# 拉取镜像 ``` git clone -b paddle/release/2.5 http://developer.hpccube.com/codes/wangsen/paddle_dbnet.git cd paddle_dbnet ``` # 安装环境 ``` conda create -n dbnet python=3.10 source activate dbnet pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple pip install -r requirments.txt pip install numpy==1.23.5 ``` # 下载数据集 ``` mkdir /datasets wget https://bj.bcebos.com/ai-studio-online/a3e8c3692678433082ca73af675558098a8b64c03bef4659aa2540607d54a341?authorization=bce-auth-v1%2F5cfe9a5e1454405eb2a975c43eace6ec%2F2022-09-04T15%3A26%3A02Z%2F-1%2F%2F912a4d6fd021f5db138a325ebcb6ac726f628565deeb9b3204807d4fca761e12&responseContentDisposition=attachment%3B%20filename%3Dicdar2015.zip unzip a3e8c3692678433082ca73af675558098a8b64c03bef4659aa2540607d54a341?authorization=bce-auth-v1%2F5cfe9a5e1454405eb2a975c43eace6ec%2F2022-09-04T15:26:02Z%2F-1%2F%2F912a4d6fd021f5db138a325ebcb6ac726f628565deeb9b3204807d4fca761e12 ``` 数据集修改方法,修改label_file_list的路径 ``` vim configs/det/det_mv3_db.yml ``` # 下载预训练模型 ``` wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams ``` # 运行环境 ``` source /opt/dtk-24.04.1/env.sh export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export HSA_FORCE_FINE_GRAIN_PCIE=1 export FLAGS_cudnn_batchnorm_spatial_persistent=1 export NCCL_MAX_NCHANNELS=20 export NCCL_MIN_NCHANNELS=20 export NCCL_P2P_LEVEL=SYS export GPU_MAX_HW_QUEUES=16 # 获取训练时间戳 start=$(date +%s.%N) # recommended paddle.__version__ == 2.0.0 numactl --cpunodebind=0 --membind=0 python3 -m paddle.distributed.launch --log_dir=./debug/ --gpus '0,1,2,3,4,5,6,7' tools/train.py \ -c configs/det/det_mv3_db.yml -o Global.epoch_num=1500 Global.eval_batch_step=[0,60] Train.loader.batch_size_per_card=48 \ Train.loader.num_workers=8 Eval.loader.num_workers=0 wait # 获取训练结束时间戳,并计算差值得到总耗时,单位为秒 end=$(date +%s.%N) runtime=$(echo "$end - $start" | bc) echo "Total Time: $runtime" >> ttal_time.log ```