Unverified Commit 4be7f019 authored by ltqin's avatar ltqin Committed by GitHub
Browse files

add split-k GEMM (#59)



* add DeviceGemmSplitKXdl

* add file device_gemm_splitk_xdl.hpp

* set c matrix zero

* using atomic

* add all tuning parameter to f32 mkkn

* grid size change to 720

* add tunning parameter for NT

* add tunning parameter for TN

* add tunning parameter for TT

* add m=96tunning parameter

* add lost config

* add element wise operation

* fixed MPerBlock=96

* remove marco for slpitk swtich

* add test

* add new line at the end of device_gemm_xdl_instance.hpp

* remove step hack

* seperate split-k instance files

* add tunning parameters

* change disired grid size to parameters

* remove slice length

* add desiredgridsize parameter to ckProfiler

* add losting file device_gemm_xdl_splitk_instance.hpp

* change desired gride size to kbatch

* format

* format

* clean up

* add selection of device_instances

* clean code

* fix build issue
Co-authored-by: default avatarltqin <letaoqin@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
parent ca47a6cf
...@@ -62,7 +62,10 @@ template <typename GridwiseGemm, ...@@ -62,7 +62,10 @@ template <typename GridwiseGemm,
typename ABK0MK1GridDesc, typename ABK0MK1GridDesc,
typename BBK0NK1GridDesc, typename BBK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc, typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor, typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename Block2CTileMap,
bool HasMainKBlockLoop> bool HasMainKBlockLoop>
__global__ void __global__ void
#if CK_USE_LAUNCH_BOUNDS #if CK_USE_LAUNCH_BOUNDS
...@@ -74,7 +77,10 @@ __global__ void ...@@ -74,7 +77,10 @@ __global__ void
const void CONSTANT* p_a_b_k0_m_k1_grid_desc, const void CONSTANT* p_a_b_k0_m_k1_grid_desc,
const void CONSTANT* p_b_b_k0_n_k1_grid_desc, const void CONSTANT* p_b_b_k0_n_k1_grid_desc,
const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc, const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const void CONSTANT* p_c_block_cluster_adaptor) const void CONSTANT* p_a_element_op,
const void CONSTANT* p_b_element_op,
const void CONSTANT* p_c_element_op,
const void CONSTANT* p_block_2_ctile_map)
{ {
constexpr index_t shared_block_size = constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB); GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
...@@ -86,8 +92,14 @@ __global__ void ...@@ -86,8 +92,14 @@ __global__ void
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc = const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
*reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>( *reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc)); cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc));
const auto c_block_cluster_adaptor = *reinterpret_cast<const CBlockClusterAdaptor*>( const auto block_2_ctile_map = *reinterpret_cast<const Block2CTileMap*>(
cast_pointer_to_generic_address_space(p_c_block_cluster_adaptor)); cast_pointer_to_generic_address_space(p_block_2_ctile_map));
const auto a_element_op = *reinterpret_cast<const AElementwiseOperation*>(
cast_pointer_to_generic_address_space(p_a_element_op));
const auto b_element_op = *reinterpret_cast<const BElementwiseOperation*>(
cast_pointer_to_generic_address_space(p_b_element_op));
const auto c_element_op = *reinterpret_cast<const CElementwiseOperation*>(
cast_pointer_to_generic_address_space(p_c_element_op));
__shared__ FloatAB p_shared_block[shared_block_size]; __shared__ FloatAB p_shared_block[shared_block_size];
...@@ -98,7 +110,10 @@ __global__ void ...@@ -98,7 +110,10 @@ __global__ void
a_b_k0_m_k1_grid_desc, a_b_k0_m_k1_grid_desc,
b_b_k0_n_k1_grid_desc, b_b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc, c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor); a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
} }
#endif #endif
...@@ -110,6 +125,9 @@ template <index_t BlockSize, ...@@ -110,6 +125,9 @@ template <index_t BlockSize,
typename ABK0MK1GridDesc, typename ABK0MK1GridDesc,
typename BBK0NK1GridDesc, typename BBK0NK1GridDesc,
typename CMNGridDesc, typename CMNGridDesc,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
index_t MPerBlock, index_t MPerBlock,
index_t NPerBlock, index_t NPerBlock,
index_t K0PerBlock, index_t K0PerBlock,
...@@ -118,7 +136,6 @@ template <index_t BlockSize, ...@@ -118,7 +136,6 @@ template <index_t BlockSize,
index_t K1Value, index_t K1Value,
index_t MRepeat, index_t MRepeat,
index_t NRepeat, index_t NRepeat,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1, typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder, typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder, typename ABlockTransferSrcAccessOrder,
...@@ -126,7 +143,7 @@ template <index_t BlockSize, ...@@ -126,7 +143,7 @@ template <index_t BlockSize,
index_t ABlockTransferSrcScalarPerVector, index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1, index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun, bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K0_N_K1, bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1, typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder, typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder, typename BBlockTransferSrcAccessOrder,
...@@ -134,12 +151,10 @@ template <index_t BlockSize, ...@@ -134,12 +151,10 @@ template <index_t BlockSize,
index_t BBlockTransferSrcScalarPerVector, index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1, index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun, bool BThreadTransferSrcResetCoordinateAfterRun,
bool BBlockLdsExtraN,
typename CThreadTransferSrcDstAccessOrder, typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim, index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector, index_t CThreadTransferDstScalarPerVector>
bool CAccessOrderMRepeatNRepeat,
bool ABlockLdsExtraM,
bool BBlockLdsExtraN>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4 struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -358,6 +373,9 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4 ...@@ -358,6 +373,9 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc, const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc, const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc, const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const CBlockClusterAdaptor& c_block_cluster_adaptor) const CBlockClusterAdaptor& c_block_cluster_adaptor)
{ {
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>( const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
...@@ -456,7 +474,6 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4 ...@@ -456,7 +474,6 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum_t::Set,
Sequence<1, K0PerBlock, MPerBlock, K1>, Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1, ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder, ABlockTransferThreadClusterArrangeOrder,
FloatAB, FloatAB,
...@@ -487,7 +504,6 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4 ...@@ -487,7 +504,6 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum_t::Set,
Sequence<1, K0PerBlock, NPerBlock, K1>, Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
FloatAB, FloatAB,
...@@ -583,8 +599,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4 ...@@ -583,8 +599,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
a_blockwise_copy.RunWrite(a_b_k0_m_k1_block_desc, a_block_buf); a_blockwise_copy.RunWrite(a_b_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_b_k0_n_k1_block_desc, b_block_buf); b_blockwise_copy.RunWrite(b_b_k0_n_k1_block_desc, b_block_buf);
k_block_data_begin += K0PerBlock; k0_block_data_begin += K0PerBlock;
} while(k_block_data_begin < (K0 - K0PerBlock)); } while(k0_block_data_begin < (K0 - K0PerBlock));
} }
// tail // tail
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n] // Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_instance_f16_f16_f16_km_kn_mn = using device_gemm_xdl_f16_f16_f16_km_kn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_km_kn_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_km_kn_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
void add_device_gemm_instance<F16, F16, F16, Col, Row, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f16_f16_f16_km_kn_mn; add_device_operation_instances(instances, device_gemm_xdl_f16_f16_f16_km_kn_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n] // Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_instance_f16_f16_f16_km_nk_mn = using device_gemm_xdl_f16_f16_f16_km_nk_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_km_nk_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_km_nk_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
void add_device_gemm_instance<F16, F16, F16, Col, Col, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f16_f16_f16_km_nk_mn; add_device_operation_instances(instances, device_gemm_xdl_f16_f16_f16_km_nk_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn = using device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
void add_device_gemm_instance<F16, F16, F16, Row, Row, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn; add_device_operation_instances(instances, device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n] // Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn = using device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -44,21 +44,10 @@ using device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn = ...@@ -44,21 +44,10 @@ using device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
void add_device_gemm_instance<F16, F16, F16, Row, Col, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn; add_device_operation_instances(instances, device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n] // Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_instance_f32_f32_f32_km_kn_mn = using device_gemm_xdl_f32_f32_f32_km_kn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_km_kn_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_km_kn_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(
void add_device_gemm_instance<F32, F32, F32, Col, Row, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f32_f32_f32_km_kn_mn; add_device_operation_instances(instances, device_gemm_xdl_f32_f32_f32_km_kn_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n] // Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_instance_f32_f32_f32_km_nk_mn = using device_gemm_xdl_f32_f32_f32_km_nk_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_km_nk_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_km_nk_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(
void add_device_gemm_instance<F32, F32, F32, Col, Col, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f32_f32_f32_km_nk_mn; add_device_operation_instances(instances, device_gemm_xdl_f32_f32_f32_km_nk_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn = using device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn = ...@@ -39,21 +39,10 @@ using device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(
void add_device_gemm_instance<F32, F32, F32, Row, Row, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn; add_device_operation_instances(instances, device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h> #include <stdlib.h>
#include "config.hpp" #include "config.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl.hpp"
#include "device_gemm_instance.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>; ...@@ -21,7 +21,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n] // Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn = using device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| //##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
...@@ -44,21 +44,10 @@ using device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn = ...@@ -44,21 +44,10 @@ using device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn =
// clang-format on // clang-format on
>; >;
template <> void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(
void add_device_gemm_instance<F32, F32, F32, Row, Col, Row>( std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& device_op_instances)
{ {
using DeviceGemms = device_gemm_instance::device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn; add_device_operation_instances(instances, device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances{});
const auto device_gemms = DeviceGemms{};
ck::static_for<0, std::tuple_size_v<DeviceGemms>, 1>{}([&](auto i) {
using Gemm = remove_cvref_t<decltype(std::get<i>(device_gemms))>;
auto gemm = Gemm{};
device_op_instances.push_back(std::make_unique<Gemm>(gemm));
});
} }
} // namespace device_gemm_instance } // namespace device_gemm_instance
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_splitk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances = std::tuple<
// clang-format off
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_splitk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances = std::tuple<
// clang-format off
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_splitk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances = std::tuple<
// clang-format off
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 96, 128, 4, 8, 16, 16, 3, 4, S<1, 4, 32, 2>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 4, true, 7, 1>
>;
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_splitk.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances = std::tuple<
// clang-format off
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>,
DeviceGemmXdlSplitK< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -13,8 +13,7 @@ template <typename AElementwiseOperation, ...@@ -13,8 +13,7 @@ template <typename AElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
struct DeviceGemm : public BaseOperator struct DeviceGemm : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
MakeArgumentPointer(const void* p_a,
const void* p_b, const void* p_b,
void* p_c, void* p_c,
ck::index_t M, ck::index_t M,
...@@ -25,7 +24,8 @@ struct DeviceGemm : public BaseOperator ...@@ -25,7 +24,8 @@ struct DeviceGemm : public BaseOperator
ck::index_t StrideC, ck::index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) = 0; CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
......
#ifndef DEVICE_GEMM_INSTANTCE_HPP
#define DEVICE_GEMM_INSTANTCE_HPP
#include "device_gemm.hpp"
#include "element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void add_device_gemm_instance(
std::vector<DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -408,7 +408,8 @@ struct DeviceGemmXdl ...@@ -408,7 +408,8 @@ struct DeviceGemmXdl
index_t StrideC, index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override CElementwiseOperation c_element_op,
ck::index_t) override
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b), static_cast<const BDataType*>(p_b),
......
#ifndef DEVICE_GEMM_SPLITK_XDL_HPP
#define DEVICE_GEMM_SPLITK_XDL_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4.hpp"
#ifndef CK_RUN_KERNEL_AND_TIME
#define CK_RUN_KERNEL_AND_TIME 1
#endif
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceGemmXdlSplitK
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static auto
MakeAGridDescriptor_KBatch_K0_M_K1(index_t M, index_t K, index_t StrideA, int KBatch, int KPad)
{
assert(KPad % (K1 * KBatch) == 0);
const index_t K0 = KPad / (K1 * KBatch);
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(M)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_kbatch_k0_m_k1 = transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
return a_grid_desc_kbatch_k0_m_k1;
}
static auto
MakeBGridDescriptor_KBatch_K0_N_K1(index_t K, index_t N, index_t StrideB, int KBatch, int KPad)
{
assert(KPad % (K1 * KBatch) == 0);
const index_t K0 = KPad / (K1 * KBatch);
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_kbatch_k0_n_k1 = transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
return b_grid_desc_kbatch_k0_n_k1;
}
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}
static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0 = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0 * K1;
return KPad;
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_KBatch_K0_M_K1(1, 1, 1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_KBatch_K0_N_K1(1, 1, 1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// GridwiseGemm
using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::AtomicAdd,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(CGridDesc_M_N{}));
using Block2CTileMap =
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t k_batch)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
k_batch_{k_batch}
{
int KPad = DeviceGemmXdlSplitK::GetKPad(K, k_batch_);
a_grid_desc_kbatch_k0_m_k1_ = DeviceGemmXdlSplitK::MakeAGridDescriptor_KBatch_K0_M_K1(
M, K, StrideA, k_batch_, KPad);
b_grid_desc_kbatch_k0_n_k1_ = DeviceGemmXdlSplitK::MakeBGridDescriptor_KBatch_K0_N_K1(
K, N, StrideB, k_batch_, KPad);
c_grid_desc_m_n_ = DeviceGemmXdlSplitK::MakeCGridDescriptor_M_N(M, N, StrideC);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
M01_,
N01_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGemmXdlSplitK::Argument;
void ShowInfo(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, int nrepeat = 1)
{
const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
if(nrepeat > 0)
{
ShowInfo(arg);
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
if(kbatch > 1 || nrepeat <= 0)
{
hipGetErrorString(
hipMemset(arg.p_c_grid_,
0,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_.GetElementSpaceSize() *
sizeof(CDataType)));
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
};
if(has_main_k0_block_loop)
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitK::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitK::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitK::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitK::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitK::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitK::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitK::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitK::Block2CTileMap>,
true>;
Run(kernel);
}
}
else
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitK::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitK::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitK::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitK::Block2CTileMap>,
false>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdlSplitK::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdlSplitK::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceGemmXdlSplitK::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<DeviceGemmXdlSplitK::Block2CTileMap>,
false>;
Run(kernel);
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t KBatch)
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op,
KBatch};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op,
KBatch);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmXdlSplitK"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -14,14 +14,18 @@ include_directories(BEFORE ...@@ -14,14 +14,18 @@ include_directories(BEFORE
# device_gemm_instance # device_gemm_instance
set(DEVICE_GEMM_INSTANCE_SOURCE set(DEVICE_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_mk_kn_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_mk_nk_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_km_kn_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f32_f32_f32_km_nk_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_mk_kn_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_mk_nk_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_km_kn_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_instance_f16_f16_f16_km_nk_mn.cpp; ${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp;
) )
add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE}) add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE})
...@@ -83,7 +87,8 @@ set(PROFILER_SOURCE ...@@ -83,7 +87,8 @@ set(PROFILER_SOURCE
profile_conv_fwd.cpp profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp profile_conv_fwd_bias_relu_add.cpp
profile_conv_fwd_bias_relu_atomic_add.cpp) profile_conv_fwd_bias_relu_atomic_add.cpp
)
add_executable(ckProfiler ${PROFILER_SOURCE}) add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE host_tensor) target_link_libraries(ckProfiler PRIVATE host_tensor)
......
#pragma once #pragma once
#include "device_gemm_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace device_gemm_instance { namespace device_gemm_instance {
using DeviceGemmNoOpPtr = DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough, using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>; ck::tensor_operation::element_wise::PassThrough>;
template <> void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_instance<float, void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
float, void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
float, void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor, void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&); void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
template <> void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_instance<float,
float, void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
float, void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
ck::tensor_layout::gemm::RowMajor, void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
ck::tensor_layout::gemm::ColumnMajor, void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
template <>
void add_device_gemm_instance<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance } // namespace device_gemm_instance
} // namespace device } // namespace device
...@@ -97,7 +48,8 @@ void profile_gemm_impl(int do_verification, ...@@ -97,7 +48,8 @@ void profile_gemm_impl(int do_verification,
int K, int K,
int StrideA, int StrideA,
int StrideB, int StrideB,
int StrideC) int StrideC,
int KBatch = 1)
{ {
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
...@@ -122,17 +74,20 @@ void profile_gemm_impl(int do_verification, ...@@ -122,17 +74,20 @@ void profile_gemm_impl(int do_verification,
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::size_t num_thread = std::thread::hardware_concurrency();
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}); a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}); b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break; break;
default: default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}); a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}); b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
} }
// set zero to c_device_buf
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
if(do_verification) if(do_verification)
{ {
...@@ -155,9 +110,103 @@ void profile_gemm_impl(int do_verification, ...@@ -155,9 +110,103 @@ void profile_gemm_impl(int do_verification,
// add device GEMM instances // add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs; std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
if(KBatch > 1)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
}
else
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
if(KBatch > 1)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
}
else
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
if(KBatch > 1)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
}
else
{
ck::tensor_operation::device::device_gemm_instance:: ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_instance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>( add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
gemm_ptrs); }
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
if(KBatch > 1)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
}
else
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
}
}
}
else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0) if(gemm_ptrs.size() <= 0)
{ {
...@@ -184,7 +233,8 @@ void profile_gemm_impl(int do_verification, ...@@ -184,7 +233,8 @@ void profile_gemm_impl(int do_verification,
StrideC, StrideC,
ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{}); ck::tensor_operation::element_wise::PassThrough{},
KBatch);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer(); auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
......
...@@ -35,19 +35,20 @@ enum GemmDataType ...@@ -35,19 +35,20 @@ enum GemmDataType
int profile_gemm(int argc, char* argv[]) int profile_gemm(int argc, char* argv[])
{ {
if(argc != 14) if(!(argc == 14 || argc == 15))
{ {
printf("arg1: tensor operation (gemm: GEMM)\n"); printf("arg1: tensor operation (gemm: GEMM)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n"); printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"); printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n"); printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, n] * B[k, n] = C[m, n];\n"); printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, n] * B[n, k] = C[m, n])\n"); printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n"); printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"); printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n"); printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg7: run kernel # of times (>1)\n"); printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n"); printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: split k into mulitiple batch\n");
exit(1); exit(1);
} }
...@@ -65,6 +66,9 @@ int profile_gemm(int argc, char* argv[]) ...@@ -65,6 +66,9 @@ int profile_gemm(int argc, char* argv[])
const int StrideA = std::stoi(argv[11]); const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]); const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]); const int StrideC = std::stoi(argv[13]);
int KBatch = 1;
if(argc == 15)
KBatch = std::stoi(argv[14]);
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN) if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{ {
...@@ -159,7 +163,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -159,7 +163,8 @@ int profile_gemm(int argc, char* argv[])
K, K,
(StrideA < 0) ? K : StrideA, (StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB, (StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC); (StrideC < 0) ? N : StrideC,
KBatch);
} }
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN) else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{ {
...@@ -178,7 +183,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -178,7 +183,8 @@ int profile_gemm(int argc, char* argv[])
K, K,
(StrideA < 0) ? K : StrideA, (StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB, (StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC); (StrideC < 0) ? N : StrideC,
KBatch);
} }
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN) else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{ {
...@@ -197,7 +203,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -197,7 +203,8 @@ int profile_gemm(int argc, char* argv[])
K, K,
(StrideA < 0) ? M : StrideA, (StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB, (StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC); (StrideC < 0) ? N : StrideC,
KBatch);
} }
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN) else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{ {
...@@ -216,7 +223,8 @@ int profile_gemm(int argc, char* argv[]) ...@@ -216,7 +223,8 @@ int profile_gemm(int argc, char* argv[])
K, K,
(StrideA < 0) ? M : StrideA, (StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB, (StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC); (StrideC < 0) ? N : StrideC,
KBatch);
} }
else else
{ {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment