Commit 211dae82 authored by ltqin's avatar ltqin
Browse files

Merge branch 'develop' into miopen_downstream_all

parents 5890e300 d5297aba
......@@ -21,8 +21,8 @@ template <typename... Wei,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t IYTildaValue,
index_t IXTildaValue,
typename IYTilda,
typename IXTilda,
index_t GemmK1Value>
__host__ __device__ constexpr auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
......@@ -33,8 +33,8 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<IYTildaValue>,
Number<IXTildaValue>,
IYTilda i_ytilda,
IXTilda i_xtilda,
Number<GemmK1Value>)
{
constexpr auto I0 = Number<0>{};
......@@ -43,8 +43,6 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
constexpr auto IYTilda = Number<IYTildaValue>{};
constexpr auto IXTilda = Number<IXTildaValue>{};
const auto N = in_n_hi_wi_c_grid_desc.GetLength(I0);
const auto C = in_n_hi_wi_c_grid_desc.GetLength(I3);
......@@ -98,8 +96,8 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
const auto WTildaSlice = IWTildaSliceEnd - IWTildaSliceBegin;
// GemmK is different for each GEMM
const auto YDotSlice = math::integer_divide_ceil(Y - IYTilda, YTilda);
const auto XDotSlice = math::integer_divide_ceil(X - IXTilda, XTilda);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilda, YTilda);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilda, XTilda);
const auto K1 = GemmK1;
const auto K0 = K / K1;
......@@ -183,8 +181,8 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(IYTilda),
make_freeze_transform(IXTilda),
make_freeze_transform(i_ytilda),
make_freeze_transform(i_xtilda),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
......@@ -241,9 +239,9 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
const auto in_n_htildaslice_wtildaslice_c_grid_desc = transform_tensor_descriptor(
in_n_ytilda_htilda_xtilda_wtilda_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(IYTilda),
make_freeze_transform(i_ytilda),
make_slice_transform(HTilda, IHTildaSliceBegin, HTildaSlice),
make_freeze_transform(IXTilda),
make_freeze_transform(i_xtilda),
make_slice_transform(WTilda, IWTildaSliceBegin, WTildaSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
......@@ -271,5 +269,84 @@ transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
in_gemmm_gemmn_grid_desc);
}
// A: out
// B: wei
// C: in
// Number of GEMMs = 1
// GemmM = N * Ho * Wo
// GemmN = C
// GemmK = K
template <typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
index_t GemmK1Value>
__host__ __device__ constexpr auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk_1x1(
const TensorDescriptor<Out...>& out_n_ho_wo_k_grid_desc,
const TensorDescriptor<Wei...>& /* wei_k_y_x_c_grid_desc */,
const TensorDescriptor<In...>& in_n_hi_wi_c_grid_desc,
const ConvStrides& conv_strides,
Number<GemmK1Value>)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_hi_wi_c_grid_desc.GetLength(I0);
const auto C = in_n_hi_wi_c_grid_desc.GetLength(I3);
const auto K = out_n_ho_wo_k_grid_desc.GetLength(I3);
const auto Ho = out_n_ho_wo_k_grid_desc.GetLength(I1);
const auto Wo = out_n_ho_wo_k_grid_desc.GetLength(I2);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto K1 = GemmK1;
const auto K0 = K / K1;
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)), make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<3>{}, Sequence<0, 2, 4>{}, Sequence<5>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template <typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t GemmK1Value,
typename GemmKBatchType,
typename GemmKPadType>
__host__ __device__ constexpr auto
transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw_pad(
const TensorDescriptor<Wei...>& wei_k_c_y_x_grid_desc,
const TensorDescriptor<In...>& in_n_c_hi_wi_grid_desc,
const TensorDescriptor<Out...>& out_n_k_ho_wo_grid_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<GemmK1Value>,
GemmKBatchType GemmKBatch,
GemmKPadType GemmKPad)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_c_hi_wi_grid_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_grid_desc.GetLength(I1);
const auto K = out_n_k_ho_wo_grid_desc.GetLength(I1);
const auto Hi = in_n_c_hi_wi_grid_desc.GetLength(I2);
const auto Wi = in_n_c_hi_wi_grid_desc.GetLength(I3);
const auto Ho = out_n_k_ho_wo_grid_desc.GetLength(I2);
const auto Wo = out_n_k_ho_wo_grid_desc.GetLength(I3);
const auto Y = wei_k_c_y_x_grid_desc.GetLength(I2);
const auto X = wei_k_c_y_x_grid_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
const auto GemmM = K;
const auto GemmN = C * Y * X;
const auto GemmKTotal = N * Ho * Wo;
const index_t GemmK0 = GemmKPad / (GemmKBatch * GemmK1);
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N, K, Ho * Wo)),
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(N, Ho * Wo))),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_c_hip_wip_grid_desc = transform_tensor_descriptor(
in_n_c_hi_wi_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_c_y_ho_x_wo_grid_desc = transform_tensor_descriptor(
in_n_c_hip_wip_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_c_y_ho_x_wo_grid_desc,
make_tuple(make_merge_transform(make_tuple(C, Y, X)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, C * Y * X)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(C * Y * X)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template <typename... Wei,
typename... In,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t GemmK1Value>
__host__ __device__ constexpr auto
transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad(
const TensorDescriptor<Wei...>& wei_k_c_y_x_grid_desc,
const TensorDescriptor<In...>& in_n_c_hi_wi_grid_desc,
const TensorDescriptor<Out...>& out_n_k_ho_wo_grid_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<GemmK1Value>)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_c_hi_wi_grid_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_grid_desc.GetLength(I1);
const auto K = out_n_k_ho_wo_grid_desc.GetLength(I1);
const auto Hi = in_n_c_hi_wi_grid_desc.GetLength(I2);
const auto Wi = in_n_c_hi_wi_grid_desc.GetLength(I3);
const auto Ho = out_n_k_ho_wo_grid_desc.GetLength(I2);
const auto Wo = out_n_k_ho_wo_grid_desc.GetLength(I3);
const auto Y = wei_k_c_y_x_grid_desc.GetLength(I2);
const auto X = wei_k_c_y_x_grid_desc.GetLength(I3);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
const auto GemmM = K;
const auto GemmN = C * Y * X;
const auto GemmK = N * Ho * Wo;
const auto GemmK0 = GemmK / GemmK1;
// weight tensor
const auto wei_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, C * Y * X)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(C * Y * X)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// input tensor
const auto in_n_c_hip_wip_grid_desc = transform_tensor_descriptor(
in_n_c_hi_wi_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_c_y_ho_x_wo_grid_desc = transform_tensor_descriptor(
in_n_c_hip_wip_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pass_through_transform(C),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
const auto in_gemmk_gemmn_grid_desc =
transform_tensor_descriptor(in_n_c_y_ho_x_wo_grid_desc,
make_tuple(make_merge_transform(make_tuple(C, Y, X)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(in_gemmk_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// output tensor
const auto out_gemmk_gemmm_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N, K, Ho * Wo)),
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(N, Ho * Wo))),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc =
transform_tensor_descriptor(out_gemmk_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template <typename... In,
typename... Wei,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t GemmK1Value,
typename GemmKBatchType,
typename GemmKPadType>
__host__ __device__ constexpr auto
transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk_pad(
const TensorDescriptor<In...>& in_n_hi_wi_c_grid_desc,
const TensorDescriptor<Wei...>& wei_k_y_x_c_grid_desc,
const TensorDescriptor<Out...>& out_n_ho_wo_k_grid_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<GemmK1Value>,
GemmKBatchType GemmKBatch,
GemmKPadType GemmKPad)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_hi_wi_c_grid_desc.GetLength(I0);
const auto C = in_n_hi_wi_c_grid_desc.GetLength(I3);
const auto K = out_n_ho_wo_k_grid_desc.GetLength(I3);
const auto Hi = in_n_hi_wi_c_grid_desc.GetLength(I1);
const auto Wi = in_n_hi_wi_c_grid_desc.GetLength(I2);
const auto Ho = out_n_ho_wo_k_grid_desc.GetLength(I1);
const auto Wo = out_n_ho_wo_k_grid_desc.GetLength(I2);
const auto Y = wei_k_y_x_c_grid_desc.GetLength(I1);
const auto X = wei_k_y_x_c_grid_desc.GetLength(I2);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
const auto GemmM = Y * X * C;
const auto GemmN = K;
const auto GemmKTotal = N * Ho * Wo;
const index_t GemmK0 = GemmKPad / (GemmKBatch * GemmK1);
// A: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmm_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: output tensor
const auto out_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto out_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(Y * X * C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
return make_tuple(in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template <typename... In,
typename... Wei,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t GemmK1Value>
__host__ __device__ constexpr auto
transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk_pad(
const TensorDescriptor<In...>& in_n_hi_wi_c_grid_desc,
const TensorDescriptor<Wei...>& wei_k_y_x_c_grid_desc,
const TensorDescriptor<Out...>& out_n_ho_wo_k_grid_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<GemmK1Value>)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_hi_wi_c_grid_desc.GetLength(I0);
const auto C = in_n_hi_wi_c_grid_desc.GetLength(I3);
const auto K = out_n_ho_wo_k_grid_desc.GetLength(I3);
const auto Hi = in_n_hi_wi_c_grid_desc.GetLength(I1);
const auto Wi = in_n_hi_wi_c_grid_desc.GetLength(I2);
const auto Ho = out_n_ho_wo_k_grid_desc.GetLength(I1);
const auto Wo = out_n_ho_wo_k_grid_desc.GetLength(I2);
const auto Y = wei_k_y_x_c_grid_desc.GetLength(I1);
const auto X = wei_k_y_x_c_grid_desc.GetLength(I2);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
const auto GemmM = Y * X * C;
const auto GemmN = K;
const auto GemmK = N * Ho * Wo;
const auto GemmK0 = GemmK / GemmK1;
// A: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmk_gemmm_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmk0_gemmm_gemmk1_grid_desc =
transform_tensor_descriptor(in_gemmk_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: output tensor
const auto out_gemmk_gemmn_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Ho * Wo), make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(out_gemmk_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C)),
make_tuple(make_pass_through_transform(K), make_pass_through_transform(Y * X * C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
out_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// A: out
// B: in
// C: wei
// GemmM = K
// GemmN = Y * X * C
// GemmKTotal = N * Ho * Wo
template <typename... In,
typename... Wei,
typename... Out,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
index_t GemmK1Value,
typename GemmKBatchType,
typename GemmKPadType>
__host__ __device__ constexpr auto
transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk_pad(
const TensorDescriptor<In...>& in_n_hi_wi_c_grid_desc,
const TensorDescriptor<Wei...>& wei_k_y_x_c_grid_desc,
const TensorDescriptor<Out...>& out_n_ho_wo_k_grid_desc,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Number<GemmK1Value>,
GemmKBatchType GemmKBatch,
GemmKPadType GemmKPad)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto GemmK1 = Number<GemmK1Value>{};
const auto N = in_n_hi_wi_c_grid_desc.GetLength(I0);
const auto C = in_n_hi_wi_c_grid_desc.GetLength(I3);
const auto K = out_n_ho_wo_k_grid_desc.GetLength(I3);
const auto Hi = in_n_hi_wi_c_grid_desc.GetLength(I1);
const auto Wi = in_n_hi_wi_c_grid_desc.GetLength(I2);
const auto Ho = out_n_ho_wo_k_grid_desc.GetLength(I1);
const auto Wo = out_n_ho_wo_k_grid_desc.GetLength(I2);
const auto Y = wei_k_y_x_c_grid_desc.GetLength(I1);
const auto X = wei_k_y_x_c_grid_desc.GetLength(I2);
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto InLeftPadH = in_left_pads[I0];
const auto InLeftPadW = in_left_pads[I1];
const auto InRightPadH = in_right_pads[I0];
const auto InRightPadW = in_right_pads[I1];
const auto GemmM = K;
const auto GemmN = Y * X * C;
const auto GemmKTotal = N * Ho * Wo;
const index_t GemmK0 = GemmKPad / (GemmKBatch * GemmK1);
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // namespace ck
#endif
......@@ -1327,6 +1327,129 @@ struct Merge_v2r2_magic_division
}
};
// Implementation of "Merge" transformation primitive that uses division and mod. It is supposed to
// be used for low_lengths that are known at compile time and are power of 2, otherwise performance
// will be very bad
template <typename LowLengths>
struct Merge_v3_division_mod
{
static constexpr index_t NDimLow = LowLengths::Size();
using LowerIndex = MultiIndex<NDimLow>;
using UpperIndex = MultiIndex<1>;
using LowLengthsScan =
decltype(container_reverse_exclusive_scan(LowLengths{}, math::multiplies{}, Number<1>{}));
using UpLengths =
decltype(make_tuple(container_reduce(LowLengths{}, math::multiplies{}, Number<1>{})));
LowLengths low_lengths_;
LowLengthsScan low_lengths_scan_;
UpLengths up_lengths_;
__host__ __device__ constexpr Merge_v3_division_mod() = default;
__host__ __device__ constexpr Merge_v3_division_mod(const LowLengths& low_lengths)
: low_lengths_{low_lengths},
low_lengths_scan_{
container_reverse_exclusive_scan(low_lengths, math::multiplies{}, Number<1>{})},
up_lengths_{make_tuple(container_reduce(low_lengths, math::multiplies{}, Number<1>{}))}
{
static_assert(LowerIndex::Size() == NDimLow, "wrong!");
}
__host__ __device__ static constexpr index_t GetNumOfLowerDimension() { return NDimLow; }
__host__ __device__ static constexpr index_t GetNumOfUpperDimension() { return 1; }
__host__ __device__ constexpr const auto& GetUpperLengths() const { return up_lengths_; }
template <typename LowIdx, typename UpIdx>
__host__ __device__ constexpr void CalculateLowerIndex(LowIdx& idx_low,
const UpIdx& idx_up) const
{
static_assert(LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
index_t tmp = idx_up[Number<0>{}];
// division and mod
static_for<0, NDimLow - 1, 1>{}([&](auto i) {
idx_low(i) = tmp / this->low_lengths_scan_[i];
tmp %= this->low_lengths_scan_[i];
});
idx_low(Number<NDimLow - 1>{}) = tmp;
}
template <typename LowIdxDiff,
typename UpIdxDiff,
typename LowIdx,
typename UpIdx,
index_t Hack>
__host__ __device__ void UpdateLowerIndex(LowIdxDiff& idx_diff_low,
const UpIdxDiff&,
LowIdx& idx_low,
const UpIdx& idx_up_new,
Number<Hack>) const
{
static_assert(LowIdxDiff::Size() == NDimLow && UpIdxDiff::Size() == 1 &&
LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
constexpr auto I0 = Number<0>{};
constexpr auto INm1 = Number<NDimLow - 1>{};
index_t tmp = idx_up_new[I0];
static_for<0, NDimLow - 1, 1>{}([&](auto i) {
const index_t tmp2 = idx_low[i];
idx_low(i) = tmp / this->low_lengths_scan_[i];
idx_diff_low(i) = idx_low[i] - tmp2;
tmp %= this->low_lengths_scan_[i];
});
const index_t tmp2 = idx_low[INm1];
idx_low(INm1) = tmp;
idx_diff_low(INm1) = idx_low[INm1] - tmp2;
}
__host__ __device__ static constexpr bool IsLinearTransform() { return false; }
__host__ __device__ static constexpr bool IsValidUpperIndexAlwaysMappedToValidLowerIndex()
{
return true;
}
__host__ __device__ static constexpr bool IsKnownAtCompileTime()
{
return is_known_at_compile_time<LowLengths>::value &&
is_known_at_compile_time<LowLengthsScan>::value &&
is_known_at_compile_time<UpLengths>::value;
}
template <typename UpIdx>
__host__ __device__ static constexpr bool
IsValidUpperIndexMappedToValidLowerIndex(const UpIdx& /* idx_up */)
{
return true;
}
__host__ __device__ void Print() const
{
printf("{");
printf("Merge_v3_direct_division_mod, ");
printf("low_lengths_ ");
print_multi_index(low_lengths_);
printf("low_lengths_scan_ ");
print_multi_index(low_lengths_scan_);
printf("up_lengths_ ");
print_multi_index(up_lengths_);
printf("}");
}
};
template <typename UpLengths, bool Use24BitIntegerCalculation>
struct UnMerge
{
......
......@@ -31,7 +31,7 @@ __host__ __device__ constexpr auto make_left_pad_transform(
return LeftPad<LowLength, LeftPadLength, SkipIsValidCheck>{low_length, left_pad};
}
template <typename LowLength, typename RightPadLength, bool SkipIsValidCheck>
template <typename LowLength, typename RightPadLength, bool SkipIsValidCheck = false>
__host__ __device__ constexpr auto make_right_pad_transform(
const LowLength& low_length,
const RightPadLength& right_pad,
......@@ -52,22 +52,36 @@ __host__ __device__ constexpr auto make_embed_transform(const UpLengths& up_leng
template <typename LowLengths>
__host__ __device__ constexpr auto make_merge_transform(const LowLengths& low_lengths)
{
#if !CK_EXPERIMENTAL_MERGE_USE_MAGIC_DIVISION
return Merge_v1_carry_check<LowLengths>{low_lengths};
#if CK_EXPERIMENTAL_MERGE_USE_MAGIC_DIVISION
return make_merge_transform_v2_magic_division(low_lengths);
#else
return make_merge_transform_v1_carry_check(low_lengths);
#endif
}
template <typename LowLengths>
__host__ __device__ constexpr auto
make_merge_transform_v1_carry_check(const LowLengths& low_lengths)
{
return Merge_v1_carry_check<LowLengths>{low_lengths};
}
template <typename LowLengths>
__host__ __device__ constexpr auto
make_merge_transform_v2_magic_division(const LowLengths& low_lengths)
{
#if 1
return Merge_v2_magic_division<LowLengths>{low_lengths};
#else
return Merge_v2r2_magic_division<LowLengths>{low_lengths};
#endif
#endif
}
template <typename LowLengths>
__host__ __device__ constexpr auto
make_merge_transform_v2_magic_division(const LowLengths& low_lengths)
make_merge_transform_v3_division_mod(const LowLengths& low_lengths)
{
return Merge_v2_magic_division<LowLengths>{low_lengths};
return Merge_v3_division_mod<LowLengths>{low_lengths};
}
template <typename UpLengths, bool Use24BitIntegerCalculation = false>
......
......@@ -189,8 +189,7 @@ struct TensorAdaptor
bool is_known = true;
static_for<0, Transforms::Size(), 1>{}([&](auto i) {
is_known &=
remove_cv_t<remove_reference_t<decltype(Transforms{}[i])>>::IsKnownAtCompileTime();
is_known &= remove_cvref_t<decltype(Transforms{}[i])>::IsKnownAtCompileTime();
});
return is_known && is_known_at_compile_time<ElementSize>::value;
......
......@@ -185,8 +185,7 @@ struct TensorDescriptor
bool is_known = true;
static_for<0, Transforms::Size(), 1>{}([&](auto i) {
is_known &=
remove_cv_t<remove_reference_t<decltype(Transforms{}[i])>>::IsKnownAtCompileTime();
is_known &= remove_cvref_t<decltype(Transforms{}[i])>::IsKnownAtCompileTime();
});
return is_known && is_known_at_compile_time<ElementSize>::value &&
......@@ -587,11 +586,11 @@ __host__ __device__ constexpr bool coordinate_has_valid_offset(const TensorDesc&
template <typename TensorDesc>
using TensorCoordinate_t = decltype(make_tensor_coordinate(
TensorDesc{}, MultiIndex<remove_cv_t<remove_reference_t<TensorDesc>>::GetNumOfDimension()>{}));
TensorDesc{}, MultiIndex<remove_cvref_t<TensorDesc>::GetNumOfDimension()>{}));
template <typename TensorDesc>
using TensorCoordinateStep_t = decltype(make_tensor_coordinate_step(
TensorDesc{}, MultiIndex<remove_cv_t<remove_reference_t<TensorDesc>>::GetNumOfDimension()>{}));
TensorDesc{}, MultiIndex<remove_cvref_t<TensorDesc>::GetNumOfDimension()>{}));
} // namespace ck
#endif
......@@ -110,12 +110,10 @@ struct BlockwiseGemmDlops_km_kn_m0m1n0n1_v3
const BThreadBuffer& b_thread_buf,
CThreadBuffer& c_thread_buf) const
{
static_assert(is_same<remove_cv_t<remove_reference_t<typename ABlockBuffer::type>>,
remove_cv_t<remove_reference_t<FloatA>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename BThreadBuffer::type>>,
remove_cv_t<remove_reference_t<FloatB>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename CThreadBuffer::type>>,
remove_cv_t<remove_reference_t<FloatC>>>::value &&
static_assert(
is_same<remove_cvref_t<typename ABlockBuffer::type>, remove_cvref_t<FloatA>>::value &&
is_same<remove_cvref_t<typename BThreadBuffer::type>, remove_cvref_t<FloatB>>::value &&
is_same<remove_cvref_t<typename CThreadBuffer::type>, remove_cvref_t<FloatC>>::value &&
"wrong! inconsistent type");
constexpr auto I0 = Number<0>{};
......
......@@ -4,21 +4,22 @@
#include "common_header.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "xdlops_gemm.hpp"
#include "tensor_adaptor.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
class ABlockDesc,
class BBlockDesc,
index_t MPerWave,
index_t NPerWave,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t K1>
struct BlockwiseGemmXdlops_km_kn_m0m1m2n_v1
struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
{
using CIndex = MultiIndex<2>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
......@@ -26,329 +27,169 @@ struct BlockwiseGemmXdlops_km_kn_m0m1m2n_v1
static constexpr index_t WaveSize = 64;
static constexpr index_t M0 = ABlockDesc{}.GetLength(I1);
static constexpr index_t M1 = ABlockDesc{}.GetLength(I2);
static constexpr index_t N0 = BBlockDesc{}.GetLength(I1);
static constexpr index_t N1 = BBlockDesc{}.GetLength(I2);
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerWave, NPerWave, K1>{};
static constexpr index_t K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t MWaves = M1 / MPerWave;
static constexpr index_t NWaves = N1 / NPerWave;
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, K1>{};
static constexpr index_t MRepeat = M0;
static constexpr index_t NRepeat = N0;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
__device__ constexpr auto GetCLayout() const { return xdlops_gemm.GetCLayout(); }
StaticBufferV2<AddressSpaceEnum_t::Vgpr, vector_type<FloatAcc, 16>, MRepeat * NRepeat, true>
c_thread_buf_;
__device__ constexpr auto GetNumBlks() const { return xdlops_gemm.GetCLayout().GetNumBlks(); }
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ constexpr auto GetBlkSize() const { return xdlops_gemm.GetCLayout().GetBlkSize(); }
__device__ static auto CalculateAThreadOriginDataIndex()
__device__ static auto GetWaveIdx()
{
const index_t thread_id = get_thread_local_1d_id();
const index_t waveId = thread_id / WaveSize;
const index_t laneId = thread_id % WaveSize;
const index_t waveId_m = waveId / NWaves;
if constexpr(xdlops_gemm.IsKReduction)
{
const index_t m_offset = waveId_m * MPerWave + xdlops_gemm.GetBlkTd(laneId);
const index_t k_offset = xdlops_gemm.GetBlkId(laneId);
return make_tuple(k_offset, 0, m_offset, 0);
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
else
__device__ static auto CalculateAThreadOriginDataIndex()
{
const index_t m_offset = waveId_m * MPerWave + laneId;
const index_t k_offset = 0;
return make_tuple(k_offset, 0, m_offset, 0);
}
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(xdlops_a_idx[I0], 0, waveId_m, xdlops_a_idx[I1], 0);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const index_t thread_id = get_thread_local_1d_id();
const index_t waveId = thread_id / WaveSize;
const index_t laneId = thread_id % WaveSize;
const index_t waveId_n = waveId % NWaves;
const auto wave_idx = GetWaveIdx();
if constexpr(xdlops_gemm.IsKReduction)
{
const index_t n_offset = waveId_n * NPerWave + xdlops_gemm.GetBlkTd(laneId);
const index_t k_offset = xdlops_gemm.GetBlkId(laneId);
return make_tuple(k_offset, 0, n_offset, 0);
}
else
{
const index_t n_offset = waveId_n * NPerWave + laneId;
const index_t k_offset = 0;
return make_tuple(k_offset, 0, n_offset, 0);
}
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(xdlops_b_idx[I0], 0, waveId_n, xdlops_b_idx[I1], 0);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static CIndex
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const index_t waveId = get_thread_local_1d_id() / WaveSize;
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
const auto thread_mtx_on_blk = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t waveId_m = waveId / NWaves;
const index_t waveId_n = waveId % NWaves;
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t m_offset = m0 * M1 + waveId_m * MPerWave + thread_mtx_on_blk[I0];
const index_t n_offset = n0 * N1 + waveId_n * NPerWave + thread_mtx_on_blk[I1];
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return CIndex{m_offset, n_offset};
return make_tuple(c_thread_m, c_thread_n);
}
__device__ BlockwiseGemmXdlops_km_kn_m0m1m2n_v1()
: a_thread_copy_{CalculateAThreadOriginDataIndex()},
b_thread_copy_{CalculateBThreadOriginDataIndex()}
__host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1()
{
static_assert(ABlockDesc::IsKnownAtCompileTime() && BBlockDesc::IsKnownAtCompileTime(),
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ABlockDesc{}.GetLength(I0) == BBlockDesc{}.GetLength(I0),
"wrong! K dimension not consistent");
static_assert(AK0MK1BlockDesc{}.GetLength(I0) == BK0NK1BlockDesc{}.GetLength(I0),
"wrong! K0 dimension not consistent");
static_assert(ABlockDesc{}.GetLength(I3) == BBlockDesc{}.GetLength(I3),
static_assert(AK0MK1BlockDesc{}.GetLength(I2) == BK0NK1BlockDesc{}.GetLength(I2),
"wrong! K1 dimension not consistent");
static_assert(BlockSize == MWaves * NWaves * WaveSize,
"BlockSize != MWaves * NWaves * WaveSize\n");
static_assert(K1 == BBlockDesc{}.GetLength(I3), "K1 is wrong!");
constexpr index_t KPerBlock = ABlockDesc{}.GetLength(I0);
static_assert(KPerBlock % xdlops_gemm.KPerXdlops == 0, "KPerBlock is wrong!");
static_assert(K1 % xdlops_gemm.mfma_type.k_base == 0, "K1 is wrong!");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
__host__ __device__ static constexpr auto GetCM0N0M1N1M2M3M4N2ThreadDescriptor()
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum_t::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum_t::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
constexpr index_t KPerBlock = ABlockDesc{}.GetLength(I0);
vector_type<FloatAB, a_thread_desc_.GetElementSpaceSize()> a_thread_vec;
vector_type<FloatAB, b_thread_desc_.GetElementSpaceSize()> b_thread_vec;
static_for<0, KPerBlock, xdlops_gemm.KPerXdlops>{}([&](auto k) {
// read A
a_thread_copy_.Run(ABlockDesc{},
make_tuple(k, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
// read B
b_thread_copy_.Run(BBlockDesc{},
make_tuple(k, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.mfma_type.k_base>::type;
static_for<0, a_thread_desc_.GetElementSpaceSize(), 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(Number<i>{}) = a_thread_buf[Number<i>{}];
});
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
static_for<0, b_thread_desc_.GetElementSpaceSize(), 1>{}([&](auto i) {
b_thread_vec.template AsType<FloatAB>()(Number<i>{}) = b_thread_buf[Number<i>{}];
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
m0,
n0>(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf);
});
});
});
return make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, I1, M0, M1, M2, N));
}
private:
// A[K, M]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<MRepeat>{}, I1, Number<K1>{}));
// B[K, N]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<NRepeat>{}, I1, Number<K1>{}));
static constexpr auto c_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{}, Number<NRepeat>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
ABlockDesc,
decltype(a_thread_desc_),
Sequence<1, MRepeat, 1, K1>,
Sequence<0, 1, 2, 3>,
3,
K1,
1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
BBlockDesc,
decltype(b_thread_desc_),
Sequence<1, NRepeat, 1, K1>,
Sequence<0, 1, 2, 3>,
3,
K1,
1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
template <index_t BlockSize,
typename FloatAB,
class ABlockDesc,
class BBlockDesc,
index_t MPerWave,
index_t NPerWave,
index_t K1>
struct BlockwiseGemmXdlops_km_kn_m0m1m2n_v1_2x2pipeline
{
using CIndex = MultiIndex<2>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto xdlops_gemm = XdlopsGemm<float, MPerWave, NPerWave, K1>{};
static constexpr index_t WaveSize = 64;
static constexpr index_t M0 = ABlockDesc{}.GetLength(I1);
static constexpr index_t M1 = ABlockDesc{}.GetLength(I2);
static constexpr index_t N0 = BBlockDesc{}.GetLength(I1);
static constexpr index_t N1 = BBlockDesc{}.GetLength(I2);
static constexpr index_t MWaves = M1 / MPerWave;
static constexpr index_t NWaves = N1 / NPerWave;
static constexpr index_t MRepeat = M0;
static constexpr index_t NRepeat = N0;
__device__ constexpr auto GetCLayout() const { return xdlops_gemm.GetCLayout(); }
__device__ constexpr auto GetNumBlks() const { return xdlops_gemm.GetCLayout().GetNumBlks(); }
__device__ constexpr auto GetBlkSize() const { return xdlops_gemm.GetCLayout().GetBlkSize(); }
__device__ static auto CalculateAThreadOriginDataIndex()
__host__ __device__ static constexpr auto GetCM0N0M1N1M2M3M4N2BlockDescriptor()
{
const index_t thread_id = get_thread_local_1d_id();
const index_t waveId = thread_id / WaveSize;
const index_t laneId = thread_id % WaveSize;
const index_t waveId_m = waveId / NWaves;
if constexpr(xdlops_gemm.IsKReduction)
{
const index_t m_offset = waveId_m * MPerWave + xdlops_gemm.GetBlkTd(laneId);
const index_t k_offset = xdlops_gemm.GetBlkId(laneId);
return make_tuple(k_offset, 0, m_offset, 0);
}
else
{
const index_t m_offset = waveId_m * MPerWave + laneId;
const index_t k_offset = 0;
return make_tuple(k_offset, 0, m_offset, 0);
}
constexpr auto c_m0_n0_m1_n1_m2_n2_block_desc =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCM0N0M1N1M2M3M4N2Descriptor(c_m0_n0_m1_n1_m2_n2_block_desc);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const index_t thread_id = get_thread_local_1d_id();
const index_t waveId = thread_id / WaveSize;
const index_t laneId = thread_id % WaveSize;
const index_t waveId_n = waveId % NWaves;
if constexpr(xdlops_gemm.IsKReduction)
{
const index_t n_offset = waveId_n * NPerWave + xdlops_gemm.GetBlkTd(laneId);
const index_t k_offset = xdlops_gemm.GetBlkId(laneId);
return make_tuple(k_offset, 0, n_offset, 0);
}
else
template <typename CMNGridDesc>
__host__ __device__ static constexpr auto
MakeCM0N0M1N1M2M3M4N2GridDescriptor(const CMNGridDesc& c_m_n_grid_desc)
{
const index_t n_offset = waveId_n * NPerWave + laneId;
const index_t k_offset = 0;
return make_tuple(k_offset, 0, n_offset, 0);
}
const auto c_m0_n0_m1_n1_m2_n2_grid_desc = transform_tensor_descriptor(
c_m_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCM0N0M1N1M2M3M4N2Descriptor(c_m0_n0_m1_n1_m2_n2_grid_desc);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static CIndex
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
__host__ __device__ static constexpr auto MakeAK0M0M1M2K1BlockDescriptor()
{
const index_t waveId = get_thread_local_1d_id() / WaveSize;
const auto thread_mtx_on_blk = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
const index_t waveId_m = waveId / NWaves;
const index_t waveId_n = waveId % NWaves;
const index_t m_offset = m0 * M1 + waveId_m * MPerWave + thread_mtx_on_blk[I0];
const index_t n_offset = n0 * N1 + waveId_n * NPerWave + thread_mtx_on_blk[I1];
return CIndex{m_offset, n_offset};
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerXDL>{})),
make_pass_through_transform(Number<K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
__device__ BlockwiseGemmXdlops_km_kn_m0m1m2n_v1_2x2pipeline()
: a_thread_copy_{CalculateAThreadOriginDataIndex()},
b_thread_copy_{CalculateBThreadOriginDataIndex()}
__host__ __device__ static constexpr auto MakeBK0N0N1N2K1BlockDescriptor()
{
static_assert(ABlockDesc::IsKnownAtCompileTime() && BBlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ABlockDesc{}.GetLength(I0) == BBlockDesc{}.GetLength(I0),
"wrong! K dimension not consistent");
static_assert(ABlockDesc{}.GetLength(I3) == BBlockDesc{}.GetLength(I3),
"wrong! K1 dimension not consistent");
static_assert(BlockSize == MWaves * NWaves * WaveSize,
"BlockSize != MWaves * NWaves * WaveSize\n");
static_assert(K1 == BBlockDesc{}.GetLength(I3), "K1 is wrong!");
constexpr index_t KPerBlock = ABlockDesc{}.GetLength(I0);
static_assert(KPerBlock % xdlops_gemm.KPerXdlops == 0, "KPerBlock is wrong!");
static_assert(K1 % xdlops_gemm.mfma_type.k_base == 0, "K1 is wrong!");
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerXDL>{})),
make_pass_through_transform(Number<K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
static constexpr auto a_k0_m0_m1_m2_k1_block_desc = MakeAK0M0M1M2K1BlockDescriptor();
static constexpr auto b_k0_n0_n1_n2_k1_block_desc = MakeBK0N0N1N2K1BlockDescriptor();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
......@@ -359,165 +200,82 @@ struct BlockwiseGemmXdlops_km_kn_m0m1m2n_v1_2x2pipeline
auto b_thread_buf = make_static_buffer<AddressSpaceEnum_t::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
constexpr index_t KPerBlock = ABlockDesc{}.GetLength(I0);
// read A_sub_0
a_thread_copy_.Run(ABlockDesc{},
make_tuple(I0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
// read B_sub_0
b_thread_copy_.Run(BBlockDesc{},
make_tuple(I0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
// read B_sub_1
b_thread_copy_.Run(BBlockDesc{},
make_tuple(I0, I1, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I1, I0, I0),
b_thread_buf);
// read A_sub_1
a_thread_copy_.Run(ABlockDesc{},
make_tuple(I0, I1, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I1, I0, I0),
a_thread_buf);
// C_sub_00 += transpose(A_sub_0) * B_sub_0
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
0,
0>(a_thread_buf, b_thread_buf, c_thread_buf);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
0,
1>(a_thread_buf, b_thread_buf, c_thread_buf);
static_for<xdlops_gemm.KPerXdlops, KPerBlock, xdlops_gemm.KPerXdlops>{}([&](auto k) {
// read A_sub_0
a_thread_copy_.Run(ABlockDesc{},
make_tuple(k, I0, I0, I0),
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_k0_m0_m1_m2_k1_block_desc,
make_tuple(I0, m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
make_tuple(I0, I0, I0, I0, I0),
a_thread_buf);
// C_sub_10 += transpose(A_sub_1) * B_sub_0
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
1,
0>(a_thread_buf, b_thread_buf, c_thread_buf);
// read B_sub_0
b_thread_copy_.Run(BBlockDesc{},
make_tuple(k, I0, I0, I0),
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_k0_n0_n1_n2_k1_block_desc,
make_tuple(I0, n0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
make_tuple(I0, I0, I0, I0, I0),
b_thread_buf);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
1,
1>(a_thread_buf, b_thread_buf, c_thread_buf);
static_for<0, K0, xdlops_gemm.K0PerXdlops>{}([&](auto k0) {
vector_type<FloatAB, K1> a_thread_vec;
vector_type<FloatAB, K1> b_thread_vec;
// read B_sub_1
b_thread_copy_.Run(BBlockDesc{},
make_tuple(k, I1, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I1, I0, I0),
b_thread_buf);
static_for<0, K1, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(k0, 0, 0, 0, i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(k0, 0, 0, 0, i))>{}];
});
// read A_sub_1
a_thread_copy_.Run(ABlockDesc{},
make_tuple(k, I1, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I1, I0, I0),
a_thread_buf);
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
// C_sub_00 += transpose(A_sub_0) * B_sub_0
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
0,
0>(a_thread_buf, b_thread_buf, c_thread_buf);
constexpr index_t c_offset = c_thread_desc_.CalculateOffset(make_tuple(m0, n0));
// C_sub_01 += transpose(A_sub_0) * B_sub_1
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
0,
1>(a_thread_buf, b_thread_buf, c_thread_buf);
xdlops_gemm.template Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVector(Number<c_offset>{}));
});
});
});
// C_sub_10 += transpose(A_sub_1) * B_sub_0
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
1,
0>(a_thread_buf, b_thread_buf, c_thread_buf);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
xdlops_gemm.template Run<decltype(a_thread_desc_),
decltype(b_thread_desc_),
decltype(c_thread_desc_),
1,
1>(a_thread_buf, b_thread_buf, c_thread_buf);
}
private:
// A[K, M]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<MRepeat>{}, I1, Number<K1>{}));
make_naive_tensor_descriptor_packed(make_tuple(Number<K0>{}, I1, I1, I1, Number<K1>{}));
// B[K, N]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<NRepeat>{}, I1, Number<K1>{}));
make_naive_tensor_descriptor_packed(make_tuple(Number<K0>{}, I1, I1, I1, Number<K1>{}));
static constexpr auto c_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{}, Number<NRepeat>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
ABlockDesc,
decltype(a_k0_m0_m1_m2_k1_block_desc),
decltype(a_thread_desc_),
Sequence<1, 1, 1, K1>,
Sequence<0, 1, 2, 3>,
3,
1, // K1,
1>;
Sequence<K0, 1, 1, 1, K1>,
Sequence<0, 1, 2, 3, 4>,
4,
K1,
K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
BBlockDesc,
decltype(b_k0_n0_n1_n2_k1_block_desc),
decltype(b_thread_desc_),
Sequence<1, 1, 1, K1>,
Sequence<0, 1, 2, 3>,
3,
1, // K1,
1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
Sequence<K0, 1, 1, 1, K1>,
Sequence<0, 1, 2, 3, 4>,
4,
K1,
K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
};
} // namespace ck
......
......@@ -18,8 +18,9 @@ template <typename GridwiseGemm,
typename FloatC,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CM0M1M2NGridDesc,
typename CBlockClusterAdaptor>
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
......@@ -29,7 +30,7 @@ __global__ void
FloatC* __restrict__ p_c_grid,
const AK0MK1GridDesc a_k0_m_k1_grid_desc,
const BK0NK1GridDesc b_k0_n_k1_grid_desc,
const CM0M1M2NGridDesc c_m0_m1_m2_n_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
......@@ -37,13 +38,13 @@ __global__ void
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_m1_m2_n_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
......@@ -52,7 +53,7 @@ template <typename GridwiseGemm,
typename FloatC,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CM0M1M2NGridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
......@@ -63,7 +64,7 @@ __global__ void
FloatC* __restrict__ p_c_grid,
const void CONSTANT* p_a_k0_m_k1_grid_desc,
const void CONSTANT* p_b_k0_n_k1_grid_desc,
const void CONSTANT* p_c_m0_m1_m2_n_grid_desc,
const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const void CONSTANT* p_c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
......@@ -73,20 +74,21 @@ __global__ void
cast_pointer_to_generic_address_space(p_a_k0_m_k1_grid_desc));
const auto b_k0_n_k1_grid_desc = *reinterpret_cast<const BK0NK1GridDesc*>(
cast_pointer_to_generic_address_space(p_b_k0_n_k1_grid_desc));
const auto c_m0_m1_m2_n_grid_desc = *reinterpret_cast<const CM0M1M2NGridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_m1_m2_n_grid_desc));
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
*reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc));
const auto c_block_cluster_adaptor = *reinterpret_cast<const CBlockClusterAdaptor*>(
cast_pointer_to_generic_address_space(p_c_block_cluster_adaptor));
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_m1_m2_n_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#endif
......@@ -101,9 +103,9 @@ template <index_t BlockSize,
typename CMNGridDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerWave,
index_t NPerWave,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
......@@ -131,13 +133,19 @@ template <index_t BlockSize,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks,
bool CAccessOrderMRepeatNRepeat>
bool CAccessOrderMRepeatNRepeat,
bool ABlockLdsExtraM,
bool BBlockLdsExtraN>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
......@@ -147,14 +155,34 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
......@@ -166,27 +194,45 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
return (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ __device__ static constexpr bool
CheckValidity(const AK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc)
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
{
// TODO: turn on this
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
const auto M = a_k0_m_k1_grid_desc.GetLength(I1);
const auto N = b_k0_n_k1_grid_desc.GetLength(I1);
const auto K0 = a_k0_m_k1_grid_desc.GetLength(I0);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
if(!(M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_k0_n_k1_grid_desc.GetLength(I0) && K1 == a_k0_m_k1_grid_desc.GetLength(I2) &&
K1 == b_k0_n_k1_grid_desc.GetLength(I2)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
return (M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_k0_n_k1_grid_desc.GetLength(I0) &&
K1 == a_k0_m_k1_grid_desc.GetLength(I2) &&
K1 == b_k0_n_k1_grid_desc.GetLength(I2)) &&
(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % KPerBlock == 0) &&
(MPerBlock % MPerWave == 0 && NPerBlock % NPerWave == 0);
if(!(M0 % M01 == 0 && N0 % N01 == 0))
return false;
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
......@@ -200,34 +246,66 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
return grid_size;
}
__host__ __device__ static constexpr auto
MakeCM0M1M2NGridDescriptor(const CMNGridDesc& c_m_n_grid_desc)
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerWave, NPerWave, K1>{};
const bool has_main_k0_block_loop = (K0 / K0PerBlock) > 1;
constexpr auto CLayout = xdlops_gemm.GetCLayout();
return has_main_k0_block_loop;
}
constexpr auto M0 = Number<CLayout.M1()>{};
constexpr auto M1 = Number<CLayout.N1()>{};
constexpr auto M2 = Number<CLayout.M0()>{};
__host__ __device__ static constexpr auto
MakeCM0N0M1N1M2M3M4N2GridDescriptor(const CMNGridDesc& c_m_n_grid_desc)
{
constexpr auto max_lds_align = K1;
constexpr index_t MWaves = MPerBlock / (MPerWave * MRepeat);
constexpr index_t NWaves = NPerBlock / (NPerWave * NRepeat);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
constexpr auto N1 = Number<CLayout.N0()>{};
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
const auto c_m0_m1_m2_n_grid_desc = transform_tensor_descriptor(
c_m_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, M0, M1, M2)),
make_unmerge_transform(make_tuple(NRepeat, NWaves, N1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4, 5, 6>{}, Sequence<1, 3, 7>{}));
using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>;
return c_m0_m1_m2_n_grid_desc;
return BlockwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_m_n_grid_desc);
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeCBlockClusterAdaptor(const CMNGridDesc& c_m_n_grid_desc)
MakeCBlockClusterAdaptor(const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
......@@ -238,31 +316,40 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
const auto M0 = M / M1;
const auto N0 = N / N1;
#if 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(M0, N0))),
make_tuple(Sequence<0, 1>{}),
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto c_blockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
#elif 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(N0, M0))),
make_tuple(Sequence<1, 0>{}),
make_tuple(Sequence<0>{}));
#endif
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_m0_n0_block_cluster_adaptor;
}
using CM0M1M2NGridDesc = decltype(MakeCM0M1M2NGridDescriptor(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}));
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1));
template <bool HasMainKBlockLoop>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CM0M1M2NGridDesc& c_m0_m1_m2_n_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
......@@ -270,7 +357,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_b_grid, b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c_grid, c_m0_m1_m2_n_grid_desc.GetElementSpaceSize());
p_c_grid, c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetElementSpaceSize());
const auto K0 = a_k0_m_k1_grid_desc.GetLength(I0);
......@@ -289,20 +376,40 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, MPerBlock, K1>,
Sequence<K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
......@@ -328,7 +435,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, NPerBlock, K1>,
Sequence<K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
......@@ -352,59 +459,25 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlock, NPerBlock] is in LDS
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
static_assert(MPerBlock % (MPerWave * MRepeat) == 0 &&
NPerBlock % (NPerWave * NRepeat) == 0,
"wrong!");
constexpr auto a_k0_m0_m1_k1_block_desc = transform_tensor_descriptor(
a_k0_m_k1_block_desc,
make_tuple(make_pass_through_transform(Number<KPerBlock>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MPerBlock / MRepeat>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
constexpr auto b_k0_n0_n1_k1_block_desc = transform_tensor_descriptor(
b_k0_n_k1_block_desc,
make_tuple(make_pass_through_transform(Number<KPerBlock>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NPerBlock / NRepeat>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto blockwise_gemm =
BlockwiseGemmXdlops_km_kn_m0m1m2n_v1<BlockSize,
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
decltype(a_k0_m0_m1_k1_block_desc),
decltype(b_k0_n0_n1_k1_block_desc),
MPerWave,
NPerWave,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>{};
constexpr auto CLayout = blockwise_gemm.GetCLayout();
constexpr index_t BlkSize = CLayout.GetBlkSize();
constexpr index_t NumBlks = CLayout.GetNumBlks();
constexpr index_t NumXdlops = CLayout.GetNumXdlops();
static_assert(NumBlks == 1 && NumXdlops == 1, "K Reduction Mfma only");
constexpr auto c_mr_nr_blk_desc =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{}, Number<NRepeat>{}));
StaticBuffer<AddressSpaceEnum_t::Vgpr,
vector_type<FloatAcc, BlkSize>,
c_mr_nr_blk_desc.GetElementSpaceSize(),
true>
c_thread_buf;
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
......@@ -413,8 +486,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k0_m_k1_grid_step_hacks = AGridStepHacks{};
......@@ -440,8 +513,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
}
// main body
index_t k_block_data_begin = 0;
index_t k0_block_data_begin = 0;
if constexpr(HasMainKBlockLoop)
{
do
{
a_blockwise_copy.MoveSrcSliceWindow(a_k0_m_k1_grid_desc,
......@@ -451,11 +526,13 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
b_block_slice_copy_step,
b_k0_n_k1_grid_move_slice_window_step_hack);
a_blockwise_copy.RunRead(a_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
a_blockwise_copy.RunRead(
a_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
block_sync_lds();
b_blockwise_copy.RunRead(b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
b_blockwise_copy.RunRead(
b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
......@@ -464,8 +541,9 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
a_blockwise_copy.RunWrite(a_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_k0_n_k1_block_desc, b_block_buf);
k_block_data_begin += KPerBlock;
} while(k_block_data_begin < (K0 - KPerBlock));
k0_block_data_begin += K0PerBlock;
} while(k0_block_data_begin < (K0 - K0PerBlock));
}
// tail
{
......@@ -474,41 +552,23 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
#if 0
// output: register to global memory
{
constexpr index_t M0 = CLayout.M1();
constexpr index_t M1 = CLayout.N1();
constexpr index_t M2 = CLayout.M0();
constexpr index_t N0 = CLayout.N1();
constexpr index_t N1 = CLayout.N0();
constexpr auto c_m0_m1_m2_n_thread_desc =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<1>{},
Number<1>{},
Number<M0>{},
Number<1>{},
Number<M2>{},
Number<1>{}));
StaticBuffer<AddressSpaceEnum_t::Vgpr, FloatC, c_m0_m1_m2_n_thread_desc.GetElementSpaceSize(), true>
c_blk_buf_;
static_for<0, MRepeat, 1>{}([&](auto mr_i) {
static_for<0, NRepeat, 1>{}([&](auto nr_i) {
constexpr auto blk_off =
c_mr_nr_blk_desc.CalculateOffset(make_tuple(mr_i, nr_i));
static_for<0, BlkSize, 1>{}([&](auto j) {
c_blk_buf_(Number<blk_off * BlkSize + j>{}) =
c_thread_buf[Number<blk_off>{}]
.template AsType<FloatAcc>()[Number<j>{}];
});
});
});
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2BlockDescriptor();
constexpr auto M0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I0);
constexpr auto N0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I1);
constexpr auto M1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I2);
constexpr auto N1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I3);
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
constexpr auto N2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I7);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
make_naive_tensor_descriptor_packed(make_tuple(
Number<M0>{}, Number<N0>{}, I1, I1, Number<M2>{}, I1, Number<M4>{}, I1));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
......@@ -521,278 +581,58 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
const index_t n_thread_data_on_grid =
n_block_data_idx_on_grid + c_thread_mtx_on_block[I1];
constexpr auto c_m0_m1_m2_n_grid_tensor_step_hacks = CGridStepHacks{};
constexpr index_t MWaves = MPerBlock / (MPerWave * MRepeat);
constexpr index_t NWaves = NPerBlock / (NPerWave * NRepeat);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks = CGridStepHacks{};
ThreadwiseTensorSliceTransfer_v1r3<
FloatC,
FloatC,
decltype(c_m0_m1_m2_n_thread_desc),
decltype(c_m0_m1_m2_n_grid_desc),
Sequence<MRepeat, NRepeat, 1, 1, M0, 1, M2, 1>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_m1_m2_n_grid_desc,
make_multi_index(m_thread_data_on_grid / (M2 * M1 * M0 * MWaves),
n_thread_data_on_grid / (N1 * NWaves),
m_thread_data_on_grid % (M2 * M1 * M0 * MWaves) / (M2 * M1 * M0),
n_thread_data_on_grid % (N1 * NWaves) / N1,
m_thread_data_on_grid % (M2 * M1 * M0) / (M2 * M1),
m_thread_data_on_grid % (M2 * M1) / M2,
m_thread_data_on_grid % M2,
n_thread_data_on_grid % N1)}
.Run(c_m0_m1_m2_n_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_blk_buf_,
c_m0_m1_m2_n_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
}
#else
{
constexpr index_t M0 = CLayout.M1();
constexpr index_t M1 = CLayout.N1();
constexpr index_t M2 = CLayout.M0();
constexpr auto c_m0_m1_m2_n_thread_desc = make_naive_tensor_descriptor_packed(
make_tuple(I1, I1, I1, I1, Number<M0>{}, Number<1>{}, Number<M2>{}, Number<1>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const auto m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const index_t m_thread_data_on_grid =
m_block_data_idx_on_grid + c_thread_mtx_on_block[I0];
const auto m_thread_data_on_grid_idx =
m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_grid));
const index_t n_thread_data_on_grid =
n_block_data_idx_on_grid + c_thread_mtx_on_block[I1];
const auto n_thread_data_on_grid_to_n0_n1_n2_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
constexpr auto c_m0_m1_m2_n_grid_tensor_step_hacks = CGridStepHacks{};
const auto n_thread_data_on_grid_idx =
n_thread_data_on_grid_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_grid));
auto c_thread_copy =
ThreadwiseTensorSliceTransfer_v1r3<FloatC,
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatC,
decltype(c_m0_m1_m2_n_thread_desc),
decltype(c_m0_m1_m2_n_grid_desc),
Sequence<1, 1, 1, 1, M0, 1, M2, 1>,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc),
Sequence<M0, N0, I1, I1, M2, I1, M4, I1>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_m1_m2_n_grid_desc,
make_multi_index(0,
0,
0,
0,
m_thread_data_on_grid / (M2 * M1),
m_thread_data_on_grid % (M2 * M1) / M2,
m_thread_data_on_grid % M2,
n_thread_data_on_grid)};
auto init_copy = [&](auto c_thread_idx_) {
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_m1_m2_n_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_m1_m2_n_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
return c_thread_idx_;
};
auto mrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_m1_m2_n_grid_desc, mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_m1_m2_n_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_m1_m2_n_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
};
auto nrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_plus = make_multi_index(0, 1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_m1_m2_n_grid_desc, nrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_m1_m2_n_thread_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
make_multi_index(m_thread_data_on_grid_idx[I0],
n_thread_data_on_grid_idx[I0],
m_thread_data_on_grid_idx[I1],
n_thread_data_on_grid_idx[I1],
m_thread_data_on_grid_idx[I2],
m_thread_data_on_grid_idx[I3],
m_thread_data_on_grid_idx[I4],
n_thread_data_on_grid_idx[I2])};
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_m1_m2_n_grid_desc,
c_thread_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
};
auto mrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(-1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_m1_m2_n_grid_desc, mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_m1_m2_n_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_m1_m2_n_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
};
auto nrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_minus = make_multi_index(0, -1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_m1_m2_n_grid_desc, nrepeat_step_minus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_m1_m2_n_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_m1_m2_n_grid_desc,
c_grid_buf,
c_m0_m1_m2_n_grid_tensor_step_hacks);
};
static_assert((MRepeat == 4 && NRepeat == 4) or (MRepeat == 4 && NRepeat == 2) or
(MRepeat == 2 && NRepeat == 4) or (MRepeat == 2 && NRepeat == 2) or
(MRepeat == 2 && NRepeat == 1) or (MRepeat == 1 && NRepeat == 2) or
(MRepeat == 1 && NRepeat == 1),
"wrong");
if constexpr(MRepeat == 4 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
nrepeat_plus_copy(make_tuple(I2, I2));
nrepeat_plus_copy(make_tuple(I2, I3));
mrepeat_plus_copy(make_tuple(I3, I3));
nrepeat_minus_copy(make_tuple(I3, I2));
nrepeat_minus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
mrepeat_plus_copy(make_tuple(I2, I2));
mrepeat_plus_copy(make_tuple(I3, I2));
nrepeat_plus_copy(make_tuple(I3, I3));
mrepeat_minus_copy(make_tuple(I2, I3));
mrepeat_minus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 4 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
mrepeat_plus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
nrepeat_plus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
}
}
else if constexpr(MRepeat == 2 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
mrepeat_plus_copy(make_tuple(I1, I0));
}
else if constexpr(MRepeat == 1 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
nrepeat_plus_copy(make_tuple(I0, I1));
}
else if constexpr(MRepeat == 1 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
}
}
#endif
}
}; // namespace ck
} // namespace ck
......
#ifndef CK_GRIDWISE_GEMM_XDLOPS_V2R4_HPP
#define CK_GRIDWISE_GEMM_XDLOPS_V2R4_HPP
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename ABK0MK1GridDesc,
typename BBK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const ABK0MK1GridDesc a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc b_b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_b_k0_m_k1_grid_desc,
b_b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename ABK0MK1GridDesc,
typename BBK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const void CONSTANT* p_a_b_k0_m_k1_grid_desc,
const void CONSTANT* p_b_b_k0_n_k1_grid_desc,
const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const void CONSTANT* p_c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
const auto a_b_k0_m_k1_grid_desc = *reinterpret_cast<const ABK0MK1GridDesc*>(
cast_pointer_to_generic_address_space(p_a_b_k0_m_k1_grid_desc));
const auto b_b_k0_n_k1_grid_desc = *reinterpret_cast<const BBK0NK1GridDesc*>(
cast_pointer_to_generic_address_space(p_b_b_k0_n_k1_grid_desc));
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
*reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc));
const auto c_block_cluster_adaptor = *reinterpret_cast<const CBlockClusterAdaptor*>(
cast_pointer_to_generic_address_space(p_c_block_cluster_adaptor));
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_b_k0_m_k1_grid_desc,
b_b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#endif
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename ABK0MK1GridDesc,
typename BBK0NK1GridDesc,
typename CMNGridDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGridStepHacks,
typename BGridStepHacks,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks,
bool CAccessOrderMRepeatNRepeat,
bool ABlockLdsExtraM,
bool BBlockLdsExtraN>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ __device__ static constexpr bool
CheckValidity(const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
const auto M = a_b_k0_m_k1_grid_desc.GetLength(I2);
const auto N = b_b_k0_n_k1_grid_desc.GetLength(I2);
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
const auto KBatch = a_b_k0_m_k1_grid_desc.GetLength(I0);
if(!(M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_b_k0_n_k1_grid_desc.GetLength(I1) &&
K1 == a_b_k0_m_k1_grid_desc.GetLength(I3) &&
K1 == b_b_k0_n_k1_grid_desc.GetLength(I3) &&
KBatch == b_b_k0_n_k1_grid_desc.GetLength(I0)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % KPerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
return false;
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock) * KBatch;
return grid_size;
}
__host__ __device__ static constexpr auto
MakeCM0N0M1N1M2M3M4N2GridDescriptor(const CMNGridDesc& c_m_n_grid_desc)
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>;
return BlockwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_m_n_grid_desc);
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KBatch),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KBatch, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto c_blockid_to_kbatch_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_kbatch_m0_n0_block_cluster_adaptor;
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1, 1));
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_b_grid, b_b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c_grid, c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetElementSpaceSize());
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t k_batch_id = block_work_idx[I0];
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
constexpr auto a_b_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<KPerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<KPerBlock>{} * Number<MPerBlock + 1>{} * K1,
Number<MPerBlock + 1>{} * K1,
K1,
I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<KPerBlock>{}, Number<MPerBlock>{}, K1),
max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
constexpr auto b_b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<KPerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<KPerBlock>{} * Number<NPerBlock + 1>{} * K1,
Number<NPerBlock + 1>{} * K1,
K1,
I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<KPerBlock>{}, Number<NPerBlock>{}, K1),
max_lds_align);
}
}();
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<1, KPerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_b_k0_m_k1_grid_desc,
make_multi_index(k_batch_id, 0, m_block_data_idx_on_grid, 0),
a_b_k0_m_k1_block_desc,
make_multi_index(0, 0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<1, KPerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_b_k0_n_k1_grid_desc,
make_multi_index(k_batch_id, 0, n_block_data_idx_on_grid, 0),
b_b_k0_n_k1_block_desc,
make_multi_index(0, 0, 0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>{};
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(0, KPerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KPerBlock, 0, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k0_m_k1_grid_step_hacks = AGridStepHacks{};
constexpr auto b_k0_n_k1_grid_step_hacks = BGridStepHacks{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hack = AGridMoveSliceWindowStepHacks{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hack = BGridMoveSliceWindowStepHacks{};
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_a_block, a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
// preload data into LDS
{
a_blockwise_copy.RunRead(a_b_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
b_blockwise_copy.RunRead(b_b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
a_blockwise_copy.RunWrite(a_b_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_b_k0_n_k1_block_desc, b_block_buf);
}
// main body
index_t k_block_data_begin = 0;
do
{
a_blockwise_copy.MoveSrcSliceWindow(a_b_k0_m_k1_grid_desc,
a_block_slice_copy_step,
a_k0_m_k1_grid_move_slice_window_step_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_b_k0_n_k1_grid_desc,
b_block_slice_copy_step,
b_k0_n_k1_grid_move_slice_window_step_hack);
a_blockwise_copy.RunRead(a_b_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
block_sync_lds();
b_blockwise_copy.RunRead(b_b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds();
a_blockwise_copy.RunWrite(a_b_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_b_k0_n_k1_block_desc, b_block_buf);
k_block_data_begin += KPerBlock;
} while(k_block_data_begin < (K0 - KPerBlock));
// tail
{
block_sync_lds();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2BlockDescriptor();
constexpr auto M0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I0);
constexpr auto N0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I1);
constexpr auto M1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I2);
constexpr auto N1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I3);
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
constexpr auto N2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I7);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
make_naive_tensor_descriptor_packed(make_tuple(
Number<M0>{}, Number<N0>{}, I1, I1, Number<M2>{}, I1, Number<M4>{}, I1));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_grid =
m_block_data_idx_on_grid + c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_grid =
n_block_data_idx_on_grid + c_thread_mtx_on_block[I1];
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks = CGridStepHacks{};
const auto m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_grid_idx =
m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_grid));
const auto n_thread_data_on_grid_to_n0_n1_n2_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_grid_idx =
n_thread_data_on_grid_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_grid));
auto c_thread_copy =
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc),
Sequence<M0, N0, I1, I1, M2, I1, M4, I1>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
make_multi_index(m_thread_data_on_grid_idx[I0],
n_thread_data_on_grid_idx[I0],
m_thread_data_on_grid_idx[I1],
n_thread_data_on_grid_idx[I1],
m_thread_data_on_grid_idx[I2],
m_thread_data_on_grid_idx[I3],
m_thread_data_on_grid_idx[I4],
n_thread_data_on_grid_idx[I2])};
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
}
}
}; // namespace ck
} // namespace ck
#endif
......@@ -55,18 +55,15 @@ struct ThreadwiseGemmDlops_km0m1_kn0n1_m0m1n0n1
CBuffer& c_buf,
COriginIdx)
{
static_assert(
is_known_at_compile_time<remove_cv_t<remove_reference_t<AOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<BOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<COriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<AOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<BOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<COriginIdx>>::value,
"wrong! AOriginIdx, BOriginIdx, COringinIdx should be known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename ABuffer::type>>,
remove_cv_t<remove_reference_t<FloatA>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename BBuffer::type>>,
remove_cv_t<remove_reference_t<FloatB>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename CBuffer::type>>,
remove_cv_t<remove_reference_t<FloatC>>>::value &&
static_assert(
is_same<remove_cvref_t<typename ABuffer::type>, remove_cvref_t<FloatA>>::value &&
is_same<remove_cvref_t<typename BBuffer::type>, remove_cvref_t<FloatB>>::value &&
is_same<remove_cvref_t<typename CBuffer::type>, remove_cvref_t<FloatC>>::value &&
"wrong! inconsistent type");
constexpr auto I0 = Number<0>{};
......@@ -157,18 +154,15 @@ struct ThreadwiseContractionDlops_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_
CBuffer& c_buf,
COriginIdx)
{
static_assert(
is_known_at_compile_time<remove_cv_t<remove_reference_t<AOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<BOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<COriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<AOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<BOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<COriginIdx>>::value,
"wrong! AOriginIdx, BOriginIdx, COringinIdx should be known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename ABuffer::type>>,
remove_cv_t<remove_reference_t<FloatA>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename BBuffer::type>>,
remove_cv_t<remove_reference_t<FloatB>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename CBuffer::type>>,
remove_cv_t<remove_reference_t<FloatC>>>::value &&
static_assert(
is_same<remove_cvref_t<typename ABuffer::type>, remove_cvref_t<FloatA>>::value &&
is_same<remove_cvref_t<typename BBuffer::type>, remove_cvref_t<FloatB>>::value &&
is_same<remove_cvref_t<typename CBuffer::type>, remove_cvref_t<FloatC>>::value &&
"wrong! inconsistent type");
constexpr auto I0 = Number<0>{};
......
......@@ -41,18 +41,15 @@ struct ThreadwiseGemmDlops_km_kn_mn_v3
CDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(
is_known_at_compile_time<remove_cv_t<remove_reference_t<AOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<BOriginIdx>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<COriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<AOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<BOriginIdx>>::value &&
is_known_at_compile_time<remove_cvref_t<COriginIdx>>::value,
"wrong! AOriginIdx, BOriginIdx, COringinIdx should be known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename ABuffer::type>>,
remove_cv_t<remove_reference_t<FloatA>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename BBuffer::type>>,
remove_cv_t<remove_reference_t<FloatB>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename CBuffer::type>>,
remove_cv_t<remove_reference_t<FloatC>>>::value &&
static_assert(
is_same<remove_cvref_t<typename ABuffer::type>, remove_cvref_t<FloatA>>::value &&
is_same<remove_cvref_t<typename BBuffer::type>, remove_cvref_t<FloatB>>::value &&
is_same<remove_cvref_t<typename CBuffer::type>, remove_cvref_t<FloatC>>::value &&
"wrong! inconsistent type");
constexpr auto I0 = Number<0>{};
......
......@@ -30,11 +30,11 @@ struct ThreadwiseTensorSliceSet_v1
static_assert(Buffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(is_known_at_compile_time<remove_cv_t<remove_reference_t<OriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<OriginIdx>>::value,
"wrong! OriginIdx need to be known at compile-time");
// Desc is known at compile-time
constexpr auto desc = remove_cv_t<remove_reference_t<Desc>>{};
constexpr auto desc = remove_cvref_t<Desc>{};
// OriginIdx is known at compile-time
constexpr auto origin_idx = to_multi_index(OriginIdx{});
......
......@@ -95,18 +95,13 @@ struct ThreadwiseTensorSliceTransfer_v1r3
static_assert(SrcDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc need to known at compile-time");
static_assert(
is_known_at_compile_time<remove_cv_t<remove_reference_t<SrcSliceOriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<SrcSliceOriginIdx>>::value,
"wrong! SrcSliceOrigin need to known at compile-time");
static_assert(SrcBuffer::IsStaticBuffer(), "wrong! SrcBuffer need to be StaticBuffer");
// static_assert(is_same<remove_cv_t<remove_reference_t<typename SrcBuffer::type>>,
// remove_cv_t<remove_reference_t<SrcData>>>::value,
//"wrong! SrcBuffer data type is wrong");
// SrcDesc and src_slice_origin_idx are known at compile-time
constexpr auto src_desc = remove_cv_t<remove_reference_t<SrcDesc>>{};
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto src_slice_origin_idx = to_multi_index(SrcSliceOriginIdx{});
constexpr auto I0 = Number<0>{};
......@@ -208,10 +203,20 @@ struct ThreadwiseTensorSliceTransfer_v1r3
coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_desc, dst_coord_);
// copy data from dst_vector into dst_buf
if constexpr(DstInMemOp == InMemoryDataOperationEnum_t::Set)
{
dst_buf.template Set<dst_vector_t>(
dst_coord_.GetOffset(),
is_dst_valid,
dst_vector.template AsType<dst_vector_t>()[Number<0>{}]);
}
else if constexpr(DstInMemOp == InMemoryDataOperationEnum_t::AtomicAdd)
{
dst_buf.template AtomicAdd<dst_vector_t>(
dst_coord_.GetOffset(),
is_dst_valid,
dst_vector.template AsType<dst_vector_t>()[Number<0>{}]);
}
constexpr auto move_on_dim = [&]() constexpr
{
......@@ -392,7 +397,7 @@ struct ThreadwiseTensorSliceTransfer_v2
"wrong! SrcDesc need to known at compile-time");
}
__device__ void SetDstSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
{
src_coord_ = make_tensor_coordinate(src_desc, src_slice_origin_idx);
}
......@@ -411,16 +416,15 @@ struct ThreadwiseTensorSliceTransfer_v2
static_assert(DstDesc::IsKnownAtCompileTime(),
"wrong! DstDesc need to known at compile-time");
static_assert(
is_known_at_compile_time<remove_cv_t<remove_reference_t<DstSliceOriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<DstSliceOriginIdx>>::value,
"wrong! DstSliceOrigin need to known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename DstBuffer::type>>,
remove_cv_t<remove_reference_t<DstData>>>::value &&
static_assert(
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value &&
"wrong! inconsistent type");
// DstDesc and dst_slice_origin_idx are known at compile-time
constexpr auto dst_desc = remove_cv_t<remove_reference_t<DstDesc>>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
constexpr auto dst_slice_origin_idx = DstSliceOriginIdx{};
constexpr auto I0 = Number<0>{};
......@@ -729,8 +733,8 @@ struct ThreadwiseTensorSliceTransfer_v3
SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(is_same<remove_cv_t<remove_reference_t<typename SrcBuffer::type>>,
remove_cv_t<remove_reference_t<SrcData>>>::value,
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value,
"wrong! SrcBuffer and SrcData data type are inconsistent");
constexpr auto I0 = Number<0>{};
......@@ -886,8 +890,8 @@ struct ThreadwiseTensorSliceTransfer_v3
DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(is_same<remove_cv_t<remove_reference_t<typename DstBuffer::type>>,
remove_cv_t<remove_reference_t<DstData>>>::value,
static_assert(
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
constexpr auto I0 = Number<0>{};
......@@ -1303,24 +1307,21 @@ struct ThreadwiseTensorSliceTransfer_v4
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename SrcBuffer::type>>,
remove_cv_t<remove_reference_t<SrcData>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename DstBuffer::type>>,
remove_cv_t<remove_reference_t<DstData>>>::value,
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value &&
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
static_assert(DstBuffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(
is_known_at_compile_time<
remove_cv_t<remove_reference_t<SrcRefToOriginDisplacement>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<DstOriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<SrcRefToOriginDisplacement>>::value &&
is_known_at_compile_time<remove_cvref_t<DstOriginIdx>>::value,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time");
// SrcDesc and DstDesc are known at compile-time
constexpr auto src_desc = remove_cv_t<remove_reference_t<SrcDesc>>{};
constexpr auto dst_desc = remove_cv_t<remove_reference_t<DstDesc>>{};
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr auto src_ref_to_origin_disp_idx = to_multi_index(SrcRefToOriginDisplacement{});
......
......@@ -80,8 +80,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(is_same<remove_cv_t<remove_reference_t<typename SrcBuffer::type>>,
remove_cv_t<remove_reference_t<SrcData>>>::value,
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value,
"wrong! SrcBuffer and SrcData data type are inconsistent");
// tensor descriptor for src_vector
......@@ -248,8 +248,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(is_same<remove_cv_t<remove_reference_t<typename DstBuffer::type>>,
remove_cv_t<remove_reference_t<DstData>>>::value,
static_assert(
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
// tensor descriptor for dst_vector
......@@ -669,24 +669,21 @@ struct ThreadwiseTensorSliceTransfer_v4r1
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(is_same<remove_cv_t<remove_reference_t<typename SrcBuffer::type>>,
remove_cv_t<remove_reference_t<SrcData>>>::value &&
is_same<remove_cv_t<remove_reference_t<typename DstBuffer::type>>,
remove_cv_t<remove_reference_t<DstData>>>::value,
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value &&
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
static_assert(DstBuffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(
is_known_at_compile_time<
remove_cv_t<remove_reference_t<SrcRefToOriginDisplacement>>>::value &&
is_known_at_compile_time<remove_cv_t<remove_reference_t<DstOriginIdx>>>::value,
static_assert(is_known_at_compile_time<remove_cvref_t<SrcRefToOriginDisplacement>>::value &&
is_known_at_compile_time<remove_cvref_t<DstOriginIdx>>::value,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time");
// SrcDesc and DstDesc are known at compile-time
constexpr auto src_desc = remove_cv_t<remove_reference_t<SrcDesc>>{};
constexpr auto dst_desc = remove_cv_t<remove_reference_t<DstDesc>>{};
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr auto src_ref_to_origin_disp_idx = to_multi_index(SrcRefToOriginDisplacement{});
......
......@@ -7,21 +7,18 @@
namespace ck {
enum struct mfma_instr
enum struct MfmaInstr
{
/// fp32
mfma_f32_32x32x1xf32 = 0,
mfma_f32_16x16x1xf32,
mfma_f32_4x4x1xf32,
mfma_f32_32x32x2xf32, // k reduction
mfma_f32_16x16x4xf32, // k reduction
/// fp16
mfma_f32_32x32x4f16,
mfma_f32_16x16x4f16,
mfma_f32_4x4x4f16,
mfma_f32_32x32x8f16, // k reduction
mfma_f32_16x16x16f16, // k reduction
/// bfp16
mfma_f32_32x32x2bf16,
mfma_f32_16x16x2bf16,
mfma_f32_4x4x2bf16,
......@@ -29,317 +26,245 @@ enum struct mfma_instr
mfma_f32_16x16x8bf16, // k reduction
};
template <mfma_instr instr>
struct mfma_info;
template <MfmaInstr instr>
struct mfma_type;
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x1xf32>
struct mfma_type<MfmaInstr::mfma_f32_32x32x1xf32>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 2;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 1;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 1;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x1f32<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_32x32x1f32<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x2xf32>
struct mfma_type<MfmaInstr::mfma_f32_32x32x2xf32>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 2;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 1;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x2f32<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_32x32x2f32<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x4xf32>
struct mfma_type<MfmaInstr::mfma_f32_16x16x4xf32>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 4;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x4f32<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_16x16x4f32<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x1xf32>
struct mfma_type<MfmaInstr::mfma_f32_16x16x1xf32>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 4;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 1;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x1f32<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_16x16x1f32<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
// treat 4x4x1 as a single-blk 4x64 mfma
template <>
struct mfma_info<mfma_instr::mfma_f32_4x4x1xf32>
struct mfma_type<MfmaInstr::mfma_f32_4x4x1xf32>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 64;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 64;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 1;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = 4;
static constexpr index_t m = 4;
static constexpr index_t n = 64;
static constexpr index_t k = 1;
static constexpr index_t cycles = 8;
static constexpr index_t k_base = 1;
static constexpr index_t m_per_blk = 4;
static constexpr index_t n_per_blk = 64;
static constexpr index_t k_per_blk = 1;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_4x4x1f32<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_4x4x1f32<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x4f16>
struct mfma_type<MfmaInstr::mfma_f32_32x32x4f16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 2;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 4;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 4;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 4;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x4f16<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_32x32x4f16<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x8f16>
struct mfma_type<MfmaInstr::mfma_f32_32x32x8f16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 8;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 4;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 4;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_32x32x8f16<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_32x32x8f16<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x16f16>
struct mfma_type<MfmaInstr::mfma_f32_16x16x16f16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 16;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 4;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 4;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x16f16<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_16x16x16f16<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x4f16>
struct mfma_type<MfmaInstr::mfma_f32_16x16x4f16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 4;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 4;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 4;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 4;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_16x16x4f16<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_16x16x4f16<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_info<mfma_instr::mfma_f32_4x4x4f16>
struct mfma_type<MfmaInstr::mfma_f32_4x4x4f16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 64;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 64;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 1;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = 4;
static constexpr index_t m = 4;
static constexpr index_t n = 64;
static constexpr index_t k = 4;
static constexpr index_t cycles = 8;
static constexpr index_t k_base = 4;
static constexpr index_t m_per_blk = 4;
static constexpr index_t n_per_blk = 64;
static constexpr index_t k_per_blk = 4;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
index_t COffset,
class FloatA,
class FloatB,
class FloatC>
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_f32_4x4x4f16<MPerXdlops, NPerXdlops, COffset>::Run(a, b, reg_c);
intrin_mfma_f32_4x4x4f16<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#if 0
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x2bf16>
struct mfma_type<MfmaInstr::mfma_f32_32x32x2bf16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 2;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 2;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 2;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 2;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
......@@ -359,21 +284,19 @@ struct mfma_info<mfma_instr::mfma_f32_32x32x2bf16>
};
template <>
struct mfma_info<mfma_instr::mfma_f32_32x32x4bf16>
struct mfma_type<MfmaInstr::mfma_f32_32x32x4bf16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 4;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 32;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 32;
static constexpr index_t n = 32;
static constexpr index_t k = 4;
static constexpr index_t cycles = 64;
static constexpr index_t k_base = 2;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 2;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
......@@ -392,21 +315,19 @@ struct mfma_info<mfma_instr::mfma_f32_32x32x4bf16>
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x8bf16>
struct mfma_type<MfmaInstr::mfma_f32_16x16x8bf16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 8;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 2;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 2;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops,
index_t NPerXdlops,
......@@ -425,21 +346,19 @@ struct mfma_info<mfma_instr::mfma_f32_16x16x8bf16>
};
template <>
struct mfma_info<mfma_instr::mfma_f32_16x16x2bf16>
struct mfma_type<MfmaInstr::mfma_f32_16x16x2bf16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 16;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = wave_size / num_threads_blk;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 4;
static constexpr index_t num_regs_xdlops = num_regs_blk * num_output_blks;
static constexpr index_t m = 16;
static constexpr index_t n = 16;
static constexpr index_t k = 2;
static constexpr index_t cycles = 32;
static constexpr index_t k_base = 2;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 2;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
......@@ -458,21 +377,19 @@ struct mfma_info<mfma_instr::mfma_f32_16x16x2bf16>
};
template <>
struct mfma_info<mfma_instr::mfma_f32_4x4x2bf16>
struct mfma_type<MfmaInstr::mfma_f32_4x4x2bf16>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_blk = 1;
static constexpr index_t num_regs_blk = group_size * num_groups_blk;
static constexpr index_t num_threads_blk = 64;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 64;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 1;
static constexpr index_t num_output_blks = 1;
static constexpr index_t num_regs_xdlops = 4;
static constexpr index_t m = 4;
static constexpr index_t n = 64;
static constexpr index_t k = 2;
static constexpr index_t cycles = 8;
static constexpr index_t k_base = 2;
static constexpr index_t m_per_blk = 4;
static constexpr index_t n_per_blk = 64;
static constexpr index_t k_per_blk = 2;
static constexpr bool is_k_reduction = false;
template <index_t MPerXdlops,
index_t NPerXdlops,
......@@ -491,200 +408,227 @@ struct mfma_info<mfma_instr::mfma_f32_4x4x2bf16>
};
#endif
template <mfma_instr instr, index_t MPerXdlops_, index_t NPerXdlops_>
struct xdlops_info
template <typename base_type, index_t MPerXdlops, index_t NPerXdlops>
struct MfmaSelector
{
static constexpr auto mfma_type = mfma_info<instr>{};
static constexpr index_t MPerXdlops = MPerXdlops_;
static constexpr index_t NPerXdlops = NPerXdlops_;
template <typename base_type_, index_t MPerXdlops_, index_t NPerXdlops_>
static constexpr auto GetMfma();
static constexpr bool IsABroadcast()
template <>
static constexpr auto GetMfma<float, 64, 64>()
{
static_assert(NPerXdlops >= MPerXdlops, "only support ABroadcast");
return true;
return MfmaInstr::mfma_f32_32x32x1xf32;
}
static constexpr bool IsKReduction()
template <>
static constexpr auto GetMfma<float, 32, 64>()
{
return (mfma_type.num_output_blks == 1) && (mfma_type.num_input_blks > 1);
return MfmaInstr::mfma_f32_32x32x1xf32;
}
static constexpr index_t GetKPerXdlops()
template <>
static constexpr auto GetMfma<float, 16, 64>()
{
return IsKReduction() ? mfma_type.num_input_blks : 1;
return MfmaInstr::mfma_f32_16x16x1xf32;
}
static constexpr index_t GetNumCRegs() { return MPerXdlops * NPerXdlops / mfma_type.wave_size; }
};
template <class base_type, index_t MPerWave, index_t NPerWave, index_t KPack>
struct XdlopsGemm
{
template <class base_type_ = base_type,
index_t MPerWave_ = MPerWave,
index_t NPerWave_ = NPerWave>
static constexpr auto GetXdlopsInfo();
template <>
static constexpr auto GetXdlopsInfo<float, 64, 64>()
static constexpr auto GetMfma<float, 8, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x1xf32, 64, 64>{};
return MfmaInstr::mfma_f32_4x4x1xf32;
}
template <>
static constexpr auto GetXdlopsInfo<float, 32, 64>()
static constexpr auto GetMfma<float, 4, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x1xf32, 32, 64>{};
return MfmaInstr::mfma_f32_4x4x1xf32;
}
template <>
static constexpr auto GetXdlopsInfo<float, 16, 64>()
static constexpr auto GetMfma<float, 32, 32>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x1xf32, 16, 64>{};
return MfmaInstr::mfma_f32_32x32x2xf32;
}
template <>
static constexpr auto GetXdlopsInfo<float, 8, 64>()
static constexpr auto GetMfma<float, 16, 16>()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x1xf32, 8, 64>{};
return MfmaInstr::mfma_f32_16x16x4xf32;
}
template <>
static constexpr auto GetXdlopsInfo<float, 4, 64>()
static constexpr auto GetMfma<half_t, 64, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x1xf32, 4, 64>{};
return MfmaInstr::mfma_f32_32x32x4f16;
}
template <>
static constexpr auto GetXdlopsInfo<float, 32, 32>()
static constexpr auto GetMfma<half_t, 32, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2xf32, 32, 32>{};
return MfmaInstr::mfma_f32_32x32x4f16;
}
template <>
static constexpr auto GetXdlopsInfo<float, 16, 16>()
static constexpr auto GetMfma<half_t, 32, 32>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x4xf32, 16, 16>{};
return MfmaInstr::mfma_f32_32x32x8f16;
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 64, 64>()
static constexpr auto GetMfma<half_t, 16, 16>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x4f16, 64, 64>{};
return MfmaInstr::mfma_f32_16x16x16f16;
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 32, 64>()
static constexpr auto GetMfma<half_t, 16, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x4f16, 32, 64>{};
return MfmaInstr::mfma_f32_16x16x4f16;
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 32, 32>()
static constexpr auto GetMfma<half_t, 8, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x8f16, 32, 32>{};
return MfmaInstr::mfma_f32_4x4x4f16;
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 16, 16>()
static constexpr auto GetMfma<half_t, 4, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x16f16, 16, 16>{};
return MfmaInstr::mfma_f32_4x4x4f16;
}
#if 0
template <>
static constexpr auto GetXdlopsInfo<half_t, 16, 64>()
static constexpr auto GetMfma<ushort, 128, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x4f16, 16, 64>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x2bf16, 64, 64, 2, 1, c_vec32_4_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 8, 64>()
static constexpr auto GetMfma<ushort, 64, 128>()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x4f16, 8, 64>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x2bf16, 64, 64, 1, 2, c_vec32_4_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<half_t, 4, 64>()
static constexpr auto GetMfma<ushort, 64, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x4f16, 4, 64>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x2bf16, 64, 64, 1, 1, c_vec32_2_t>{};
}
#if 0
template <>
static constexpr auto GetXdlopsInfo<ushort, 128, 64>()
static constexpr auto GetMfma<ushort, 64, 32>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2bf16, 64, 64, 2, 1, c_vec32_4_t>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x2bf16, 64, 32, 1, 1, c_vec32_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 64, 128>()
static constexpr auto GetMfma<ushort, 32, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2bf16, 64, 64, 1, 2, c_vec32_4_t>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x2bf16, 32, 64, 1, 1, c_vec32_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 64, 64>()
static constexpr auto GetMfma<ushort, 64, 16>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2bf16, 64, 64, 1, 1, c_vec32_2_t>{};
return xdlops_info<MfmaInstr::mfma_f32_16x16x2bf16, 64, 16, 1, 1, c_vec16_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 64, 32>()
static constexpr auto GetMfma<ushort, 16, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2bf16, 64, 32, 1, 1, c_vec32_1_t>{};
return xdlops_info<MfmaInstr::mfma_f32_16x16x2bf16, 16, 64, 1, 1, c_vec16_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 32, 64>()
static constexpr auto GetMfma<ushort, 8, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x2bf16, 32, 64, 1, 1, c_vec32_1_t>{};
return xdlops_info<MfmaInstr::mfma_f32_4x4x2bf16, 8, 64, 1, 1, c_vec4_2_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 64, 16>()
static constexpr auto GetMfma<ushort, 4, 64>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x2bf16, 64, 16, 1, 1, c_vec16_1_t>{};
return xdlops_info<MfmaInstr::mfma_f32_4x4x2bf16, 4, 64, 1, 1, c_vec4_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 16, 64>()
static constexpr auto GetMfma<ushort, 32, 32>()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x2bf16, 16, 64, 1, 1, c_vec16_1_t>{};
return xdlops_info<MfmaInstr::mfma_f32_32x32x4bf16, 32, 32, 1, 1, c_vec16_1_t>{};
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 8, 64>()
static constexpr auto GetMfma<ushort, 16, 16>()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x2bf16, 8, 64, 1, 1, c_vec4_2_t>{};
return xdlops_info<MfmaInstr::mfma_f32_16x16x8bf16, 16, 16, 1, 1, c_vec4_1_t>{};
}
#endif
template <>
static constexpr auto GetXdlopsInfo<ushort, 4, 64>()
static constexpr auto selected_mfma = mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops>()>{};
__host__ __device__ static constexpr void mfma_check()
{
return xdlops_info<mfma_instr::mfma_f32_4x4x2bf16, 4, 64, 1, 1, c_vec4_1_t>{};
static_assert(selected_mfma.group_size * selected_mfma.num_groups_per_blk ==
selected_mfma.num_regs_per_blk,
"wrong! num_regs_per_blk");
static_assert(selected_mfma.num_threads_per_blk == selected_mfma.n_per_blk,
"n_per_blk != num_threads_per_blk");
static_assert(selected_mfma.num_regs_per_blk * selected_mfma.num_input_blks ==
selected_mfma.m_per_blk,
"m_per_blk != num_input_blks * num_regs_per_blk");
static_assert(selected_mfma.num_output_blks == selected_mfma.num_input_blks ||
selected_mfma.num_output_blks == 1,
"incorrect num_output_blks");
static_assert(selected_mfma.num_regs_per_blk * selected_mfma.wave_size ==
selected_mfma.m_per_blk * selected_mfma.n_per_blk,
"num_regs_per_blk incorrect");
static_assert(selected_mfma.is_k_reduction ||
(selected_mfma.num_input_blks == selected_mfma.num_output_blks),
"is_k_reduction wrong!");
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 32, 32>()
__host__ __device__ constexpr MfmaSelector() { mfma_check(); }
static constexpr bool IsABroadcast()
{
return xdlops_info<mfma_instr::mfma_f32_32x32x4bf16, 32, 32, 1, 1, c_vec16_1_t>{};
static_assert(NPerXdlops >= MPerXdlops, "only support ABroadcast");
return true;
}
template <>
static constexpr auto GetXdlopsInfo<ushort, 16, 16>()
static constexpr index_t GetKPerXdlops()
{
return xdlops_info<mfma_instr::mfma_f32_16x16x8bf16, 16, 16, 1, 1, c_vec4_1_t>{};
return (selected_mfma.is_k_reduction ? selected_mfma.num_input_blks : 1) *
selected_mfma.k_per_blk;
}
#endif
static constexpr index_t GetKPerThread() { return selected_mfma.k_per_blk; }
};
template <typename base_type, index_t MPerXdlops, index_t NPerXdlops, index_t KPack>
struct XdlopsGemm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
using CIndex = MultiIndex<2>;
__device__ static constexpr index_t GetNumBlks() { return mfma_type.num_output_blks; }
__device__ static constexpr index_t GetNumBlks() { return mfma_instr.num_output_blks; }
__device__ static constexpr index_t GetNumXdlops()
{
return MPerXdlops * NPerXdlops / (mfma_type.m * mfma_type.n * mfma_type.num_output_blks);
return MPerXdlops * NPerXdlops /
(mfma_instr.m_per_blk * mfma_instr.n_per_blk * mfma_instr.num_output_blks);
}
__host__ __device__ constexpr XdlopsGemm()
......@@ -697,104 +641,142 @@ struct XdlopsGemm
MPerXdlops == 64,
"Only support GemmMPerXdlops == 4, 8, 16, 32 or 64 for xdlops");
static_assert(mfma_type.num_threads_blk == mfma_type.n, "n != num_threads_blk");
static_assert(mfma_type.num_regs_blk * mfma_type.num_input_blks == mfma_type.m,
"m != num_input_blks * num_regs_blk");
static_assert(mfma_type.num_output_blks == mfma_type.num_input_blks ||
mfma_type.num_output_blks == 1,
"incorrect num_output_blks");
static_assert(mfma_type.num_regs_blk * mfma_type.wave_size == mfma_type.m * mfma_type.n,
"num_regs_blk incorrect");
static_assert(mfma_type.k % mfma_type.k_base == 0, "k % kbase != 0!");
static_assert(KPack % mfma_instr.k_per_blk == 0, "KPack cannot be divided by k_per_blk");
}
template <typename CM0N0M1N1M2N2Desc>
__host__ __device__ static constexpr auto
MakeCM0N0M1N1M2M3M4N2Descriptor(const CM0N0M1N1M2N2Desc& c_m0_n0_m1_n1_m2_n2_desc)
{
const auto M0 = c_m0_n0_m1_n1_m2_n2_desc.GetLength(I0);
const auto N0 = c_m0_n0_m1_n1_m2_n2_desc.GetLength(I1);
const auto M1 = c_m0_n0_m1_n1_m2_n2_desc.GetLength(I2);
const auto N1 = c_m0_n0_m1_n1_m2_n2_desc.GetLength(I3);
return transform_tensor_descriptor(
c_m0_n0_m1_n1_m2_n2_desc,
make_tuple(make_pass_through_transform(M0),
make_pass_through_transform(N0),
make_pass_through_transform(M1),
make_pass_through_transform(N1),
make_unmerge_transform(make_tuple(mfma_instr.num_groups_per_blk,
mfma_instr.num_input_blks,
mfma_instr.group_size)),
make_pass_through_transform(mfma_instr.num_threads_per_blk)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4, 5, 6>{},
Sequence<7>{}));
}
__device__ static constexpr index_t GetRegSizePerXdlops()
{
return MPerXdlops * NPerXdlops / mfma_type.wave_size;
return MPerXdlops * NPerXdlops / mfma_instr.wave_size;
}
template <class ADesc,
class BDesc,
class CDesc,
index_t m0,
index_t n0,
class FloatA,
class FloatB,
class FloatC>
template <class FloatA, class FloatB, class FloatC>
__device__ void Run(const FloatA& p_a_wave, const FloatB& p_b_wave, FloatC& p_c_thread) const
{
static_assert(is_same<base_type, float>::value || is_same<base_type, half_t>::value ||
is_same<base_type, ushort>::value,
"base base_type must be float, half, ushort!");
static_assert(KPack % mfma_type.k_base == 0, "KPack cannot be divided by k_base");
static_for<0, KPack / mfma_instr.k_per_blk, 1>{}([&](auto k) {
mfma_instr.template run<MPerXdlops, NPerXdlops>(p_a_wave[k], p_b_wave[k], p_c_thread);
});
}
__device__ static auto GetLaneId() { return get_thread_local_1d_id() % mfma_instr.wave_size; }
constexpr index_t c_offset = CDesc{}.CalculateOffset(make_tuple(m0, n0)) * GetNumXdlops();
__device__ static auto GetBlkIdx()
{
const auto laneId = GetLaneId();
static_for<0, KPack, mfma_type.k_base>{}([&](auto k) {
constexpr index_t a_offset = ADesc{}.CalculateOffset(make_tuple(0, m0, 0, k));
constexpr index_t b_offset = BDesc{}.CalculateOffset(make_tuple(0, n0, 0, k));
constexpr auto threadidx_to_blk_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(
make_tuple(1, mfma_instr.num_input_blks, mfma_instr.num_threads_per_blk))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
mfma_type.template run<MPerXdlops, NPerXdlops, c_offset>(
p_a_wave[Number<a_offset / mfma_type.k_base>{}],
p_b_wave[Number<b_offset / mfma_type.k_base>{}],
p_c_thread);
});
const auto blk_idx =
threadidx_to_blk_idx_adaptor.CalculateBottomIndex(make_multi_index(laneId));
const auto blk_id = blk_idx[I1];
const auto blk_td = blk_idx[I2];
return make_tuple(blk_id, blk_td);
}
__device__ static CIndex GetBeginOfThreadBlk(index_t xdlops_i, index_t blk_i)
__host__ __device__ static auto CalculateAThreadOriginDataIndex()
{
const index_t laneId = get_thread_local_1d_id() % mfma_type.wave_size;
const index_t blk_id = laneId / mfma_type.num_threads_blk;
const index_t blk_td = laneId % mfma_type.num_threads_blk;
const auto laneId = GetLaneId();
const auto blk_idx = GetBlkIdx();
index_t n_offset = blk_i * mfma_type.n + blk_td;
index_t m_offset = xdlops_i * mfma_type.m + blk_id * mfma_type.group_size;
const auto blk_id = blk_idx[I0];
const auto blk_td = blk_idx[I1];
return CIndex{m_offset, n_offset};
if constexpr(mfma_instr.is_k_reduction)
{
return make_tuple(blk_id, blk_td);
}
else
{
return make_tuple(0, laneId);
}
}
static constexpr index_t MRepeats = GetXdlopsInfo().MRepeats;
static constexpr index_t NRepeats = GetXdlopsInfo().NRepeats;
static constexpr index_t MPerXdlops = GetXdlopsInfo().MPerXdlops;
static constexpr index_t NPerXdlops = GetXdlopsInfo().NPerXdlops;
__host__ __device__ static auto CalculateBThreadOriginDataIndex()
{
const auto laneId = GetLaneId();
const auto blk_idx = GetBlkIdx();
static constexpr bool IsKReduction = GetXdlopsInfo().IsKReduction();
static constexpr bool IsABroadcast = GetXdlopsInfo().IsABroadcast();
static constexpr index_t KPerXdlops = GetXdlopsInfo().GetKPerXdlops();
const auto blk_id = blk_idx[I0];
const auto blk_td = blk_idx[I1];
static constexpr auto GetBlkId(const index_t lane_id)
if constexpr(mfma_instr.is_k_reduction)
{
return lane_id / mfma_type.num_threads_blk;
return make_tuple(blk_id, blk_td);
}
static constexpr auto GetBlkTd(const index_t lane_id)
else
{
return lane_id % mfma_type.num_threads_blk;
return make_tuple(0, laneId);
}
}
static constexpr auto mfma_type = GetXdlopsInfo().mfma_type;
struct CLayout
__device__ static CIndex GetBeginOfThreadBlk(index_t xdlops_i, index_t blk_i)
{
__host__ __device__ static constexpr index_t M1() { return mfma_type.num_groups_blk; }
__host__ __device__ static constexpr index_t M0() { return mfma_type.group_size; }
__host__ __device__ static constexpr index_t N1() { return mfma_type.num_input_blks; }
__host__ __device__ static constexpr index_t N0() { return mfma_type.num_threads_blk; }
const auto blk_idx = GetBlkIdx();
__device__ static constexpr index_t GetBlkSize() { return mfma_type.num_regs_blk; }
const auto blk_id = blk_idx[I0];
const auto blk_td = blk_idx[I1];
__device__ static constexpr index_t GetNumBlks() { return mfma_type.num_output_blks; }
index_t n_offset = blk_i * mfma_instr.n_per_blk + blk_td;
index_t m_offset = xdlops_i * mfma_instr.m_per_blk + blk_id * mfma_instr.group_size;
__device__ static constexpr index_t GetNumXdlops()
{
return MPerXdlops * NPerXdlops /
(mfma_type.m * mfma_type.n * mfma_type.num_output_blks);
return CIndex{m_offset, n_offset};
}
};
__host__ __device__ static constexpr auto GetCLayout() { return CLayout{}; }
static constexpr auto mfma = MfmaSelector<base_type, MPerXdlops, NPerXdlops>{};
static constexpr auto mfma_instr = mfma.selected_mfma;
static constexpr auto KPerXdlops = mfma.GetKPerXdlops();
static constexpr auto K1PerXdlops = mfma.GetKPerThread();
static constexpr auto K0PerXdlops = KPerXdlops / K1PerXdlops;
__host__ __device__ static constexpr auto GetCM0M1M2NThreadBlkLengths()
{
return make_tuple(
Number<mfma_instr.num_groups_per_blk>{}, I1, Number<mfma_instr.group_size>{}, I1);
}
};
} // namespace ck
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment