Unverified Commit 4a2a56c2 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Rangify constructor of HostTensorDescriptor & Tensor<> (#445)

* Rangify STL algorithms

This commit adapts rangified std::copy(), std::fill() & std::transform()

* Rangify check_err()

By rangifying check_err(), we can not only compare values between
std::vector<>s, but also compare any ranges which have same value
type.

* Allow constructing Tensor<> like a HostTensorDescriptor

* Simplify Tensor<> object construction logics

* Remove more unnecessary 'HostTensorDescriptor' objects

* Re-format example code

* Re-write more HostTensorDescriptor ctor call
parent 37f2e918
...@@ -6,6 +6,8 @@ ...@@ -6,6 +6,8 @@
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp" #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp"
#include "ck/library/utility/literals.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -135,15 +137,15 @@ int main(int argc, char* argv[]) ...@@ -135,15 +137,15 @@ int main(int argc, char* argv[])
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -240,7 +242,7 @@ int main(int argc, char* argv[]) ...@@ -240,7 +242,7 @@ int main(int argc, char* argv[])
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl; show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
} }
#endif #endif
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData); ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
} }
return 0; return 0;
......
...@@ -131,11 +131,11 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config) ...@@ -131,11 +131,11 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>(); c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>();
return ck::utils::check_err(c_m_n_device_result_converted.mData, c_m_n_host_result.mData); return ck::utils::check_err(c_m_n_device_result_converted, c_m_n_host_result);
#else #else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData); return ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
#endif #endif
} }
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -177,15 +178,15 @@ int main(int argc, char* argv[]) ...@@ -177,15 +178,15 @@ int main(int argc, char* argv[])
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -271,8 +272,7 @@ int main(int argc, char* argv[]) ...@@ -271,8 +272,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<CShuffleDataType> c_m_n(HostTensorDescriptor( Tensor<CShuffleDataType> c_m_n({M, N});
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType, BDataType,
...@@ -299,7 +299,7 @@ int main(int argc, char* argv[]) ...@@ -299,7 +299,7 @@ int main(int argc, char* argv[])
e_device_buf.FromDevice(e_m_n_device_result.mData.data()); e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData) ? 0 : 1; return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -155,15 +156,15 @@ int main(int argc, char* argv[]) ...@@ -155,15 +156,15 @@ int main(int argc, char* argv[])
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -275,7 +276,7 @@ int main(int argc, char* argv[]) ...@@ -275,7 +276,7 @@ int main(int argc, char* argv[])
} }
} }
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData) ? 0 : 1; return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -124,7 +124,7 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -124,7 +124,7 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
if(config.do_verification) if(config.do_verification)
{ {
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N}); Tensor<AccDataType> c_m_n({M, N});
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
...@@ -147,9 +147,9 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -147,9 +147,9 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
const Tensor<EDataType> e_m_n_device_result_converted(e_m_n_device_result); const Tensor<EDataType> e_m_n_device_result_converted(e_m_n_device_result);
return ck::utils::check_err(e_m_n_device_result_converted.mData, e_m_n_host_result.mData); return ck::utils::check_err(e_m_n_device_result_converted, e_m_n_host_result);
#else #else
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData); return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
#endif #endif
} }
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -84,7 +85,7 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -84,7 +85,7 @@ bool run_grouped_conv_fwd(bool do_verification,
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{}; std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths); copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides); copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
...@@ -164,7 +165,7 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -164,7 +165,7 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf.FromDevice(out_device.mData.data()); out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err( return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f); out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
} }
return true; return true;
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp" #include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...@@ -140,9 +141,7 @@ make_r0_host_tensor_descriptor(const ck::utils::conv::ConvParam& problem_size) ...@@ -140,9 +141,7 @@ make_r0_host_tensor_descriptor(const ck::utils::conv::ConvParam& problem_size)
{ {
std::vector<ck::index_t> dimensions{problem_size.G_, problem_size.N_}; std::vector<ck::index_t> dimensions{problem_size.G_, problem_size.N_};
std::copy(begin(problem_size.output_spatial_lengths_), ck::ranges::copy(problem_size.output_spatial_lengths_, std::back_inserter(dimensions));
end(problem_size.output_spatial_lengths_),
std::back_inserter(dimensions));
return HostTensorDescriptor(dimensions); return HostTensorDescriptor(dimensions);
} }
...@@ -158,10 +157,3 @@ void unpack_host_tensor_descriptor(const HostTensorDescriptor& descriptor, ...@@ -158,10 +157,3 @@ void unpack_host_tensor_descriptor(const HostTensorDescriptor& descriptor,
assert(size(descriptor.GetStrides()) == size(strides)); assert(size(descriptor.GetStrides()) == size(strides));
std::copy_n(begin(descriptor.GetStrides()), size(descriptor.GetStrides()), begin(strides)); std::copy_n(begin(descriptor.GetStrides()), size(descriptor.GetStrides()), begin(strides));
} }
template <typename Range, typename OutputIterator>
auto copy(const Range& range, OutputIterator iter)
-> decltype(std::copy(std::begin(range), std::end(range), iter))
{
return std::copy(std::begin(range), std::end(range), iter);
}
...@@ -120,10 +120,10 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -120,10 +120,10 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_g_n_k_wos_desc, conv_output_g_n_k_wos_lengths, conv_output_g_n_k_wos_strides); conv_output_g_n_k_wos_desc, conv_output_g_n_k_wos_lengths, conv_output_g_n_k_wos_strides);
unpack_host_tensor_descriptor(r0_desc, r0_lengths, r0_strides); unpack_host_tensor_descriptor(r0_desc, r0_lengths, r0_strides);
copy(problem_size.conv_filter_strides_, begin(conv_filter_strides)); ck::ranges::copy(problem_size.conv_filter_strides_, begin(conv_filter_strides));
copy(problem_size.conv_filter_dilations_, begin(conv_filter_dilations)); ck::ranges::copy(problem_size.conv_filter_dilations_, begin(conv_filter_dilations));
copy(problem_size.input_left_pads_, begin(input_left_pads)); ck::ranges::copy(problem_size.input_left_pads_, begin(input_left_pads));
copy(problem_size.input_right_pads_, begin(input_right_pads)); ck::ranges::copy(problem_size.input_right_pads_, begin(input_right_pads));
// run Conv + Reduction on device // run Conv + Reduction on device
auto conv = DeviceInstance<NDimSpatial>{}; auto conv = DeviceInstance<NDimSpatial>{};
...@@ -273,16 +273,13 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -273,16 +273,13 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf.FromDevice(conv_output_device.mData.data()); conv_output_device_buf.FromDevice(conv_output_device.mData.data());
r0_device_buf.FromDevice(r0_device.mData.data()); r0_device_buf.FromDevice(r0_device.mData.data());
return ck::utils::check_err(conv_output_device.mData, return ck::utils::check_err(conv_output_device,
conv_output_host.mData, conv_output_host,
"Error: incorrect results! (Matrix E)", "Error: incorrect results! (Matrix E)",
1e-5f, 1e-5f,
1e-4f) && 1e-4f) &&
ck::utils::check_err(r0_device.mData, ck::utils::check_err(
r0_host.mData, r0_device, r0_host, "Error: incorrect results! (Matrix R0)", 1e-5f, 1e-4f);
"Error: incorrect results! (Matrix R0)",
1e-5f,
1e-4f);
} }
return true; return true;
......
...@@ -324,12 +324,12 @@ int reduce_blockwise_impl(bool do_verification, ...@@ -324,12 +324,12 @@ int reduce_blockwise_impl(bool do_verification,
#endif #endif
out_dev.FromDevice(out.mData.data()); out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData); pass = pass && ck::utils::check_err(out, out_ref);
if(OutputIndex) if(OutputIndex)
{ {
out_index_dev.FromDevice(out_indices.mData.data()); out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData); pass = pass && ck::utils::check_err(out_indices, out_indices_ref);
}; };
}; };
......
...@@ -294,7 +294,7 @@ int main(int argc, char* argv[]) ...@@ -294,7 +294,7 @@ int main(int argc, char* argv[])
if(do_verify) if(do_verify)
{ {
out_dev.FromDevice(out.mData.data()); out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData); pass = pass && ck::utils::check_err(out, out_ref);
}; };
return (pass ? 0 : 1); return (pass ? 0 : 1);
......
...@@ -225,7 +225,7 @@ int reduce_multiblock_atomic_add_impl(bool do_verification, ...@@ -225,7 +225,7 @@ int reduce_multiblock_atomic_add_impl(bool do_verification,
if(do_verification) if(do_verification)
{ {
out_dev.FromDevice(out.mData.data()); out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData); pass = pass && ck::utils::check_err(out, out_ref);
}; };
return (pass ? 0 : 1); return (pass ? 0 : 1);
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <typename InDataType, template <typename InDataType,
typename OutDataType, typename OutDataType,
...@@ -172,16 +173,16 @@ bool pool_test(bool do_verification, ...@@ -172,16 +173,16 @@ bool pool_test(bool do_verification,
// tensor layout // tensor layout
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) { [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value) if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}), return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
} }
else if constexpr(ck::is_same<decltype(layout), else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value) ck::tensor_layout::convolution::NHWC>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}), return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
} }
}; };
...@@ -267,14 +268,14 @@ bool pool_test(bool do_verification, ...@@ -267,14 +268,14 @@ bool pool_test(bool do_verification,
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data()); out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_n_c_ho_wo_device.mData, out_n_c_ho_wo_host.mData); pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);
if constexpr(OutputIndex) if constexpr(OutputIndex)
{ {
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data()); out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device.mData, pass = pass &&
out_indices_n_c_ho_wo_host.mData); ck::utils::check_err(out_indices_n_c_ho_wo_device, out_indices_n_c_ho_wo_host);
}; };
} }
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -133,15 +134,15 @@ int main(int argc, char* argv[]) ...@@ -133,15 +134,15 @@ int main(int argc, char* argv[])
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -225,7 +226,7 @@ int main(int argc, char* argv[]) ...@@ -225,7 +226,7 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1; return ck::utils::check_err(c_m_n_device_result, c_m_n_host_result) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
......
...@@ -52,15 +52,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -52,15 +52,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -208,10 +208,10 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -208,10 +208,10 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
const Tensor<EDataType> c_device_result_converted(c_device_tensors[i]); const Tensor<EDataType> c_device_result_converted(c_device_tensors[i]);
pass &= ck::utils::check_err(c_device_result_converted.mData, c_host_tensors[i].mData); pass &= ck::utils::check_err(c_device_result_converted, c_host_tensors[i]);
#else #else
pass &= ck::utils::check_err(c_device_tensors[i].mData, c_host_tensors[i].mData); pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
#endif #endif
} }
} }
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -109,21 +110,20 @@ void DumpPerf(float ave_time, int M, int N, int K) ...@@ -109,21 +110,20 @@ void DumpPerf(float ave_time, int M, int N, int K)
} }
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
auto f_host_tensor_descriptor2d = auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -259,12 +259,9 @@ int main() ...@@ -259,12 +259,9 @@ int main()
r0_device_buf.FromDevice(r0_m.mData.data()); r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data()); r1_device_buf.FromDevice(r1_m.mData.data());
pass = ck::utils::check_err( pass = ck::utils::check_err(e_m_n, e_m_n_host, "Error: Incorrect results c", 1e-2, 1e-2);
e_m_n.mData, e_m_n_host.mData, "Error: Incorrect results c", 1e-2, 1e-2); pass &= ck::utils::check_err(r0_m, r0_m_host, "Error: Incorrect results d0", 1e-2, 1e-2);
pass &= ck::utils::check_err( pass &= ck::utils::check_err(r1_m, r1_m_host, "Error: Incorrect results d1", 1e-2, 1e-2);
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
} }
bool time_kernel = true; bool time_kernel = true;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment