"vscode:/vscode.git/clone" did not exist on "0221d308774b5b12b98bfbc03b7d26aa9f38be5f"
Commit 33b5a855 authored by Chao Liu's avatar Chao Liu
Browse files

adding implicit gemm v3

parent 5e5c27a6
......@@ -140,7 +140,7 @@ void device_convolution_implicit_gemm_v1_chwn_cyxk_khwn(InDesc,
constexpr index_t WeiBlockCopyDataPerRead_K = 4;
constexpr index_t OutThreadCopyDataPerWrite_N = 2;
#elif 0
#elif 1
// for 3x3, 34x34, v1r3, Pascal
// for 3x3, 28x28, v1r3, Pascal
// for 3x3, 14x14, v1r3, Pascal
......
......@@ -64,7 +64,7 @@ void device_convolution_implicit_gemm_v1_nchw_cyxk_khwn(InDesc,
wei_cyxk_device_buf.ToDevice(wei_cyxk.mData.data());
out_khwn_device_buf.ToDevice(out_khwn.mData.data());
#if 0
#if 1
// for 3x3, 34x34, v1r3, Pascal
constexpr index_t BlockSize = 128;
......
......@@ -57,7 +57,7 @@ void device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw(InDesc,
wei_cyxk_device_buf.ToDevice(wei_cyxk.mData.data());
out_nkhw_device_buf.ToDevice(out_nkhw.mData.data());
#if 0
#if 1
// for 3x3, 34x34, v1r3, Pascal
constexpr index_t BlockSize = 128;
......@@ -162,7 +162,7 @@ void device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw(InDesc,
constexpr index_t WeiBlockCopyDataPerRead_K = 4;
constexpr index_t OutThreadCopyDataPerWrite_W = 2;
#elif 1
#elif 0
// for 3x3, 34x34, v1r3, Vega 20, WoPerBlock = 8
constexpr index_t BlockSize = 256;
......
......@@ -13,7 +13,7 @@
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_khwn.hpp"
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
//#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
struct GeneratorTensor_1
{
......@@ -411,7 +411,7 @@ void check_error(const Tensor<T>& ref, const Tensor<T>& result)
int main(int argc, char* argv[])
{
#if 0
#if 1
// 3x3, 34x34
constexpr index_t N = 64;
constexpr index_t C = 256;
......@@ -435,7 +435,7 @@ int main(int argc, char* argv[])
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 1
#elif 0
// 3x3 filter, 28x28 image
constexpr index_t N = 128;
constexpr index_t C = 256;
......@@ -608,7 +608,7 @@ int main(int argc, char* argv[])
device_convolution_direct_v2_nchw_kcyx_nkhw
#elif 0
device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
#elif 0
#elif 1
device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
#elif 0
device_convolution_implicit_gemm_v1_nchw_cyxk_khwn
......@@ -616,7 +616,7 @@ int main(int argc, char* argv[])
device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw
#elif 0
device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
#elif 1
#elif 0
device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw
#endif
(in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
......
......@@ -66,3 +66,17 @@ __host__ __device__ auto reorder_array_given_old2new(const Array<TData, NSize>&
return new_array;
}
template <class TData, index_t NSize>
__host__ __device__ constexpr auto operator+(const Array<TData, NSize>& a,
const Array<TData, NSize>& b)
{
Array<TData, NSize> result;
static_for<0, NSize, 1>{}([&](auto I) {
constexpr index_t i = I.Get();
result[i] = a[i] + b[i];
});
return result;
}
......@@ -88,32 +88,11 @@ struct ConstantTensorDescriptor
return accumulate_on_sequence(Lengths{}, std::multiplies<index_t>{}, Number<1>{});
}
#if 0
// c++14 doesn't support constexpr lambdas, has to use this trick instead
struct f_GetElementSpace_impl
{
template <class IDim>
__host__ __device__ constexpr index_t operator()(IDim idim) const
{
return (Type{}.GetLength(idim) - 1) * Type{}.GetStride(idim);
}
__host__ __device__ constexpr index_t operator()(index_t length, index_t stride) const
{
return (length - 1) * stride;
}
};
#endif
template <class Align = Number<1>>
__host__ __device__ static constexpr index_t GetElementSpace(Align align = Align{})
{
#if 0
index_t element_space_unaligned =
static_const_reduce_n<nDim>{}(f_GetElementSpace_impl{}, std::plus<index_t>{}) + 1;
#else
constexpr index_t element_space_unaligned = accumulate_on_sequence(
(GetLengths() - Number<1>{}) * GetStrides(), std::plus<index_t>{}, Number<1>{});
#endif
return align.Get() * ((element_space_unaligned + align.Get() - 1) / align.Get());
}
......@@ -150,10 +129,7 @@ struct ConstantTensorDescriptor
constexpr auto multi_id = Sequence<Is...>{};
constexpr auto seq_tmp =
transform_sequences(std::multiplies<index_t>{}, multi_id, GetStrides());
return accumulate_on_sequence(seq_tmp, std::plus<index_t>{}, Number<0>{});
return accumulate_on_sequence(multi_id * GetStrides(), std::plus<index_t>{}, Number<0>{});
}
__host__ __device__ static Array<index_t, nDim> GetMultiIndex(index_t id)
......@@ -177,14 +153,14 @@ struct ConstantTensorDescriptor
return ConstantTensorDescriptor<Lengths, decltype(default_strides)>{};
}
template <index_t IDims...>
template <index_t... IDims>
__host__ __device__ static constexpr auto Extract(Number<IDims>... extract_dims)
{
static_assert(sizeof...(IDims) <= GetNumOfDimension(),
"wrong! too many number of dimensions to be extracted");
return make_ConstantTensorDescriptor(Lengths{}.Extract(extract_dims),
Strides{}.Extract(extract_dims));
return make_ConstantTensorDescriptor(Lengths{}.Extract(extract_dims...),
Strides{}.Extract(extract_dims...));
}
template <index_t IDim, index_t SliceLen>
......@@ -195,11 +171,11 @@ struct ConstantTensorDescriptor
}
template <index_t IDim, index_t... FoldIntervals>
__host__ device__ static constexpr auto Fold(Number<IDim>, Number<FoldIntervals>...)
__host__ __device__ static constexpr auto Fold(Number<IDim>, Number<FoldIntervals>...)
{
constexpr auto fold_intervals = Sequence<FoldIntervals...>{};
constexpr fold_intervals_product =
constexpr index_t fold_intervals_product =
accumulate_on_sequence(fold_intervals, std::multiplies<index_t>{}, Number<1>{});
constexpr auto unfold_length = GetLength(Number<IDim>{});
......@@ -207,28 +183,30 @@ struct ConstantTensorDescriptor
// length of the dimension to be folded needs to be dividable by fold_interval_product,
// otherwise, folding is invalid
static_assert(unfold_length % fold_interval_product == 0,
static_assert(unfold_length % fold_intervals_product == 0,
"wrong! length on the dimension to be folded cannot be evenly divided!");
// folded lengths
constexpr auto fold_lengths =
Sequence<unfold_length / fold_interval_product>{}.Append(fold_intervals);
Sequence<unfold_length / fold_intervals_product>{}.Append(fold_intervals);
// folded strides
constexpr auto fold_strides = transform_sequences(mod_conv::scales<index_t, unfold_stride>{},
constexpr auto fold_strides =
Number<unfold_stride>{} *
reverse_scan_sequence(fold_intervals.PushBack(Number<1>{}), std::multiplies<index_t>{});
// left and right lengths
constexpr auto lengths_pair = GetLengths().Split(Number<I>{});
constexpr auto lengths_pair = GetLengths().Split(Number<IDim>{});
constexpr auto left_lengths = lengths_pair.first;
constexpr auto right_lengths = lengths_pair.second.PopFront();
// left and right strides
constexpr auto strides_pair = GetStrides().Split(Number<I>{});
constexpr auto strides_pair = GetStrides().Split(Number<IDim>{});
constexpr auto left_strides = strides_pair.first;
constexpr auto right_strides = strides_pair.second.PopFront();
return make_ConstantTensorDescriptor(left_lengths.Append(fold_lengths).Append(right_lengths),
return make_ConstantTensorDescriptor(
left_lengths.Append(fold_lengths).Append(right_lengths),
left_strides.Append(fold_strides).Append(right_strides));
}
......@@ -264,8 +242,8 @@ struct ConstantTensorDescriptor
constexpr index_t unfold_length =
accumulate_on_sequence(fold_lengths, std::multiplies<index_t>{}, Number<1>{});
constexpr auto new_strides =
left_strides.PopBack(Number<unfold_strides>{}).Append(right_strides);
constexpr auto new_lengths =
left_lengths.PopBack(Number<unfold_length>{}).Append(right_lengths);
// strides
constexpr auto strides_pair1 = Strides{}.Split(Number<LastUnfoldDim + 1>{});
......@@ -281,7 +259,7 @@ struct ConstantTensorDescriptor
constexpr index_t unfold_stride = fold_strides.Back();
constexpr auto new_strides =
left_strides.PushBack(Number<unfold_strides>{}).Append(right_strides);
left_strides.PushBack(Number<unfold_stride>{}).Append(right_strides);
return make_ConstantTensorDescriptor(new_lengths, new_strides);
}
......@@ -289,7 +267,7 @@ struct ConstantTensorDescriptor
template <index_t... IRs>
__host__ __device__ static constexpr auto ReorderGivenNew2Old(Sequence<IRs...> /*new2old*/)
{
static_assert(sizeof...(IRs) == GetNumberOfDimension(), "wrong! dimension is wrong");
static_assert(sizeof...(IRs) == GetNumOfDimension(), "wrong! dimension is wrong");
constexpr auto map_new2old = Sequence<IRs...>{};
return make_ConstantTensorDescriptor(Lengths{}.ReorderGivenNew2Old(map_new2old),
Strides{}.ReorderGivenNew2Old(map_new2old));
......
......@@ -2,14 +2,7 @@
#include "constant_integral.hip.hpp"
#include "functional.hip.hpp"
struct EmptySequence
{
template <class Seq>
__host__ __device__ constexpr Seq Append(Seq) const
{
return {};
}
};
struct EmptySequence;
template <index_t... Is>
struct Sequence
......@@ -73,18 +66,18 @@ struct Sequence
__host__ __device__ constexpr auto PopBack() const;
template <index_t Xs...>
template <index_t... Xs>
__host__ __device__ constexpr auto Append(Sequence<Xs...>) const
{
return Sequence<Is..., Xs...>{};
}
__host__ __device__ constexpr auto Append(EmptySequence) const { return Type{}; }
__host__ __device__ constexpr auto Append(EmptySequence) const;
template <index_t... Ns>
__host__ __device__ constexpr auto Extract(Number<Ns>...) const
{
return Sequence<Type{}.Get(Number<Ns>)...>{};
return Sequence<Get(Number<Ns>{})...>{};
}
template <index_t N>
......@@ -93,8 +86,8 @@ struct Sequence
template <class FirstSeq, class SecondSeq>
__host__ __device__ constexpr auto operator()(FirstSeq, SecondSeq) const
{
constexpr new_first = FirstSeq{}.PushBack(Number<Second{}.Front()>{});
constexpr new_second = SecondSeq{}.PopFront();
constexpr index_t new_first = FirstSeq{}.PushBack(Number<SecondSeq{}.Front()>{});
constexpr index_t new_second = SecondSeq{}.PopFront();
static_if<(N > 0)>{}([&](auto fwd) {
return split_impl<N - 1>{}(new_first, fwd(new_second));
......@@ -102,26 +95,10 @@ struct Sequence
}
};
// split one sequence to two sequnces: [0, I) and [I, nSize)
// split one sequence to two sequnces: [0, I) and [I, mSize)
// return type is std::pair
template <index_t I>
__host__ __device__ constexpr auto Split(Number<I>) const
{
static_assert(I <= nSize, "wrong! split position is too high!");
static_if<(I == 0)>{}(
[&](auto fwd) { return std::make_pair(EmptySequence<>{}, fwd(Type{})); });
static_if<(I == nSize)>{}(
[&](auto fwd) { return std::make_pair(Type<>{}, fwd(EmptySequence<>{})); });
static_if<(I > 0 && I < nSize)>{}([&](auto fforwader) {
constexpr auto first = Sequence<Type{}.Front()> {}
constexpr auto second = Type{}.PopFront();
return split_impl<I - 1>{}(first, fwd(second));
});
}
__host__ __device__ constexpr auto Split(Number<I>) const;
template <index_t I, index_t X>
__host__ __device__ constexpr auto Modify(Number<I>, Number<X>) const
......@@ -135,22 +112,64 @@ struct Sequence
}
};
template <index_t IBegin, index_t IEnd, index_t Increment>
__host__ __device__ auto make_increasing_sequence(Number<IBegin>, Number<IEnd>, Number<Increment>)
struct EmptySequence
{
static_assert(IBegin < IEnd, (IEnd - IBegin) % Increment == 0, "wrong!");
__host__ __device__ static constexpr index_t GetSize() { return 0; }
// not implemented
template <index_t I>
__host__ __device__ constexpr auto PushFront(Number<I>) const
{
return Sequence<I>{};
}
template <index_t I>
__host__ __device__ constexpr auto PushBack(Number<I>) const
{
return Sequence<I>{};
}
template <class Seq>
__host__ __device__ constexpr Seq Append(Seq) const
{
return Seq{};
}
};
template <index_t... Is>
__host__ __device__ constexpr auto Sequence<Is...>::Append(EmptySequence) const
{
return Type{};
}
template <index_t N, index_t X>
__host__ __device__ auto make_uniform_sequence(Number<N>, Number<X>);
// split one sequence to two sequnces: [0, I) and [I, mSize)
// return type is std::pair
template <index_t... Is>
template <index_t I>
__host__ __device__ constexpr auto Sequence<Is...>::Split(Number<I>) const
{
static_assert(I <= GetSize(), "wrong! split position is too high!");
static_if<(I == 0)>{}([&](auto fwd) { return std::make_pair(EmptySequence{}, fwd(Type{})); });
static_if<(I == GetSize())>{}(
[&](auto fwd) { return std::make_pair(Type{}, fwd(EmptySequence{})); });
static_if<(I > 0 && I < GetSize())>{}(
[&](auto fwd) { return split_impl<I>{}(EmptySequence{}, fwd(Type{})); });
}
#if 0
template <index_t IBegin, index_t IEnd, index_t Increment>
__host__ __device__ auto make_increasing_sequence(Number<IBegin>, Number<IEnd>, Number<Increment>)
{
static_assert(IBegin < IEnd, (IEnd - IBegin) % Increment == 0, "wrong!");
// not implemented
}
#endif
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Sequence<Ys...>) const
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Sequence<Ys...>)
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
......@@ -158,17 +177,18 @@ __host__ __device__ constexpr auto operator+(Sequence<Xs...>, Sequence<Ys...>) c
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator-(Sequence<Xs...> seq_x, Sequence<Ys...> seq_y) const
__host__ __device__ constexpr auto operator-(Sequence<Xs...> seq_x, Sequence<Ys...> seq_y)
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
static_for<0, xs.GetSize(), 1>{}([&](auto I) { static_assert(seq_x.Get(I) >= seq_y.Get(I)); });
static_for<0, seq_x.GetSize(), 1>{}(
[&](auto I) { static_assert(seq_x.Get(I) >= seq_y.Get(I), "wrong! going to undeflow"); });
return Sequence<(Xs - Ys)...>{};
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Sequence<Ys...>)const
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Sequence<Ys...>)
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
......@@ -176,7 +196,7 @@ __host__ __device__ constexpr auto operator*(Sequence<Xs...>, Sequence<Ys...>)co
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Sequence<Ys...>) const
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Sequence<Ys...>)
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
......@@ -184,15 +204,7 @@ __host__ __device__ constexpr auto operator/(Sequence<Xs...>, Sequence<Ys...>) c
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Sequence<Ys...>) const
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
return Sequence<(Xs % Ys)...>{};
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Sequence<Ys...>) const
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Sequence<Ys...>)
{
static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");
......@@ -200,63 +212,79 @@ __host__ __device__ constexpr auto operator%(Sequence<Xs...>, Sequence<Ys...>) c
}
template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Number<Y>) const
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Number<Y>)
{
return seq_x + make_uniform_sequence(Number<sizeof...(Xs)>, Number<Y>{});
return Sequence<(Xs + Y)...>{};
}
template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator-(Sequence<Xs...>, Number<Y>) const
__host__ __device__ constexpr auto operator-(Sequence<Xs...>, Number<Y>)
{
return seq_x - make_uniform_sequence(Number<sizeof...(Xs)>, Number<Y>{});
constexpr auto seq_x = Sequence<Xs...>{};
#if 0
static_for<0, sizeof...(Xs), 1>{}([&](auto Iter) {
constexpr auto I = decltype(Iter){};
static_assert(seq_x.Get(I) >= Y, "wrong! going to underflow");
});
#endif
return Sequence<(Xs - Y)...>{};
}
template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Number<Y>)const
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Number<Y>)
{
return seq_x * make_uniform_sequence(Number<sizeof...(Xs)>, Number<Y>{});
return Sequence<(Xs * Y)...>{};
}
template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Number<Y>) const
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Number<Y>)
{
return seq_x / make_uniform_sequence(Number<sizeof...(Xs)>, Number<Y>{});
return Sequence<(Xs / Y)...>{};
}
template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator%(Sequence<Xs...> seq_x, Number<Y> y) const
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Number<Y>)
{
return seq_x % make_uniform_sequence(Number<sizeof...(Xs)>, Number<Y>{});
return Sequence<(Xs % Y)...>{};
}
template <index_t X, index_t... Ys>
__host__ __device__ constexpr auto operator+(Number<X>, Sequence<Ys...>) const
template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator+(Number<Y>, Sequence<Xs...>)
{
return make_uniform_sequence(Number<sizeof...(Ys)>{}, Number<X>{}) + Sequence<Ys...>{};
return Sequence<(Y + Xs)...>{};
}
template <index_t X, index_t... Ys>
__host__ __device__ constexpr auto operator-(Number<X>, Sequence<Ys...>) const
template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator-(Number<Y>, Sequence<Xs...>)
{
return make_uniform_sequence(Number<sizeof...(Ys)>{}, Number<X>{}) - Sequence<Ys...>{};
constexpr auto seq_x = Sequence<Xs...>{};
static_for<0, sizeof...(Xs), 1>{}([&](auto Iter) {
constexpr auto I = decltype(Iter){};
static_assert(seq_x.Get(I) <= Y, "wrong! going to underflow");
});
return Sequence<(Y - Xs)...>{};
}
template <index_t X, index_t... Ys>
__host__ __device__ constexpr auto operator*(Number<X>, Sequence<Ys...>)const
template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator*(Number<Y>, Sequence<Xs...>)
{
return make_uniform_sequence(Number<sizeof...(Ys)>{}, Number<X>{}) * Sequence<Ys...>{};
return Sequence<(Y * Xs)...>{};
}
template <index_t X, index_t... Ys>
__host__ __device__ constexpr auto operator/(Number<X>, Sequence<Ys...>) const
template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator/(Number<Y>, Sequence<Xs...>)
{
return make_uniform_sequence(Number<sizeof...(Ys)>{}, Number<X>{}) / Sequence<Ys...>{};
return Sequence<(Y / Xs)...>{};
}
template <index_t X, index_t... Ys>
__host__ __device__ constexpr auto operator%(Number<X>, Sequence<Ys...>) const
template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator%(Number<Y>, Sequence<Xs...>)
{
return make_uniform_sequence(Number<sizeof...(Ys)>{}, Number<X>{}) % Sequence<Ys...>{};
return Sequence<(Y % Xs)...>{};
}
template <index_t I, index_t... Is>
......@@ -268,7 +296,7 @@ __host__ __device__ constexpr auto sequence_pop_front(Sequence<I, Is...>)
#if 0
// TODO: for some reason, compiler cannot instantiate this template
template <index_t I, index_t... Is>
template <index_t... Is, index_t I>
__host__ __device__ constexpr auto sequence_pop_back(Sequence<Is..., I>)
{
static_assert(sizeof...(Is) > 0, "empty Sequence!");
......@@ -356,8 +384,6 @@ __host__ __device__ constexpr auto
}
#endif
#if 1
// TODO: fix these mess
template <class F, index_t... Xs>
__host__ __device__ constexpr auto transform_sequences(F f, Sequence<Xs...>)
{
......@@ -382,45 +408,6 @@ transform_sequences(F f, Sequence<Xs...>, Sequence<Ys...>, Sequence<Zs...>)
return Sequence<f(Xs, Ys, Zs)...>{};
}
#else
// TODO:: these doesn't compile
template <index_t NRemain>
struct transform_sequences_impl
{
template <class F, class Y, class... Xs>
__host__ __device__ constexpr auto operator()(F f, Y y, Xs... xs) const
{
static_assert(NRemain > 1, "wrong! should have NRemain > 1");
constexpr index_t N = f(Xs{}.Get(Number<0>{})...);
constexpr auto y_new = y.PushBack(Number<N>{});
return transform_sequences_impl<NRemain - 1>{}(f, y_new, xs.PopFront()...);
}
};
template <>
struct transform_sequences_impl<1>
{
template <class F, class Y, class... Xs>
__host__ __device__ constexpr auto operator()(F f, Y, Xs...) const
{
constexpr index_t N = f(Xs{}.Get(Number<0>{})...);
return Y{}.PushBack(Number<N>{});
}
};
template <class F, class X, class... Xs>
__host__ __device__ constexpr auto transform_sequences(F f, X x, Xs... xs)
{
constexpr index_t nSize = X::GetSize();
constexpr auto I0 = Number<0>{};
constexpr auto y0 = Sequence<f(X{}.Get(I0), Xs{}.Get(I0)...)>{};
return transform_sequences_impl<nSize - 1>{}(f, y0, x.PopFront(), xs.PopFront()...);
}
#endif
template <index_t... Is>
__host__ __device__ constexpr auto Sequence<Is...>::PopFront() const
......
......@@ -7,6 +7,7 @@
template <index_t BlockSize,
class BlockMatrixA,
class BlockMatrixB,
class ThreadMatrixC,
index_t MPerThreadSubC,
index_t NPerThreadSubC,
index_t MLevel0Cluster,
......@@ -45,7 +46,7 @@ struct BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2
N % (NPerThreadSubC * NLevel0Cluster * NLevel1Cluster) == 0,
"wrong! Cannot evenly divide work among\n");
static_assert(ThreadMatrixC::GetLengths() == GetThreadMatrixCLengths,
static_assert(ThreadMatrixC::GetLengths() == GetThreadMatrixCLengths(),
"wrong! ThreadMatrixC lengths is wrong");
auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id());
......
......@@ -132,16 +132,15 @@ struct BlockwiseTensorSliceReorderCopy_v3
{
constexpr auto thread_sub_tensor_lengths = SrcSubLengths{};
constexpr auto src_data_per_cluster_per_dims = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, SrcClusterLengths{});
constexpr auto src_data_per_cluster_per_dims =
thread_sub_tensor_lengths * SrcClusterLengths{};
constexpr auto repeat_lengths =
transform_sequences(mod_conv::integer_divide_ceiler<index_t>{},
SrcLengths{},
src_data_per_cluster_per_dims);
constexpr auto thread_tensor_lengths = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, repeat_lengths);
constexpr auto thread_tensor_lengths = thread_sub_tensor_lengths * repeat_lengths;
constexpr auto thread_tensor_desc = make_ConstantTensorDescriptor(thread_tensor_lengths);
......@@ -153,27 +152,24 @@ struct BlockwiseTensorSliceReorderCopy_v3
{
constexpr auto thread_sub_tensor_lengths = SrcSubLengths{};
constexpr auto src_data_per_cluster_per_dims = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, SrcClusterLengths{});
constexpr auto src_data_per_cluster_per_dims =
thread_sub_tensor_lengths * SrcClusterLengths{};
constexpr auto repeat_lengths =
transform_sequences(mod_conv::integer_divide_ceiler<index_t>{},
SrcLengths{},
src_data_per_cluster_per_dims);
constexpr auto thread_tensor_lengths = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, repeat_lengths);
constexpr auto thread_tensor_lengths = thread_sub_tensor_lengths * repeat_lengths;
constexpr auto thread_tensor_desc = make_ConstantTensorDescriptor(thread_tensor_lengths);
static_ford<decltype(repeat_lengths)>{}([&](auto repeat_multi_id_) {
constexpr auto repeat_multi_id = decltype(repeat_multi_id_){};
constexpr auto src_data_multi_id = transform_sequences(
std::multiplies<index_t>{}, repeat_multi_id, src_data_per_cluster_per_dims);
constexpr auto src_data_multi_id = repeat_multi_id * src_data_per_cluster_per_dims;
constexpr auto clipboard_data_multi_id = transform_sequences(
std::multiplies<index_t>{}, repeat_multi_id, thread_sub_tensor_lengths);
constexpr auto clipboard_data_multi_id = repeat_multi_id * thread_sub_tensor_lengths;
constexpr index_t src_offset = SrcDesc{}.Get1dIndex(src_data_multi_id);
constexpr index_t clipboard_offset =
......@@ -193,27 +189,24 @@ struct BlockwiseTensorSliceReorderCopy_v3
{
constexpr auto thread_sub_tensor_lengths = SrcSubLengths{};
constexpr auto src_data_per_cluster_per_dims = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, SrcClusterLengths{});
constexpr auto src_data_per_cluster_per_dims =
thread_sub_tensor_lengths * SrcClusterLengths{};
constexpr auto repeat_lengths =
transform_sequences(mod_conv::integer_divide_ceiler<index_t>{},
SrcLengths{},
src_data_per_cluster_per_dims);
constexpr auto thread_tensor_lengths = transform_sequences(
std::multiplies<index_t>{}, thread_sub_tensor_lengths, repeat_lengths);
constexpr auto thread_tensor_lengths = thread_sub_tensor_lengths * repeat_lengths;
constexpr auto thread_tensor_desc = make_ConstantTensorDescriptor(thread_tensor_lengths);
static_ford<decltype(repeat_lengths)>{}([&](auto repeat_multi_id_) {
constexpr auto repeat_multi_id = decltype(repeat_multi_id_){};
constexpr auto clipboard_data_multi_id = transform_sequences(
std::multiplies<index_t>{}, repeat_multi_id, thread_sub_tensor_lengths);
constexpr auto clipboard_data_multi_id = repeat_multi_id * thread_sub_tensor_lengths;
constexpr auto src_data_multi_id = transform_sequences(
std::multiplies<index_t>{}, repeat_multi_id, src_data_per_cluster_per_dims);
constexpr auto src_data_multi_id = repeat_multi_id * src_data_per_cluster_per_dims;
// reorder src_data_multi_id to get dst_data_multi_id
constexpr auto dst_data_multi_id = src_data_multi_id.ReorderGivenNew2Old(MapDst2Src{});
......
......@@ -37,7 +37,8 @@ struct static_if<true>
{
// This is a trick for compiler:
// Pass forwarder to lambda "f" as "auto" argument, and maks sure "f" will use it,
// this will make "f" a generic lambda, so that "f" won't be compiled until here
// this will make "f" a generic lambda, so that "f" won't be compiled until being
// instantiated here
f(forwarder{});
return Type{};
}
......@@ -65,7 +66,8 @@ struct static_if<false>
{
// This is a trick for compiler:
// Pass forwarder to lambda "f" as "auto" argument, and maks sure "f" will use it,
// this will make "f" a generic lambda, so that "f" won't be compiled until here
// this will make "f" a generic lambda, so that "f" won't be compiled until being
// instantiated here
f(forwarder{});
return Type{};
}
......@@ -105,7 +107,7 @@ struct static_for
static_assert((NEnd - NBegin) % Increment == 0,
"Wrong! should satisfy (NEnd - NBegin) % Increment == 0");
static_if<(NBegin < End)>{}(
static_if<(NBegin < NEnd)>{}(
[&](auto fwd) { static_for_impl<NBegin, NEnd - NBegin, fwd(Increment)>{}(f); });
}
};
......
......@@ -201,7 +201,7 @@ struct GridwiseConvolutionImplicitGemm_v1r3_lds_double_buffer_chwn_cyxk_khwn
// choose GEMM implementation here
const auto run_blockwise_batch_gemm = [&](auto... Xs) {
#if 0
#if 1
return blockwise_batch_gemm.Run(Xs...);
#elif 0
return blockwise_batch_gemm.Run_asm(Xs...);
......
......@@ -142,7 +142,7 @@ struct GridwiseConvolutionImplicitGemm_v1r3_lds_double_buffer_nchw_cyxk_khwn
decltype(map_chwn2nchw),
InBlockReorderMapThreadCluster2SrcCluster_CHNW2NCHW,
InBlockReorderDataPerRead_W,
InBlockReorderDataPerWrite_N>{};
InBlockReorderDataPerWrite_N>({0, 0, 0, 0}, {0, 0, 0, 0});
// blockwise wei copy
// format is [CPerBlock, KPerBlock]
......@@ -196,7 +196,7 @@ struct GridwiseConvolutionImplicitGemm_v1r3_lds_double_buffer_nchw_cyxk_khwn
// choose GEMM implementation here
const auto run_blockwise_batch_gemm = [&](auto... Xs) {
#if 0
#if 1
return blockwise_batch_gemm.Run(Xs...);
#elif 0
return blockwise_batch_gemm.Run_asm(Xs...);
......
......@@ -142,7 +142,7 @@ struct GridwiseConvolutionImplicitGemm_v1r3_lds_double_buffer_nchw_cyxk_nkhw
decltype(map_chwn2nchw),
InBlockReorderMapThreadCluster2SrcCluster_CHNW2NCHW,
InBlockReorderDataPerRead_W,
InBlockReorderDataPerWrite_N>{};
InBlockReorderDataPerWrite_N>({0, 0, 0, 0}, {0, 0, 0, 0});
// blockwise wei copy
// format is [CPerBlock, KPerBlock]
......@@ -196,7 +196,7 @@ struct GridwiseConvolutionImplicitGemm_v1r3_lds_double_buffer_nchw_cyxk_nkhw
// choose GEMM implementation here
const auto run_blockwise_batch_gemm = [&](auto... Xs) {
#if 0
#if 1
return blockwise_batch_gemm.Run(Xs...);
#elif 0
return blockwise_batch_gemm.Run_asm(Xs...);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment