Unverified Commit 0a72e4df authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Change initialization method of tensor for iGEMM (#49)

* change init method
parent 58a80570
......@@ -179,26 +179,38 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method)
{
case 0:
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
// no initialization
break;
case 1:
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 2:
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 3:
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 4:
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 5:
out.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break;
default:
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
}
out.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
auto gen_wei = [](auto... is) {
return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
};
wei.GenerateTensorValue(gen_wei, num_thread);
}
auto f_make_for_device_nchw = [&]() {
......
......@@ -205,26 +205,31 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method)
{
case 0:
// no initialization
break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 1:
case 2:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 2:
case 3:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 3:
case 4:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 5:
in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
......@@ -233,7 +238,6 @@ int main(int argc, char* argv[])
};
wei.GenerateTensorValue(gen_wei, num_thread);
}
}
auto f_make_for_device_nchw = [&]() {
#if USE_DYNAMIC_MODE
......
......@@ -152,26 +152,31 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method)
{
case 0:
// no initialization
break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 1:
case 2:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 2:
case 3:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 3:
case 4:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 5:
in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
......@@ -180,7 +185,6 @@ int main(int argc, char* argv[])
};
wei.GenerateTensorValue(gen_wei, num_thread);
}
}
auto f_make_for_device_nchw = [&]() {
const auto in_lengths_dev = make_tuple(N, C, Hi, Wi);
......
......@@ -9,7 +9,7 @@ struct GeneratorTensor_1
int value = 1;
template <typename... Is>
double operator()(Is... is)
float operator()(Is... is)
{
return value;
}
......@@ -21,29 +21,31 @@ struct GeneratorTensor_2
int max_value = 1;
template <typename... Is>
double operator()(Is...)
float operator()(Is...)
{
return (std::rand() % (max_value - min_value)) + min_value;
}
};
template <typename T>
struct GeneratorTensor_3
{
T min_value = 0;
T max_value = 1;
template <typename... Is>
double operator()(Is... is)
float operator()(Is...)
{
std::array<ck::index_t, sizeof...(Is)> dims = {{static_cast<ck::index_t>(is)...}};
auto f_acc = [](auto a, auto b) { return 10 * a + b; };
float tmp = float(std::rand()) / float(RAND_MAX);
return std::accumulate(dims.begin(), dims.end(), ck::index_t(0), f_acc);
return min_value + tmp * (max_value - min_value);
}
};
struct GeneratorTensor_Checkboard
{
template <typename... Ts>
double operator()(Ts... Xs) const
float operator()(Ts... Xs) const
{
std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}};
return std::accumulate(dims.begin(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment