Unverified Commit 4a2a56c2 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Rangify constructor of HostTensorDescriptor & Tensor<> (#445)

* Rangify STL algorithms

This commit adapts rangified std::copy(), std::fill() & std::transform()

* Rangify check_err()

By rangifying check_err(), we can not only compare values between
std::vector<>s, but also compare any ranges which have same value
type.

* Allow constructing Tensor<> like a HostTensorDescriptor

* Simplify Tensor<> object construction logics

* Remove more unnecessary 'HostTensorDescriptor' objects

* Re-format example code

* Re-write more HostTensorDescriptor ctor call
parent 37f2e918
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
......@@ -113,15 +114,15 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
}
};
......@@ -307,8 +308,7 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
{
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
pass = pass &
ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData);
pass = pass & ck::utils::check_err(c_g_m_o_device_result, c_g_m_o_host_result);
if(do_log)
{
......
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
......@@ -308,8 +309,8 @@ bool profile_batched_gemm_softmax_gemm_permute_impl(bool do_verification,
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
pass = pass & ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData);
pass =
pass & ck::utils::check_err(c_gs_ms_os_device_result, c_gs_ms_os_host_result);
if(do_log)
{
......
......@@ -209,8 +209,7 @@ bool profile_conv_bwd_data_impl(int do_verification,
{
in_device_buf.FromDevice(input_device_result.mData.data());
pass =
pass & ck::utils::check_err(input_device_result.mData, input_host_result.mData);
pass = pass & ck::utils::check_err(input_device_result, input_host_result);
if(do_log)
{
......
......@@ -12,6 +12,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation_add.hpp"
namespace ck {
......@@ -68,19 +69,19 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
using namespace ck::literals;
if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
}
else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
}
};
......@@ -92,8 +93,7 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)})));
Tensor<OutDataType> bias_k({K});
// residual: assume same layout as output tensor
Tensor<OutDataType> resi_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
......@@ -251,8 +251,7 @@ void profile_conv_fwd_bias_relu_add_impl(int do_verification,
{
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
ck::utils::check_err(out_n_k_ho_wo_device_result.mData,
out_n_k_ho_wo_host_result.mData);
ck::utils::check_err(out_n_k_ho_wo_device_result, out_n_k_ho_wo_host_result);
if(do_log)
{
......
......@@ -12,6 +12,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation.hpp"
namespace ck {
......@@ -68,19 +69,19 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
using namespace ck::literals;
if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
}
else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
}
};
......@@ -92,8 +93,7 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)})));
Tensor<OutDataType> bias_k({K});
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
......@@ -239,8 +239,7 @@ void profile_conv_fwd_bias_relu_impl(int do_verification,
{
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
ck::utils::check_err(out_n_k_ho_wo_device_result.mData,
out_n_k_ho_wo_host_result.mData);
ck::utils::check_err(out_n_k_ho_wo_device_result, out_n_k_ho_wo_host_result);
if(do_log)
{
......
......@@ -191,7 +191,7 @@ bool profile_conv_fwd_impl(int do_verification,
{
out_device_buf.FromDevice(device_output.mData.data());
pass = pass & ck::utils::check_err(device_output.mData, host_output.mData);
pass = pass & ck::utils::check_err(device_output, host_output);
if(do_log)
{
......
......@@ -453,7 +453,7 @@ bool profile_convnd_bwd_data_impl(int do_verification,
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
success = ck::utils::check_err(input_host_result.mData, input_device_result.mData);
success = ck::utils::check_err(input_host_result, input_device_result);
if(do_log)
{
......
......@@ -433,7 +433,7 @@ bool profile_convnd_bwd_weight_impl(int do_verification,
{
wei_device_buf.FromDevice(weights_device_result.mData.data());
success = ck::utils::check_err(weights_host_result.mData, weights_device_result.mData);
success = ck::utils::check_err(weights_host_result, weights_device_result);
if(success == false)
{
......
......@@ -13,6 +13,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
namespace ck {
......@@ -68,8 +69,9 @@ bool profile_elementwise_layernorm_impl(int do_verification,
std::vector<index_t> gammaBetaStride = {0, 1};
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
using namespace ck::literals;
return HostTensorDescriptor({row, col}, {stride, 1_uz});
};
Tensor<ADataType> a(length);
......
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -47,15 +48,15 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -121,8 +122,7 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
......@@ -223,8 +223,7 @@ bool profile_gemm_add_add_fastgelu_impl(int do_verification,
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass &&
ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData);
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
......
......@@ -14,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -75,21 +76,20 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
int StrideD0)
{
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
return HostTensorDescriptor({len}, {stride});
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -99,16 +99,12 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<BiasDataType> bias_n(f_host_tensor_descriptor1d(N, 1));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce0_m_host_result({M});
Tensor<ReduceDataType> reduce1_m_host_result({M});
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce0_m_device_result({M});
Tensor<ReduceDataType> reduce1_m_device_result({M});
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......@@ -347,9 +343,9 @@ void profile_gemm_bias_add_reduce_impl(int do_verification,
reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
ck::utils::check_err(reduce0_m_device_result.mData, reduce0_m_host_result.mData);
ck::utils::check_err(reduce1_m_device_result.mData, reduce1_m_host_result.mData);
ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
ck::utils::check_err(reduce0_m_device_result, reduce0_m_host_result);
ck::utils::check_err(reduce1_m_device_result, reduce1_m_host_result);
if(do_log)
{
......
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -46,15 +47,15 @@ bool profile_gemm_bilinear_impl(int do_verification,
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -116,8 +117,7 @@ bool profile_gemm_bilinear_impl(int do_verification,
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
......@@ -215,8 +215,7 @@ bool profile_gemm_bilinear_impl(int do_verification,
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass &&
ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData);
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
......
......@@ -18,6 +18,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -45,15 +46,15 @@ int profile_gemm_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -187,8 +188,7 @@ int profile_gemm_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass =
pass & ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
......
......@@ -14,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -75,15 +76,15 @@ bool profile_gemm_reduce_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -91,16 +92,12 @@ bool profile_gemm_reduce_impl(int do_verification,
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce0_m_host_result({M});
Tensor<ReduceDataType> reduce1_m_host_result({M});
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce0_m_device_result({M});
Tensor<ReduceDataType> reduce1_m_device_result({M});
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......@@ -313,9 +310,9 @@ bool profile_gemm_reduce_impl(int do_verification,
reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
ck::utils::check_err(reduce0_m_device_result.mData, reduce0_m_host_result.mData);
ck::utils::check_err(reduce1_m_device_result.mData, reduce1_m_host_result.mData);
ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
ck::utils::check_err(reduce0_m_device_result, reduce0_m_host_result);
ck::utils::check_err(reduce1_m_device_result, reduce1_m_host_result);
if(do_log)
{
......
......@@ -18,6 +18,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -46,15 +47,15 @@ bool profile_gemm_splitk_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -190,8 +191,7 @@ bool profile_gemm_splitk_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass =
pass & ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
......
......@@ -209,8 +209,7 @@ bool profile_grouped_conv_bwd_weight_impl(int do_verification,
{
wei_device_buf.FromDevice(weight_device_result.mData.data());
bool pass =
ck::utils::check_err(weight_device_result.mData, weight_host_result.mData);
bool pass = ck::utils::check_err(weight_device_result, weight_host_result);
if(!pass)
{
......
......@@ -14,6 +14,7 @@
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_dl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -66,7 +67,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
......@@ -179,7 +180,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
{
out_device_buf.FromDevice(device_output.mData.data());
pass = pass & ck::utils::check_err(device_output.mData, host_output.mData);
pass = pass & ck::utils::check_err(device_output, host_output);
if(do_log)
{
......
......@@ -17,6 +17,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -45,15 +46,15 @@ bool profile_grouped_gemm_impl(int do_verification,
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -257,8 +258,7 @@ bool profile_grouped_gemm_impl(int do_verification,
c_element_op);
ref_invoker.Run(ref_argument);
pass = pass && ck::utils::check_err(c_m_n_device_results[i].mData,
c_m_n_host_result.mData);
pass = pass && ck::utils::check_err(c_m_n_device_results[i], c_m_n_host_result);
if(do_log)
{
......
......@@ -165,8 +165,7 @@ bool profile_groupnorm_impl(int do_verification,
{
y_dev.FromDevice(y.mData.data());
bool pass =
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);
bool pass = ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
if(do_log)
{
......
......@@ -411,13 +411,12 @@ bool profile_reduce_impl_impl(bool do_verification,
bool single_pass;
out_dev.FromDevice(out.mData.data());
single_pass = ck::utils::check_err(out.mData, out_ref.mData);
single_pass = ck::utils::check_err(out, out_ref);
if(OutputIndex)
{
out_indices_dev.FromDevice(out_indices.mData.data());
single_pass = single_pass &&
ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
single_pass = single_pass && ck::utils::check_err(out_indices, out_indices_ref);
};
if(!single_pass)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment