source /opt/dtk-24.04.1/env.sh export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export HSA_FORCE_FINE_GRAIN_PCIE=1 export FLAGS_cudnn_batchnorm_spatial_persistent=1 export NCCL_MAX_NCHANNELS=20 export NCCL_MIN_NCHANNELS=20 export NCCL_P2P_LEVEL=SYS export GPU_MAX_HW_QUEUES=16 # 获取训练时间戳 start=$(date +%s.%N) # recommended paddle.__version__ == 2.0.0 #wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams numactl --cpunodebind=0,1 --membind=0,1 python3 -m paddle.distributed.launch --log_dir=./debug/ --gpus '0,1,2,3,4,5,6,7' tools/train.py \ -c configs/det/det_mv3_db.yml -o Global.epoch_num=100 Global.eval_batch_step=[0,60] Train.loader.batch_size_per_card=48 \ Train.loader.num_workers=8 Eval.loader.num_workers=0 wait # 获取训练结束时间戳,并计算差值得到总耗时,单位为秒 end=$(date +%s.%N) runtime=$(echo "$end - $start" | bc) echo "Total Time: $runtime" >> ttal_time.log