"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "627ad6e8ea91a32dea530832297e58e021825631"
Unverified Commit 16dc18e0 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

gemm/Conv xdlops + dlops quantization (#625)



* Add conv perlayer quantization

* Add gemm_dlops quantization

* Support int8 for innerproduct

* Refine gemm dlops int8 kernel parameter

* Support gfx908(MI100) and gfx90a(MI200)

* clang-format

* Rename example number

* Support different layout for d tensor

* Add conv dlops perchannel quantization example

* Move to example 40

* Extract the common code for different platform (dlops and xdlops)

* Move ot subfolder. Prepare to add other op of quantization

* Refine the quantization instance library

* Add conv dl instances and client example

* Remove unnecessary type

* Add gemm quantization instance

* Add external api and client example

* Refine num_bytes

* Separete different layout to different cpp

* Add more xdl instances

* Revert "Remove unnecessary type"

This reverts commit 820869182f6a8f62b2c9004101ba6bf76b96be14.

* Remove CShuffleDataType in dlops
Let acc and CShuffleDataType be the same in xdlops

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
parent a2d5ca8e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& requant_scale_g_k_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<RequantScaleDataType> requant_scale(requant_scale_g_k_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "requant_scale: " << requant_scale.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-128, 127});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-128, 127});
requant_scale.GenerateTensorValue(GeneratorTensor_2<RequantScaleDataType>{0, 1});
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem requant_scale_device_buf(sizeof(RequantScaleDataType) *
requant_scale.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
requant_scale_device_buf.ToDevice(requant_scale.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(requant_scale_g_k_desc.GetLengths(), d0_g_n_k_wos_lengths);
copy(requant_scale_g_k_desc.GetStrides(), d0_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
{requant_scale_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{d0_g_n_k_wos_lengths},
{d0_g_n_k_wos_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
Tensor<AccDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
AccDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach([&](auto&, auto idx) {
out_element_op(out_host(idx), c_host(idx), requant_scale(idx));
});
out_device_buf.FromDevice(out_device.mData.data());
pass &=
ck::utils::check_err(out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return (pass ? 0 : 1);
}
int run_conv2d_fwd_perchannel_quantization_example()
{
bool do_verification = true;
bool time_kernel = true;
const ck::index_t ndim_spatial = 2;
ck::utils::conv::ConvParam conv_param{
ndim_spatial, // n_dim
1, // group
4, // batch
64, // output channels
192, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
{1, 1}, // dilations
{1, 1}, // left_pads
{1, 1} // right_pads
};
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);
const auto requant_scale_g_k_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
using deviceOp = DeviceGroupedConvNDFwdInstance<ndim_spatial,
InLayout,
WeiLayout,
RequantScaleLayout,
OutLayout>;
return run_grouped_conv_fwd<ndim_spatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
deviceOp>(do_verification,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
requant_scale_g_k_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp" #pragma once
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
16>;
template <ck::index_t NDimSpatial, template <ck::index_t NDimSpatial,
typename InDataType, typename InDataType,
...@@ -221,10 +139,10 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -221,10 +139,10 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1); return (pass ? 0 : 1);
} }
int main() int run_conv2d_fwd_perlayer_quantization_example()
{ {
bool do_verification = true; bool do_verification = true;
bool time_kernel = true; bool time_kernel = false;
const ck::index_t ndim_spatial = 2; const ck::index_t ndim_spatial = 2;
ck::utils::conv::ConvParam conv_param{ ck::utils::conv::ConvParam conv_param{
...@@ -232,7 +150,7 @@ int main() ...@@ -232,7 +150,7 @@ int main()
1, // group 1, // group
4, // batch 4, // batch
64, // output channels 64, // output channels
32, // input chanels 192, // input chanels
{3, 3}, // weight HW {3, 3}, // weight HW
{71, 71}, // x HW {71, 71}, // x HW
{2, 2}, // strides {2, 2}, // strides
......
add_example_executable(example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp)
...@@ -134,7 +134,8 @@ __global__ void ...@@ -134,7 +134,8 @@ __global__ void
const Block2CTileMap block_2_ctile_map, const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch) const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx90a__) || defined(__gfx908__))
// offset base pointer for each work-group // offset base pointer for each work-group
const index_t num_blocks_per_batch = const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count); __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
...@@ -314,9 +315,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK ...@@ -314,9 +315,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
const auto in_gemmm_gemmk_desc = const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc); matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
const auto M = in_gemmm_gemmk_desc.GetLength(I0); const auto M = in_gemmm_gemmk_desc.GetLength(I0);
const auto K = in_gemmm_gemmk_desc.GetLength(I1); const auto K = in_gemmm_gemmk_desc.GetLength(I1);
const auto AK0 = K / K1; const auto AK0 = K / K1;
return transform_tensor_descriptor( return transform_tensor_descriptor(
...@@ -709,7 +709,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK ...@@ -709,7 +709,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
namespace ctc = tensor_layout::convolution; namespace ctc = tensor_layout::convolution;
// check device // check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030")) if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx908"))
{ {
return false; return false;
} }
...@@ -834,6 +835,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK ...@@ -834,6 +835,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
{ {
return false; return false;
} }
// check Gridwise GEMM // check Gridwise GEMM
return GridwiseGemm::CheckValidity( return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.e_grid_desc_m_n_); arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.e_grid_desc_m_n_);
......
...@@ -51,7 +51,7 @@ __global__ void ...@@ -51,7 +51,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx1030__)) defined(__gfx90a__) || defined(__gfx1030__))
constexpr index_t shared_block_size = constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType); GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType);
...@@ -552,7 +552,7 @@ struct DeviceGemmMultipleD_Dl : public DeviceGemmMultipleD<ALayout, ...@@ -552,7 +552,7 @@ struct DeviceGemmMultipleD_Dl : public DeviceGemmMultipleD<ALayout,
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx908" || if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx908" ||
ck::get_device_name() == "gfx1030") ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx1030")
{ {
return GridwiseGemm::CheckValidity( return GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_); arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_);
......
#pragma once #pragma once
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
// #include "ck/utility/get_id.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -17,18 +18,27 @@ struct Activation_Mul_Clamp ...@@ -17,18 +18,27 @@ struct Activation_Mul_Clamp
__host__ __device__ constexpr void operator()(int8_t& y, const int32_t& x) const __host__ __device__ constexpr void operator()(int8_t& y, const int32_t& x) const
{ {
float x_fp32 = ck::type_convert<float>(x); float y_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32); activationOp_(y_fp32, y_fp32);
float y_fp32 = math::clamp(requantScale_ * x_fp32, -128.f, 127.f); y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32); y = ck::type_convert<int8_t>(y_fp32);
} }
__host__ __device__ constexpr void operator()(float& y, const int32_t& x) const __device__ constexpr void operator()(int32_t& y, const int32_t& x) const
{ {
// We might type_convert to int8 after lambda in someplace // CAUSION - We might type_convert to int8 in threadwise copy
float x_fp32 = ck::type_convert<float>(x); // eg. GridwiseGemmDlMultipleD_km_kn_mn
activationOp_(x_fp32, x_fp32); float y_fp32 = ck::type_convert<float>(x);
y = math::clamp(requantScale_ * x_fp32, -128.f, 127.f); activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
__host__ constexpr void operator()(float& y, const float& x) const
{
// CAUSION - We might float in & float out in reference code
activationOp_(y, x);
y = math::clamp(requantScale_ * y, -128.f, 127.f);
} }
float requantScale_; float requantScale_;
...@@ -51,6 +61,17 @@ struct Activation_Mul2_Clamp ...@@ -51,6 +61,17 @@ struct Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32); y = ck::type_convert<int8_t>(y_fp32);
} }
__device__ constexpr void
operator()(int32_t& y, const int32_t& x, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_; Activation activationOp_;
}; };
...@@ -72,6 +93,17 @@ struct Add_Activation_Mul_Clamp ...@@ -72,6 +93,17 @@ struct Add_Activation_Mul_Clamp
y = ck::type_convert<int8_t>(y_fp32); y = ck::type_convert<int8_t>(y_fp32);
} }
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
float requantScale_; float requantScale_;
Activation activationOp_; Activation activationOp_;
}; };
...@@ -92,6 +124,17 @@ struct Add_Activation_Mul2_Clamp ...@@ -92,6 +124,17 @@ struct Add_Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32); y = ck::type_convert<int8_t>(y_fp32);
} }
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_; Activation activationOp_;
}; };
......
...@@ -185,8 +185,10 @@ struct GridwiseGemmDlMultipleD_km_kn_mn ...@@ -185,8 +185,10 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
return b_grid_desc_k0_n0_n1_k1; return b_grid_desc_k0_n0_n1_k1;
} }
// E desc for destination in blockwise copy
template <typename CGridDesc_M_N_>
__host__ __device__ static constexpr auto __host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n) MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N_& c_grid_desc_m_n)
{ {
const auto M = c_grid_desc_m_n.GetLength(I0); const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1); const auto N = c_grid_desc_m_n.GetLength(I1);
......
...@@ -135,6 +135,28 @@ __device__ void inner_product<half8_t, half8_t, float>(const half8_t& a, const h ...@@ -135,6 +135,28 @@ __device__ void inner_product<half8_t, half8_t, float>(const half8_t& a, const h
c); c);
} }
template <>
__device__ void inner_product<int8_t, int8_t, int32_t>(const int8_t& a, const int8_t& b, int32_t& c)
{
c += type_convert<int32_t>(a) * type_convert<int32_t>(b);
}
template <>
__device__ void
inner_product<int8x2_t, int8x2_t, int32_t>(const int8x2_t& a, const int8x2_t& b, int32_t& c)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I0],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I0],
c);
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I1],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I1],
c);
}
template <> template <>
__device__ void __device__ void
inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, int32_t& c) inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, int32_t& c)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<EDataType, int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -18,7 +18,7 @@ namespace device { ...@@ -18,7 +18,7 @@ namespace device {
namespace instance { namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK // grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_bias_perchannel_quantization_int8_instances( void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector< std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
...@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perchannel_quantization_int8_instances( ...@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perchannel_quantization_int8_instances(
Add_Activation_Mul2_Clamp<PassThrough>>>>& Add_Activation_Mul2_Clamp<PassThrough>>>>&
instances); instances);
void add_device_conv2d_bias_relu_perchannel_quantization_int8_instances( void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul2_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>) is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
{ {
if constexpr(is_same_v<Activation, PassThrough>) if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_bias_perchannel_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>) else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_bias_relu_perchannel_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(op_ptrs);
}
} }
} }
......
...@@ -18,7 +18,7 @@ namespace device { ...@@ -18,7 +18,7 @@ namespace device {
namespace instance { namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK // grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_bias_perlayer_quantization_int8_instances( void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector< std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
...@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perlayer_quantization_int8_instances( ...@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perlayer_quantization_int8_instances(
Add_Activation_Mul_Clamp<PassThrough>>>>& Add_Activation_Mul_Clamp<PassThrough>>>>&
instances); instances);
void add_device_conv2d_bias_relu_perlayer_quantization_int8_instances( void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>) is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
{ {
if constexpr(is_same_v<Activation, PassThrough>) if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_bias_perlayer_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>) else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
}
} }
} }
......
...@@ -18,7 +18,7 @@ namespace device { ...@@ -18,7 +18,7 @@ namespace device {
namespace instance { namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK // grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_perchannel_quantization_int8_instances( void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -33,7 +33,37 @@ void add_device_conv2d_perchannel_quantization_int8_instances( ...@@ -33,7 +33,37 @@ void add_device_conv2d_perchannel_quantization_int8_instances(
Activation_Mul2_Clamp<PassThrough>>>>& Activation_Mul2_Clamp<PassThrough>>>>&
instances); instances);
void add_device_conv2d_relu_perchannel_quantization_int8_instances( void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul2_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -97,9 +127,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -97,9 +127,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, int8_t>) is_same_v<OutDataType, int8_t>)
{ {
if constexpr(is_same_v<Activation, PassThrough>) if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_perchannel_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_perchannel_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>) else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_relu_perchannel_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(op_ptrs);
}
} }
} }
......
...@@ -18,7 +18,7 @@ namespace device { ...@@ -18,7 +18,7 @@ namespace device {
namespace instance { namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK // grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_perlayer_quantization_int8_instances( void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -33,7 +33,37 @@ void add_device_conv2d_perlayer_quantization_int8_instances( ...@@ -33,7 +33,37 @@ void add_device_conv2d_perlayer_quantization_int8_instances(
Activation_Mul_Clamp<PassThrough>>>>& Activation_Mul_Clamp<PassThrough>>>>&
instances); instances);
void add_device_conv2d_relu_perlayer_quantization_int8_instances( void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -94,9 +124,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -94,9 +124,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, int8_t>) is_same_v<OutDataType, int8_t>)
{ {
if constexpr(is_same_v<Activation, PassThrough>) if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_perlayer_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_perlayer_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>) else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_relu_perlayer_quantization_int8_instances(op_ptrs); {
add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(op_ptrs);
}
} }
} }
......
set(CONV2D_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
)
set(GEMM_QUANT_SRC
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
)
add_instance_library(device_quantization_instance add_instance_library(device_quantization_instance
device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp ${CONV2D_PERLAYER_QUANT_SRC}
device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp ${CONV2D_PERCHANNEL_QUANT_SRC}
device_conv2d_xdl_perchannel_quantization_int8_instance.cpp ${CONV2D_BIAS_PERLAYER_QUANT_SRC}
device_conv2d_xdl_perlayer_quantization_int8_instance.cpp ${CONV2D_BIAS_PERCHANNEL_QUANT_SRC}
${GEMM_QUANT_SRC}
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>;
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// clang-format off
template <typename DsLayout,
typename DsDatatype,
typename OutElementOp,
ConvolutionForwardSpecialization ConvSpec,
index_t DstScalarPerVector>
using device_grouped_conv2d_dl_int8_instances =
std::tuple<
// ###########################################| NDim| InData| WeiData| MultpleD| OutData| AccData| InLayout| WeiLayout| MultipleD| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ###########################################| Spatial| Type| Type| Type| Type| Type| | | Layout| | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ###########################################| | | | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK< NDimSpatial, int8_t, int8_t, DsDatatype, int8_t, int32_t, GNHWC, GKYXC, DsLayout, GNHWK, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, DstScalarPerVector>
>;
// clang-format on
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
F32_Tuple,
Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<Empty_Tuple,
Empty_Tuple,
Relu_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment