 2
SetNDParams(3, 2, 2, 2);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36, 36},
"Error: ConvParams 3D dilation {2, 2, 2}."));
conv_params.conv_filter_strides_ = std::vector<ck::index_t>{3, 3, 3};
conv_params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
conv_params.conv_filter_dilations_ = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
// stride 3, dilation 2, pad 1
SetNDParams(3, 3, 2, 1);
out_spatial_len = conv_params.GetOutputSpatialLengths();
EXPECT_TRUE(ck::utils::check_err(
out_spatial_len,
std::vector<ck::index_t>{23, 23, 23},
"Error: ConvParams 3D strides{3, 3, 3}, padding {1, 1, 1}, dilations {2, 2, 2}."));
}
TEST(ConvUtil, GetHostTensorDescriptor)
{
namespace tl = ck::tensor_layout::convolution;
std::vector<std::size_t> dims{2, 3, 4, 5};
HostTensorDescriptor h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NHWC{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 1, 3 * 5, 3}, "Error: wrong NHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCHW{});
EXPECT_TRUE(ck::utils::check_err(
h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NCHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 4 * 5, 5, 1}, "Error: wrong NCHW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 1, 3}, "Error: wrong NWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NCW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(
h.GetStrides(), {3 * 4, 4, 1}, "Error: wrong NCW dimensions strides!"));
dims = std::vector<std::size_t>{2, 3, 4, 5, 6};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NDHWC{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NDHWC dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
1, // C
3 * 5 * 6, // D
3 * 6, // H
3}, // W
"Error: wrong NDHWC dimensions strides!"));
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCDHW{});
EXPECT_TRUE(
ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NCDHW dimensions lengths!"));
EXPECT_TRUE(ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
4 * 5 * 6, // C
5 * 6, // D
6, // H
1}, // W
"Error: wrong NCDHW dimensions strides!"));
}
add_test_executable(test_convnd_bwd_data convnd_bwd_data.cpp)
target_link_libraries(test_convnd_bwd_data PRIVATE host_tensor device_convnd_bwd_data_instance conv_util)
add_gtest_executable(test_convnd_bwd_data convnd_bwd_data.cpp)
target_link_libraries(test_convnd_bwd_data PRIVATE utility device_conv1d_bwd_data_instance device_conv2d_bwd_data_instance device_conv3d_bwd_data_instance)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment