# 下载DCU支持的cupy ``` wget https://cancon.hpccube.com:65024/directlink/1/DTK-24.04.1_apps-20240611/NFS3.2_CentOS7.6/cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024.tar.gz tar -zxvf cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024.tar.gz ``` # 建立conda 环境 ``` conda create -n scikit python=3.8 pip install cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024/dist-py38/cupy-12.0.0b3-cp38-cp38-linux_x86_64.whl pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 安装后环境如下: ``` cupy 12.0.0b3 fastrlock 0.8.2 imageio 2.35.0 lazy_loader 0.4 networkx 3.1 numpy 1.24.4 packaging 24.1 pillow 10.4.0 pip 24.2 PyWavelets 1.4.1 scikit-image 0.21.0 scipy 1.10.1 setuptools 72.1.0 tifffile 2023.7.10 wheel 0.43.0 ``` # 执行测试 ``` import cupy as cp import numpy as np from skimage import data from skimage import filters from skimage import img_as_float # 加载示例图像 image = img_as_float(data.coins()) # 将图像从NumPy数组转换为CuPy数组,以利用GPU image_gpu = cp.array(image) # 定义一个使用GPU的函数(例如,应用高斯滤波器) def gaussian_filter_gpu(image, sigma=1): from cupyx.scipy.ndimage import gaussian_filter return gaussian_filter(image, sigma) # 应用高斯滤波器 filtered_image_gpu = gaussian_filter_gpu(image_gpu, sigma=1) # 将结果转换回NumPy数组 filtered_image = cp.asnumpy(filtered_image_gpu) # 测试输出 print("Original Image Shape:", image.shape) print("Filtered Image Shape:", filtered_image.shape) ```