Unverified Commit 4a2a56c2 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Rangify constructor of HostTensorDescriptor & Tensor<> (#445)

* Rangify STL algorithms

This commit adapts rangified std::copy(), std::fill() & std::transform()

* Rangify check_err()

By rangifying check_err(), we can not only compare values between
std::vector<>s, but also compare any ranges which have same value
type.

* Allow constructing Tensor<> like a HostTensorDescriptor

* Simplify Tensor<> object construction logics

* Remove more unnecessary 'HostTensorDescriptor' objects

* Re-format example code

* Re-write more HostTensorDescriptor ctor call
parent 37f2e918
...@@ -262,15 +262,13 @@ bool run_gemm_reduce_add_addsquare_xdl(ck::index_t M, ...@@ -262,15 +262,13 @@ bool run_gemm_reduce_add_addsquare_xdl(ck::index_t M,
Tensor<EDataType> e_m_n_host_converted(e_m_n_host); Tensor<EDataType> e_m_n_host_converted(e_m_n_host);
pass = ck::utils::check_err( pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host_converted.mData, "Error: Incorrect results c", 1e-2, 1e-2); e_m_n, e_m_n_host_converted, "Error: Incorrect results c", 1e-2, 1e-2);
r0_device_buf.FromDevice(r0_m.mData.data()); r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data()); r1_device_buf.FromDevice(r1_m.mData.data());
pass &= ck::utils::check_err( pass &= ck::utils::check_err(r0_m, r0_m_host, "Error: Incorrect results d0", 1e-2, 1e-2);
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2); pass &= ck::utils::check_err(r1_m, r1_m_host, "Error: Incorrect results d1", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
if(pass) if(pass)
{ {
......
...@@ -241,8 +241,8 @@ auto run_gemm_reduce_max_xdl(ck::index_t M, ...@@ -241,8 +241,8 @@ auto run_gemm_reduce_max_xdl(ck::index_t M,
if constexpr(std::is_same_v<ADataType, ck::int4_t>) if constexpr(std::is_same_v<ADataType, ck::int4_t>)
{ {
Tensor<EDataType> e_m_n_device_converted(e_m_n); Tensor<EDataType> e_m_n_device_converted(e_m_n);
pass = ck::utils::check_err(e_m_n_device_converted.mData, pass = ck::utils::check_err(e_m_n_device_converted,
e_m_n_host_converted.mData, e_m_n_host_converted,
"Error: Incorrect results c", "Error: Incorrect results c",
1e-2, 1e-2,
1e-2); 1e-2);
...@@ -251,12 +251,11 @@ auto run_gemm_reduce_max_xdl(ck::index_t M, ...@@ -251,12 +251,11 @@ auto run_gemm_reduce_max_xdl(ck::index_t M,
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{ {
pass = ck::utils::check_err( pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host_converted.mData, "Error: Incorrect results c", 1e-2, 1e-2); e_m_n, e_m_n_host_converted, "Error: Incorrect results c", 1e-2, 1e-2);
} }
r0_device_buf.FromDevice(r0_m.mData.data()); r0_device_buf.FromDevice(r0_m.mData.data());
pass &= ck::utils::check_err( pass &= ck::utils::check_err(r0_m, r0_m_host, "Error: Incorrect results d0", 1e-2, 1e-2);
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
if(pass) if(pass)
{ {
...@@ -456,8 +455,8 @@ bool run_gemm_reduce_mean_meansquare_xdl(ck::index_t M, ...@@ -456,8 +455,8 @@ bool run_gemm_reduce_mean_meansquare_xdl(ck::index_t M,
if constexpr(std::is_same_v<ADataType, ck::int4_t>) if constexpr(std::is_same_v<ADataType, ck::int4_t>)
{ {
Tensor<EDataType> e_m_n_device_converted(e_m_n); Tensor<EDataType> e_m_n_device_converted(e_m_n);
pass = ck::utils::check_err(e_m_n_device_converted.mData, pass = ck::utils::check_err(e_m_n_device_converted,
e_m_n_host_converted.mData, e_m_n_host_converted,
"Error: Incorrect results c", "Error: Incorrect results c",
1e-2, 1e-2,
1e-2); 1e-2);
...@@ -466,16 +465,14 @@ bool run_gemm_reduce_mean_meansquare_xdl(ck::index_t M, ...@@ -466,16 +465,14 @@ bool run_gemm_reduce_mean_meansquare_xdl(ck::index_t M,
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{ {
pass = ck::utils::check_err( pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host_converted.mData, "Error: Incorrect results c", 1e-2, 1e-2); e_m_n, e_m_n_host_converted, "Error: Incorrect results c", 1e-2, 1e-2);
} }
r0_device_buf.FromDevice(r0_m.mData.data()); r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data()); r1_device_buf.FromDevice(r1_m.mData.data());
pass &= ck::utils::check_err( pass &= ck::utils::check_err(r0_m, r0_m_host, "Error: Incorrect results d0", 1e-2, 1e-2);
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2); pass &= ck::utils::check_err(r1_m, r1_m_host, "Error: Incorrect results d1", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
if(pass) if(pass)
{ {
......
...@@ -142,7 +142,7 @@ int run_conv_bwd_data(bool do_verification, ...@@ -142,7 +142,7 @@ int run_conv_bwd_data(bool do_verification,
in_device_buf.FromDevice(in_device.mData.data()); in_device_buf.FromDevice(in_device.mData.data());
return ck::utils::check_err(in_device.mData, in_host.mData) ? 0 : 1; return ck::utils::check_err(in_device, in_host) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
...@@ -132,15 +133,15 @@ int main(int argc, char* argv[]) ...@@ -132,15 +133,15 @@ int main(int argc, char* argv[])
std::size_t col, std::size_t col,
std::size_t stride, std::size_t stride,
auto layout) { auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}), return HostTensorDescriptor({batch_count, row, col}, {row * stride, stride, 1_uz});
std::vector<std::size_t>({row * stride, stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}), return HostTensorDescriptor({batch_count, row, col}, {col * stride, 1_uz, stride});
std::vector<std::size_t>({col * stride, 1, stride}));
} }
}; };
...@@ -149,17 +150,13 @@ int main(int argc, char* argv[]) ...@@ -149,17 +150,13 @@ int main(int argc, char* argv[])
Tensor<CDataType> c_g_m_n_host_result( Tensor<CDataType> c_g_m_n_host_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> d0_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d0_g_m_host_result({BatchCount, M});
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); Tensor<ReduceDataType> d1_g_m_host_result({BatchCount, M});
Tensor<ReduceDataType> d1_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
Tensor<CDataType> c_g_m_n_device_result( Tensor<CDataType> c_g_m_n_device_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> d0_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d0_g_m_device_result({BatchCount, M});
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); Tensor<ReduceDataType> d1_g_m_device_result({BatchCount, M});
Tensor<ReduceDataType> d1_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl; std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl; std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
...@@ -296,16 +293,15 @@ int main(int argc, char* argv[]) ...@@ -296,16 +293,15 @@ int main(int argc, char* argv[])
} }
} }
pass = ck::utils::check_err(c_g_m_n_host_result.mData, pass = ck::utils::check_err(
c_g_m_n_device_result.mData, c_g_m_n_host_result, c_g_m_n_device_result, "Error: Incorrect results c") &&
"Error: Incorrect results c") && ck::utils::check_err(d0_g_m_device_result,
ck::utils::check_err(d0_g_m_device_result.mData, d0_g_m_host_result,
d0_g_m_host_result.mData,
"Error: Incorrect results! D0", "Error: Incorrect results! D0",
1e-4, 1e-4,
1e-5) && 1e-5) &&
ck::utils::check_err(d1_g_m_device_result.mData, ck::utils::check_err(d1_g_m_device_result,
d1_g_m_host_result.mData, d1_g_m_host_result,
"Error: Incorrect results! D1", "Error: Incorrect results! D1",
1e-3, 1e-3,
1e-5); 1e-5);
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
...@@ -71,13 +72,13 @@ int main() ...@@ -71,13 +72,13 @@ int main()
ck::index_t Stride = 1024; ck::index_t Stride = 1024;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) { auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), using namespace ck::literals;
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}; };
Tensor<ABDataType> a_m_n(f_host_tensor_descriptor2d(M, N, Stride)); Tensor<ABDataType> a_m_n(f_host_tensor_descriptor2d(M, N, Stride));
...@@ -128,8 +129,7 @@ int main() ...@@ -128,8 +129,7 @@ int main()
host_broadcast2D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add, 0>( host_broadcast2D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add, 0>(
host_c_m_n, a_m_n, b_n, M, N, Add{}); host_c_m_n, a_m_n, b_n, M, N, Add{});
pass &= ck::utils::check_err( pass &= ck::utils::check_err(c_m_n, host_c_m_n, "Error: Incorrect results c", 1e-3, 1e-3);
c_m_n.mData, host_c_m_n.mData, "Error: Incorrect results c", 1e-3, 1e-3);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -82,11 +83,9 @@ int main() ...@@ -82,11 +83,9 @@ int main()
std::array<ck::index_t, 3> b_strides; std::array<ck::index_t, 3> b_strides;
std::array<ck::index_t, 3> c_strides; std::array<ck::index_t, 3> c_strides;
std::copy(mnk.begin(), mnk.end(), abc_lengths.begin()); ck::ranges::copy(mnk, abc_lengths.begin());
std::copy( ck::ranges::copy(b_m_n_k.mDesc.GetStrides(), b_strides.begin());
b_m_n_k.mDesc.GetStrides().begin(), b_m_n_k.mDesc.GetStrides().end(), b_strides.begin()); ck::ranges::copy(c_m_n_k.mDesc.GetStrides(), c_strides.begin());
std::copy(
c_m_n_k.mDesc.GetStrides().begin(), c_m_n_k.mDesc.GetStrides().end(), c_strides.begin());
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer( auto argument = broadcastAdd.MakeArgumentPointer(
...@@ -113,8 +112,8 @@ int main() ...@@ -113,8 +112,8 @@ int main()
host_broadcast3D_am_bmnk<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>( host_broadcast3D_am_bmnk<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>(
host_c_m_n_k, a_m, b_m_n_k, mnk, Add{}); host_c_m_n_k, a_m, b_m_n_k, mnk, Add{});
pass &= ck::utils::check_err( pass &=
c_m_n_k.mData, host_c_m_n_k.mData, "Error: Incorrect results c", 1e-3, 1e-3); ck::utils::check_err(c_m_n_k, host_c_m_n_k, "Error: Incorrect results c", 1e-3, 1e-3);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -53,8 +53,7 @@ int main() ...@@ -53,8 +53,7 @@ int main()
ck::index_t M = 1024; ck::index_t M = 1024;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1));
...@@ -105,8 +104,7 @@ int main() ...@@ -105,8 +104,7 @@ int main()
host_elementwise1D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>( host_elementwise1D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>(
host_c_m, a_m, b_m, M, Add{}); host_c_m, a_m, b_m, M, Add{});
pass &= ck::utils::check_err( pass &= ck::utils::check_err(c_m, host_c_m, "Error: Incorrect results c", 1e-3, 1e-3);
c_m.mData, host_c_m.mData, "Error: Incorrect results c", 1e-3, 1e-3);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -82,10 +83,10 @@ int main() ...@@ -82,10 +83,10 @@ int main()
std::array<ck::index_t, 4> b_strides; std::array<ck::index_t, 4> b_strides;
std::array<ck::index_t, 4> c_strides; std::array<ck::index_t, 4> c_strides;
std::copy(nchw.begin(), nchw.end(), abc_lengths.begin()); ck::ranges::copy(nchw, abc_lengths.begin());
std::copy(a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end(), a_strides.begin()); ck::ranges::copy(a.mDesc.GetStrides(), a_strides.begin());
std::copy(b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end(), b_strides.begin()); ck::ranges::copy(b.mDesc.GetStrides(), b_strides.begin());
std::copy(c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end(), c_strides.begin()); ck::ranges::copy(c.mDesc.GetStrides(), c_strides.begin());
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer( auto argument = broadcastAdd.MakeArgumentPointer(
...@@ -112,8 +113,7 @@ int main() ...@@ -112,8 +113,7 @@ int main()
host_elementwise4D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>( host_elementwise4D<Tensor<ABDataType>, Tensor<ABDataType>, Tensor<CDataType>, Add>(
host_c, a, b, nchw, Add{}); host_c, a, b, nchw, Add{});
pass &= pass &= ck::utils::check_err(c, host_c, "Error: Incorrect results c", 1e-3, 1e-3);
ck::utils::check_err(c.mData, host_c.mData, "Error: Incorrect results c", 1e-3, 1e-3);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -108,21 +109,20 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise< ...@@ -108,21 +109,20 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Sequence<8>>; // scalarPerVector: y(layerNorm_out) ck::Sequence<8>>; // scalarPerVector: y(layerNorm_out)
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
auto f_host_tensor_descriptor2d = auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -372,8 +372,8 @@ int main() ...@@ -372,8 +372,8 @@ int main()
N); N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data()); layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData, pass &= ck::utils::check_err(layerNorm_m_n,
host_layerNorm_m_n.mData, host_layerNorm_m_n,
"Error: Incorrect results layerNorm_m_n", "Error: Incorrect results layerNorm_m_n",
1e-2, 1e-2,
1e-2); 1e-2);
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -107,21 +108,20 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise< ...@@ -107,21 +108,20 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Sequence<8>>; // scalarPerVector: y(layerNorm_out) ck::Sequence<8>>; // scalarPerVector: y(layerNorm_out)
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
auto f_host_tensor_descriptor2d = auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -346,11 +346,8 @@ int main() ...@@ -346,11 +346,8 @@ int main()
N); N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data()); layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData, pass &= ck::utils::check_err(
host_layerNorm_m_n.mData, layerNorm_m_n, host_layerNorm_m_n, "Error: Incorrect results d1", 1e-3, 1e-3);
"Error: Incorrect results d1",
1e-3,
1e-3);
} }
{ {
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...@@ -132,15 +133,15 @@ int main(int argc, char* argv[]) ...@@ -132,15 +133,15 @@ int main(int argc, char* argv[])
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -149,10 +150,10 @@ int main(int argc, char* argv[]) ...@@ -149,10 +150,10 @@ int main(int argc, char* argv[])
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<AccDataType> acc_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<AccDataType> acc_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_bias(HostTensorDescriptor(std::vector<size_t>({size_t(N)}))); Tensor<C0DataType> c0_n_bias({N});
Tensor<C0DataType> c0_m_n_add(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<C0DataType> c0_m_n_add(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<C0DataType> c0_n_gamma(HostTensorDescriptor(std::vector<size_t>({size_t(N)}))); Tensor<C0DataType> c0_n_gamma({N});
Tensor<C0DataType> c0_n_beta(HostTensorDescriptor(std::vector<size_t>({size_t(N)}))); Tensor<C0DataType> c0_n_beta({N});
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
...@@ -274,15 +275,12 @@ int main(int argc, char* argv[]) ...@@ -274,15 +275,12 @@ int main(int argc, char* argv[])
if constexpr(std::is_same<CShuffleDataType, F32>::value) if constexpr(std::is_same<CShuffleDataType, F32>::value)
{ {
pass &= ck::utils::check_err( pass &= ck::utils::check_err(
c_m_n_device_result.mData, c_m_n_host_result.mData, "Error: Incorrect results c"); c_m_n_device_result, c_m_n_host_result, "Error: Incorrect results c");
} }
else if constexpr(std::is_same<CShuffleDataType, F16>::value) else if constexpr(std::is_same<CShuffleDataType, F16>::value)
{ {
pass &= ck::utils::check_err(c_m_n_device_result.mData, pass &= ck::utils::check_err(
c_m_n_host_result.mData, c_m_n_device_result, c_m_n_host_result, "Error: Incorrect results c", 1e-2, 1e-2);
"Error: Incorrect results c",
1e-2,
1e-2);
} }
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
...@@ -62,15 +63,15 @@ bool run_cgemm_xdl(ck::index_t M, ...@@ -62,15 +63,15 @@ bool run_cgemm_xdl(ck::index_t M,
auto f_host_tensor_descriptor = auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {stride, 1_uz});
std::vector<std::size_t>({stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), return HostTensorDescriptor({row, col}, {1_uz, stride});
std::vector<std::size_t>({1, stride}));
} }
}; };
...@@ -219,14 +220,14 @@ bool run_cgemm_xdl(ck::index_t M, ...@@ -219,14 +220,14 @@ bool run_cgemm_xdl(ck::index_t M,
const Tensor<CDataType> c_m_n_real_device_result_converted(c_m_n_real_device_result); const Tensor<CDataType> c_m_n_real_device_result_converted(c_m_n_real_device_result);
const Tensor<CDataType> c_m_n_imag_device_result_converted(c_m_n_imag_device_result); const Tensor<CDataType> c_m_n_imag_device_result_converted(c_m_n_imag_device_result);
result = ck::utils::check_err(c_m_n_real_device_result_converted.mData, result = ck::utils::check_err(c_m_n_real_device_result_converted,
c_m_n_real_host_result.mData, c_m_n_real_host_result,
"Verification error: incorrect results in real part!", "Verification error: incorrect results in real part!",
1e-2f, 1e-2f,
1e-1f); 1e-1f);
result = result && ck::utils::check_err( result = result && ck::utils::check_err(
c_m_n_imag_device_result_converted.mData, c_m_n_imag_device_result_converted,
c_m_n_imag_host_result.mData, c_m_n_imag_host_result,
"Verification error: incorrect results in imaginary part!", "Verification error: incorrect results in imaginary part!",
1e-2f, 1e-2f,
1e-1f); 1e-1f);
...@@ -234,14 +235,14 @@ bool run_cgemm_xdl(ck::index_t M, ...@@ -234,14 +235,14 @@ bool run_cgemm_xdl(ck::index_t M,
else else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{ {
result = ck::utils::check_err(c_m_n_real_device_result.mData, result = ck::utils::check_err(c_m_n_real_device_result,
c_m_n_real_host_result.mData, c_m_n_real_host_result,
"Verification error: incorrect results in real part!", "Verification error: incorrect results in real part!",
1e-2f, 1e-2f,
1e-1f); 1e-1f);
result = result && ck::utils::check_err( result = result && ck::utils::check_err(
c_m_n_imag_device_result.mData, c_m_n_imag_device_result,
c_m_n_imag_host_result.mData, c_m_n_imag_host_result,
"Verification error: incorrect results in imaginary part!", "Verification error: incorrect results in imaginary part!",
1e-2f, 1e-2f,
1e-1f); 1e-1f);
......
...@@ -246,7 +246,7 @@ int main(int argc, char* argv[]) ...@@ -246,7 +246,7 @@ int main(int argc, char* argv[])
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
out_dev.FromDevice(out.mData.data()); out_dev.FromDevice(out.mData.data());
// LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
pass = pass && ck::utils::check_err(out.mData, out_ref.mData); pass = pass && ck::utils::check_err(out, out_ref);
}; };
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
......
...@@ -55,15 +55,15 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -55,15 +55,15 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
std::size_t stride, std::size_t stride,
std::size_t batch_stride, std::size_t batch_stride,
auto layout) { auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value) if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{ {
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}), return HostTensorDescriptor({batch_count_, row, col}, {batch_stride, stride, 1_uz});
std::vector<std::size_t>({batch_stride, stride, 1}));
} }
else else
{ {
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}), return HostTensorDescriptor({batch_count_, row, col}, {batch_stride, 1_uz, stride});
std::vector<std::size_t>({batch_stride, 1, stride}));
} }
}; };
...@@ -174,11 +174,11 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co ...@@ -174,11 +174,11 @@ bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
const Tensor<EDataType> e_device_result_converted(e_g_m_n_device_result); const Tensor<EDataType> e_device_result_converted(e_g_m_n_device_result);
pass &= ck::utils::check_err(e_device_result_converted.mData, e_g_m_n_host_result.mData); pass &= ck::utils::check_err(e_device_result_converted, e_g_m_n_host_result);
#else #else
pass = ck::utils::check_err( pass = ck::utils::check_err(
e_g_m_n_device_result.mData, e_g_m_n_host_result.mData, "Error: Incorrect results c"); e_g_m_n_device_result, e_g_m_n_host_result, "Error: Incorrect results c");
#endif #endif
} }
......
...@@ -246,21 +246,11 @@ int main(int argc, char* argv[]) ...@@ -246,21 +246,11 @@ int main(int argc, char* argv[])
exit(0); exit(0);
} }
Tensor<ADataType> a_gs_ms_ks( Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()), Tensor<BDataType> b_gs_ns_ks(b_gs_ns_ks_lengths, b_gs_ns_ks_strides);
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end())); Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, d_gs_ms_ns_strides);
Tensor<BDataType> b_gs_ns_ks( Tensor<EDataType> e_gs_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()), Tensor<EDataType> e_gs_ms_ns_device_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl; std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl; std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
...@@ -357,9 +347,7 @@ int main(int argc, char* argv[]) ...@@ -357,9 +347,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<CShuffleDataType> c_gs_ms_ns_host_result( Tensor<CShuffleDataType> c_gs_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G1_M2_N3_K1<NumDimM, using ReferenceOpInstance = ReferenceContraction_G1_M2_N3_K1<NumDimM,
NumDimN, NumDimN,
...@@ -407,9 +395,7 @@ int main(int argc, char* argv[]) ...@@ -407,9 +395,7 @@ int main(int argc, char* argv[])
} }
} }
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData) return ck::utils::check_err(e_gs_ms_ns_device_result, e_gs_ms_ns_host_result) ? 0 : 1;
? 0
: 1;
} }
return 0; return 0;
......
...@@ -246,21 +246,11 @@ int main(int argc, char* argv[]) ...@@ -246,21 +246,11 @@ int main(int argc, char* argv[])
exit(0); exit(0);
} }
Tensor<ADataType> a_gs_ms_ks( Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()), Tensor<BDataType> b_gs_ns_ks(b_gs_ns_ks_lengths, b_gs_ns_ks_strides);
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end())); Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, d_gs_ms_ns_strides);
Tensor<BDataType> b_gs_ns_ks( Tensor<EDataType> e_gs_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()), Tensor<EDataType> e_gs_ms_ns_device_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl; std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl; std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
...@@ -357,9 +347,7 @@ int main(int argc, char* argv[]) ...@@ -357,9 +347,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<CShuffleDataType> c_gs_ms_ns_host_result( Tensor<CShuffleDataType> c_gs_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G1_M3_N2_K1<NumDimG, using ReferenceOpInstance = ReferenceContraction_G1_M3_N2_K1<NumDimG,
NumDimM, NumDimM,
...@@ -408,9 +396,7 @@ int main(int argc, char* argv[]) ...@@ -408,9 +396,7 @@ int main(int argc, char* argv[])
} }
} }
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData) return ck::utils::check_err(e_gs_ms_ns_device_result, e_gs_ms_ns_host_result) ? 0 : 1;
? 0
: 1;
} }
return 0; return 0;
......
...@@ -288,21 +288,11 @@ int main(int argc, char* argv[]) ...@@ -288,21 +288,11 @@ int main(int argc, char* argv[])
exit(0); exit(0);
} }
Tensor<ADataType> a_ms_ks( Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()), Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end())); Tensor<EDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<BDataType> b_ns_ks( Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()), Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> d_ms_ns(
std::vector<std::size_t>(d_ms_ns_lengths.begin(), d_ms_ns_lengths.end()),
std::vector<std::size_t>(d_ms_ns_strides.begin(), d_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl; std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl; std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
...@@ -398,9 +388,7 @@ int main(int argc, char* argv[]) ...@@ -398,9 +388,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<CShuffleDataType> c_ms_ns_host_result( Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM, using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN, NumDimN,
...@@ -437,7 +425,7 @@ int main(int argc, char* argv[]) ...@@ -437,7 +425,7 @@ int main(int argc, char* argv[])
} }
} }
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1; return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -277,18 +277,10 @@ int main(int argc, char* argv[]) ...@@ -277,18 +277,10 @@ int main(int argc, char* argv[])
exit(0); exit(0);
} }
Tensor<ADataType> a_ms_ks( Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()), Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end())); Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<BDataType> b_ns_ks( Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl; std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl; std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
...@@ -379,9 +371,7 @@ int main(int argc, char* argv[]) ...@@ -379,9 +371,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<CShuffleDataType> c_ms_ns_host_result( Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM, using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN, NumDimN,
...@@ -417,7 +407,7 @@ int main(int argc, char* argv[]) ...@@ -417,7 +407,7 @@ int main(int argc, char* argv[])
} }
} }
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1; return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include "ck/library/utility/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using XDataType = ck::half_t; using XDataType = ck::half_t;
...@@ -60,13 +61,13 @@ int main() ...@@ -60,13 +61,13 @@ int main()
ck::index_t Stride = N; ck::index_t Stride = N;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) { auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}), return HostTensorDescriptor({len}, {stride});
std::vector<std::size_t>({stride}));
}; };
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) { auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}), using namespace ck::literals;
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}; };
Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride)); Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
...@@ -132,8 +133,7 @@ int main() ...@@ -132,8 +133,7 @@ int main()
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data()); y_dev.FromDevice(y.mData.data());
pass &= pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results d1", 1e-3, 1e-3);
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
} }
return (pass ? 0 : 1); return (pass ? 0 : 1);
} }
...@@ -297,18 +297,10 @@ int main(int argc, char* argv[]) ...@@ -297,18 +297,10 @@ int main(int argc, char* argv[])
const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths; const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths;
const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides; const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides;
Tensor<ADataType> a_ms_ks( Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()), Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end())); Tensor<DDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<BDataType> b_ns_ks( Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<DDataType> d_ms_ns(
std::vector<std::size_t>(d_ms_ns_lengths.begin(), d_ms_ns_lengths.end()),
std::vector<std::size_t>(d_ms_ns_strides.begin(), d_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM, e_ms_ns_lengths.begin() + NumDimM,
...@@ -423,13 +415,9 @@ int main(int argc, char* argv[]) ...@@ -423,13 +415,9 @@ int main(int argc, char* argv[])
const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths; const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths;
const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides; const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides;
Tensor<EDataType> c_ms_ns_host_result( Tensor<EDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_host_result( Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
e_tensors_device[i]->FromDevice(e_device_tensors[i].mData.data()); e_tensors_device[i]->FromDevice(e_device_tensors[i].mData.data());
...@@ -475,7 +463,7 @@ int main(int argc, char* argv[]) ...@@ -475,7 +463,7 @@ int main(int argc, char* argv[])
} }
} }
pass &= ck::utils::check_err(e_device_tensors[i].mData, e_ms_ns_host_result.mData); pass &= ck::utils::check_err(e_device_tensors[i], e_ms_ns_host_result);
} }
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment