"git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "613c88443c1ba0462e5cca98784e9acba6e72bf3"
Unverified Commit 3eecbfb6 authored by rocking's avatar rocking Committed by GitHub
Browse files

Revise layout of group convolution (#675)

* [What] Remove pure conv int8 instance
[Why] We will never use pure int8 conv in AI, use int8 quantization instead

* Change layout

* Share the kernel parameter

* Support more type of NHWGC for group conv

* Revise client example of conv 2d, use NHWGC layout

* Add instance to cmake

* Revise layout of group conv quantization instance

* Revise layout of external api of group conv quantization

* Revise layout of group conv quantization client example

* Fix clang format

* Add comment to describe meaning of each parameter
parent 903cd19c
......@@ -17,22 +17,22 @@ using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
static constexpr ck::index_t N = 256; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 28; // input H
static constexpr ck::index_t Wi = 28; // input W
static constexpr ck::index_t Ho = 28; // output H
static constexpr ck::index_t Wo = 28; // output W
struct SimpleDeviceMem
{
......@@ -52,50 +52,24 @@ struct SimpleDeviceMem
int main()
{
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, Hi, Wi, C};
std::array<ck::index_t, NumDimSpatial + 3> in_strides{0, 0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, Y, X, C};
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{0, 0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, Ho, Wo, K};
std::array<ck::index_t, NumDimSpatial + 3> out_strides{0, 0, 0, 0, 1};
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose GNHWC/GKYXC/GNHWK to GNCHW/GKCYX/GNCHW
std::rotate(
rbegin(in_lengths), std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 3));
std::rotate(
rbegin(in_strides), std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 3));
std::rotate(
rbegin(wei_lengths), std::next(rbegin(wei_lengths)), std::next(rbegin(wei_lengths), 3));
std::rotate(
rbegin(wei_strides), std::next(rbegin(wei_strides)), std::next(rbegin(wei_strides), 3));
std::rotate(
rbegin(out_lengths), std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 3));
std::rotate(
rbegin(out_strides), std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 3));
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> wei_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> wei_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
......@@ -155,9 +129,9 @@ int main()
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C +
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(WeiDataType) * G * K * Y * X * C +
sizeof(OutDataType) * G * N * Ho * Wo * K;
sizeof(OutDataType) * N * Ho * Wo * G * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......
......@@ -17,26 +17,26 @@ using BiasDataType = int32_t;
using RequantScaleDataType = float;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
......@@ -55,8 +55,11 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
......@@ -64,17 +67,18 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * G * K);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
......
......@@ -16,19 +16,19 @@ using WeiDataType = int8_t;
using BiasDataType = int32_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
......@@ -55,23 +55,27 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
......
......@@ -17,21 +17,21 @@ using BiasDataType = int32_t;
using RequantScaleDataType = float;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
......@@ -58,8 +58,11 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
......@@ -67,17 +70,18 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * G * K);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
......
......@@ -16,19 +16,19 @@ using WeiDataType = int8_t;
using BiasDataType = int32_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp = ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
......@@ -56,23 +56,27 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
......
......@@ -16,25 +16,25 @@ using WeiDataType = int8_t;
using RequantScaleDataType = float;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
struct SimpleDeviceMem
{
......@@ -54,23 +54,27 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
......
......@@ -15,18 +15,18 @@ using InDataType = int8_t;
using WeiDataType = int8_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 4;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t K = 32; // output channel
static constexpr ck::index_t C = 64; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
......@@ -53,20 +53,24 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
......
......@@ -190,11 +190,11 @@ int run_conv2d_fwd_bias_perchannel_quantization_example(const OutElementOp& out_
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::KYXGC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
......
......@@ -178,10 +178,10 @@ int run_conv2d_fwd_bias_perlayer_quantization_example(const OutElementOp& out_el
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::KYXGC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
......
......@@ -180,10 +180,10 @@ int run_conv2d_fwd_perchannel_quantization_example(const OutElementOp& out_eleme
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::KYXGC;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
......
......@@ -162,9 +162,9 @@ int run_conv2d_fwd_perlayer_quantization_example(const OutElementOp& out_element
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::KYXGC;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
......
......@@ -117,20 +117,6 @@ void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
......@@ -159,20 +145,21 @@ void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
NHWGK,
BF16,
BF16,
Empty_Tuple,
int8_t,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
......@@ -187,6 +174,20 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -385,12 +386,6 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
......@@ -398,7 +393,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......@@ -409,12 +404,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
// no instance
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
......
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -52,10 +52,10 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -68,10 +68,10 @@ void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -83,10 +83,10 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -99,10 +99,10 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -154,9 +154,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -220,9 +220,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -51,10 +51,10 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -67,10 +67,10 @@ void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -82,10 +82,10 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -97,10 +97,10 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -152,9 +152,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -218,9 +218,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -119,9 +119,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -117,8 +117,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
......@@ -3,11 +3,11 @@ add_instance_library(device_grouped_conv2d_fwd_instance
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
# NHWGC, GKYXC, NHWGK
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
#dl
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
#dl
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
static constexpr auto ConvFwdOddC =
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "device_grouped_conv2d_fwd_dl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using OutDataType = ck::half_t;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto Filter1x1Pad0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto Filter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances = std::tuple<
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Pad0_instances = std::tuple<
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, Filter1x1Pad0, GemmPadingSpec, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Stride1Pad0_instances =
std::tuple<
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, Filter1x1Stride1Pad0, GemmPadingSpec, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
InLayout,
WeiLayout,
GNHWC,
GKYXC,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
GNHWK,
F16,
F16,
Empty_Tuple,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>>>& instances)
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances{});
device_grouped_conv2d_fwd_dl_f16_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwdDefault>{});
add_device_operation_instances(
instances, device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Pad0_instances{});
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_f16_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_Filter1x1Stride1Pad0_instances{});
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_f16_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwd1x1S1P0>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "device_grouped_conv2d_fwd_dl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using InDataType = float;
using WeiDataType = float;
using AccDataType = float;
using OutDataType = float;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto Filter1x1Pad0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto Filter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances = std::tuple<
// clang-format off
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, ConvSpec, GemmPadingSpec, 256, 128, 128, 16, 1, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Pad0_instances = std::tuple<
// clang-format off
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, Filter1x1Pad0, GemmPadingSpec, 256, 128, 128, 16, 1, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
using device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Stride1Pad0_instances =
std::tuple<
// clang-format off
// clang-format off
// ########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< 2, InDataType, WeiDataType, Empty_Tuple, OutDataType, AccDataType, InLayout, WeiLayout, Empty_Tuple, OutLayout, InElementOp, WeiElementOp, OutElementOp, Filter1x1Stride1Pad0, GemmPadingSpec, 256, 128, 128, 16, 1, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<8, 1, 1, 1>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 1>, S<1, 2, 0, 3>, S<1, 1, 1, 1>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
InLayout,
WeiLayout,
GNHWC,
GKYXC,
Empty_Tuple,
OutLayout,
InDataType,
WeiDataType,
GNHWK,
F32,
F32,
Empty_Tuple,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>>>& instances)
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances{});
device_grouped_conv2d_fwd_dl_f32_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwdDefault>{});
add_device_operation_instances(
instances, device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Pad0_instances{});
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_f32_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwd1x1P0>{});
add_device_operation_instances(
instances,
device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_Filter1x1Stride1Pad0_instances{});
add_device_operation_instances(instances,
device_grouped_conv2d_fwd_dl_f32_instances<GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
Empty_Tuple,
PassThrough,
ConvFwd1x1S1P0>{});
}
} // namespace instance
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment