Commit e7ad27c3 authored by LDOUBLEV's avatar LDOUBLEV
Browse files

fix conflicts

parents c0b4cefd 91f5ab5c
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
__all__ = ["ResNet_SAST"]
class ConvBNLayer(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels * 4,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet_SAST(nn.Layer):
def __init__(self, in_channels=3, layers=50, **kwargs):
super(ResNet_SAST, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
# depth = [3, 4, 6, 3]
depth = [3, 4, 6, 3, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
# num_channels = [64, 256, 512,
# 1024] if layers >= 50 else [64, 64, 128, 256]
# num_filters = [64, 128, 256, 512]
num_channels = [64, 256, 512,
1024, 2048] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512, 512]
self.conv1_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=32,
kernel_size=3,
stride=2,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name="conv1_3")
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.stages = []
self.out_channels = [3, 64]
if layers >= 50:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(bottleneck_block)
self.out_channels.append(num_filters[block] * 4)
self.stages.append(nn.Sequential(*block_list))
else:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block],
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(basic_block)
self.out_channels.append(num_filters[block])
self.stages.append(nn.Sequential(*block_list))
def forward(self, inputs):
out = [inputs]
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
out.append(y)
y = self.pool2d_max(y)
for block in self.stages:
y = block(y)
out.append(y)
return out
\ No newline at end of file
......@@ -18,13 +18,15 @@ __all__ = ['build_head']
def build_head(config):
# det head
from .det_db_head import DBHead
from .det_east_head import EASTHead
from .det_sast_head import SASTHead
# rec head
from .rec_ctc_head import CTCHead
# cls head
from .cls_head import ClsHead
support_dict = ['DBHead', 'CTCHead', 'ClsHead']
support_dict = ['DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead']
module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format(
......
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class EASTHead(nn.Layer):
"""
"""
def __init__(self, in_channels, model_name, **kwargs):
super(EASTHead, self).__init__()
self.model_name = model_name
if self.model_name == "large":
num_outputs = [128, 64, 1, 8]
else:
num_outputs = [64, 32, 1, 8]
self.det_conv1 = ConvBNLayer(
in_channels=in_channels,
out_channels=num_outputs[0],
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="det_head1")
self.det_conv2 = ConvBNLayer(
in_channels=num_outputs[0],
out_channels=num_outputs[1],
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="det_head2")
self.score_conv = ConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[2],
kernel_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name="f_score")
self.geo_conv = ConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[3],
kernel_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name="f_geo")
def forward(self, x):
f_det = self.det_conv1(x)
f_det = self.det_conv2(f_det)
f_score = self.score_conv(f_det)
f_score = F.sigmoid(f_score)
f_geo = self.geo_conv(f_det)
f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800
pred = {'f_score': f_score, 'f_geo': f_geo}
return pred
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SAST_Header1(nn.Layer):
def __init__(self, in_channels, **kwargs):
super(SAST_Header1, self).__init__()
out_channels = [64, 64, 128]
self.score_conv = nn.Sequential(
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_score1'),
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_score2'),
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_score3'),
ConvBNLayer(out_channels[2], 1, 3, 1, act=None, name='f_score4')
)
self.border_conv = nn.Sequential(
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_border1'),
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_border2'),
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_border3'),
ConvBNLayer(out_channels[2], 4, 3, 1, act=None, name='f_border4')
)
def forward(self, x):
f_score = self.score_conv(x)
f_score = F.sigmoid(f_score)
f_border = self.border_conv(x)
return f_score, f_border
class SAST_Header2(nn.Layer):
def __init__(self, in_channels, **kwargs):
super(SAST_Header2, self).__init__()
out_channels = [64, 64, 128]
self.tvo_conv = nn.Sequential(
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tvo1'),
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tvo2'),
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tvo3'),
ConvBNLayer(out_channels[2], 8, 3, 1, act=None, name='f_tvo4')
)
self.tco_conv = nn.Sequential(
ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tco1'),
ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tco2'),
ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tco3'),
ConvBNLayer(out_channels[2], 2, 3, 1, act=None, name='f_tco4')
)
def forward(self, x):
f_tvo = self.tvo_conv(x)
f_tco = self.tco_conv(x)
return f_tvo, f_tco
class SASTHead(nn.Layer):
"""
"""
def __init__(self, in_channels, **kwargs):
super(SASTHead, self).__init__()
self.head1 = SAST_Header1(in_channels)
self.head2 = SAST_Header2(in_channels)
def forward(self, x):
f_score, f_border = self.head1(x)
f_tvo, f_tco = self.head2(x)
predicts = {}
predicts['f_score'] = f_score
predicts['f_border'] = f_border
predicts['f_tvo'] = f_tvo
predicts['f_tco'] = f_tco
return predicts
\ No newline at end of file
......@@ -16,8 +16,10 @@ __all__ = ['build_neck']
def build_neck(config):
from .db_fpn import DBFPN
from .east_fpn import EASTFPN
from .sast_fpn import SASTFPN
from .rnn import SequenceEncoder
support_dict = ['DBFPN', 'SequenceEncoder']
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder']
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
......
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class DeConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(DeConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.deconv = nn.Conv2DTranspose(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.deconv(x)
x = self.bn(x)
return x
class EASTFPN(nn.Layer):
def __init__(self, in_channels, model_name, **kwargs):
super(EASTFPN, self).__init__()
self.model_name = model_name
if self.model_name == "large":
self.out_channels = 128
else:
self.out_channels = 64
self.in_channels = in_channels[::-1]
self.h1_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[1],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_1")
self.h2_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[2],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_2")
self.h3_conv = ConvBNLayer(
in_channels=self.out_channels+self.in_channels[3],
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_h_3")
self.g0_deconv = DeConvBNLayer(
in_channels=self.in_channels[0],
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_0")
self.g1_deconv = DeConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_1")
self.g2_deconv = DeConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=4,
stride=2,
padding=1,
if_act=True,
act='relu',
name="unet_g_2")
self.g3_conv = ConvBNLayer(
in_channels=self.out_channels,
out_channels=self.out_channels,
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="unet_g_3")
def forward(self, x):
f = x[::-1]
h = f[0]
g = self.g0_deconv(h)
h = paddle.concat([g, f[1]], axis=1)
h = self.h1_conv(h)
g = self.g1_deconv(h)
h = paddle.concat([g, f[2]], axis=1)
h = self.h2_conv(h)
g = self.g2_deconv(h)
h = paddle.concat([g, f[3]], axis=1)
h = self.h3_conv(h)
g = self.g3_conv(h)
return g
\ No newline at end of file
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class DeConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups=1,
if_act=True,
act=None,
name=None):
super(DeConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.deconv = nn.Conv2DTranspose(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.deconv(x)
x = self.bn(x)
return x
class FPN_Up_Fusion(nn.Layer):
def __init__(self, in_channels):
super(FPN_Up_Fusion, self).__init__()
in_channels = in_channels[::-1]
out_channels = [256, 256, 192, 192, 128]
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0')
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1')
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2')
self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3')
self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4')
self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0')
self.g1_conv = nn.Sequential(
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'),
DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2')
)
self.g2_conv = nn.Sequential(
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'),
DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2')
)
self.g3_conv = nn.Sequential(
ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'),
DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2')
)
self.g4_conv = nn.Sequential(
ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'),
ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2')
)
def _add_relu(self, x1, x2):
x = paddle.add(x=x1, y=x2)
x = F.relu(x)
return x
def forward(self, x):
f = x[2:][::-1]
h0 = self.h0_conv(f[0])
h1 = self.h1_conv(f[1])
h2 = self.h2_conv(f[2])
h3 = self.h3_conv(f[3])
h4 = self.h4_conv(f[4])
g0 = self.g0_conv(h0)
g1 = self._add_relu(g0, h1)
g1 = self.g1_conv(g1)
g2 = self.g2_conv(self._add_relu(g1, h2))
g3 = self.g3_conv(self._add_relu(g2, h3))
g4 = self.g4_conv(self._add_relu(g3, h4))
return g4
class FPN_Down_Fusion(nn.Layer):
def __init__(self, in_channels):
super(FPN_Down_Fusion, self).__init__()
out_channels = [32, 64, 128]
self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0')
self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1')
self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2')
self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0')
self.g1_conv = nn.Sequential(
ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'),
ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2')
)
self.g2_conv = nn.Sequential(
ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'),
ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2')
)
def forward(self, x):
f = x[:3]
h0 = self.h0_conv(f[0])
h1 = self.h1_conv(f[1])
h2 = self.h2_conv(f[2])
g0 = self.g0_conv(h0)
g1 = paddle.add(x=g0, y=h1)
g1 = F.relu(g1)
g1 = self.g1_conv(g1)
g2 = paddle.add(x=g1, y=h2)
g2 = F.relu(g2)
g2 = self.g2_conv(g2)
return g2
class Cross_Attention(nn.Layer):
def __init__(self, in_channels):
super(Cross_Attention, self).__init__()
self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta')
self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi')
self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g')
self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight')
self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc')
self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight')
self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc')
self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn')
def _cal_fweight(self, f, shape):
f_theta, f_phi, f_g = f
#flatten
f_theta = paddle.transpose(f_theta, [0, 2, 3, 1])
f_theta = paddle.reshape(f_theta, [shape[0] * shape[1], shape[2], 128])
f_phi = paddle.transpose(f_phi, [0, 2, 3, 1])
f_phi = paddle.reshape(f_phi, [shape[0] * shape[1], shape[2], 128])
f_g = paddle.transpose(f_g, [0, 2, 3, 1])
f_g = paddle.reshape(f_g, [shape[0] * shape[1], shape[2], 128])
#correlation
f_attn = paddle.matmul(f_theta, paddle.transpose(f_phi, [0, 2, 1]))
#scale
f_attn = f_attn / (128**0.5)
f_attn = F.softmax(f_attn)
#weighted sum
f_weight = paddle.matmul(f_attn, f_g)
f_weight = paddle.reshape(
f_weight, [shape[0], shape[1], shape[2], 128])
return f_weight
def forward(self, f_common):
f_shape = paddle.shape(f_common)
# print('f_shape: ', f_shape)
f_theta = self.theta_conv(f_common)
f_phi = self.phi_conv(f_common)
f_g = self.g_conv(f_common)
######## horizon ########
fh_weight = self._cal_fweight([f_theta, f_phi, f_g],
[f_shape[0], f_shape[2], f_shape[3]])
fh_weight = paddle.transpose(fh_weight, [0, 3, 1, 2])
fh_weight = self.fh_weight_conv(fh_weight)
#short cut
fh_sc = self.fh_sc_conv(f_common)
f_h = F.relu(fh_weight + fh_sc)
######## vertical ########
fv_theta = paddle.transpose(f_theta, [0, 1, 3, 2])
fv_phi = paddle.transpose(f_phi, [0, 1, 3, 2])
fv_g = paddle.transpose(f_g, [0, 1, 3, 2])
fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g],
[f_shape[0], f_shape[3], f_shape[2]])
fv_weight = paddle.transpose(fv_weight, [0, 3, 2, 1])
fv_weight = self.fv_weight_conv(fv_weight)
#short cut
fv_sc = self.fv_sc_conv(f_common)
f_v = F.relu(fv_weight + fv_sc)
######## merge ########
f_attn = paddle.concat([f_h, f_v], axis=1)
f_attn = self.f_attn_conv(f_attn)
return f_attn
class SASTFPN(nn.Layer):
def __init__(self, in_channels, with_cab=False, **kwargs):
super(SASTFPN, self).__init__()
self.in_channels = in_channels
self.with_cab = with_cab
self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels)
self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels)
self.out_channels = 128
self.cross_attention = Cross_Attention(self.out_channels)
def forward(self, x):
#down fpn
f_down = self.FPN_Down_Fusion(x)
#up fpn
f_up = self.FPN_Up_Fusion(x)
#fusion
f_common = paddle.add(x=f_down, y=f_up)
f_common = F.relu(f_common)
if self.with_cab:
# print('enhence f_common with CAB.')
f_common = self.cross_attention(f_common)
return f_common
......@@ -24,11 +24,13 @@ __all__ = ['build_post_process']
def build_post_process(config, global_config=None):
from .db_postprocess import DBPostProcess
from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode
from .cls_postprocess import ClsPostProcess
support_dict = [
'DBPostProcess', 'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess'
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess'
]
config = copy.deepcopy(config)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from .locality_aware_nms import nms_locality
import cv2
import os
import sys
# __dir__ = os.path.dirname(os.path.abspath(__file__))
# sys.path.append(__dir__)
# sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
class EASTPostProcess(object):
"""
The post process for EAST.
"""
def __init__(self,
score_thresh=0.8,
cover_thresh=0.1,
nms_thresh=0.2,
**kwargs):
self.score_thresh = score_thresh
self.cover_thresh = cover_thresh
self.nms_thresh = nms_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def restore_rectangle_quad(self, origin, geometry):
"""
Restore rectangle from quadrangle.
"""
# quad
origin_concat = np.concatenate(
(origin, origin, origin, origin), axis=1) # (n, 8)
pred_quads = origin_concat - geometry
pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
return pred_quads
def detect(self,
score_map,
geo_map,
score_thresh=0.8,
cover_thresh=0.1,
nms_thresh=0.2):
"""
restore text boxes from score map and geo map
"""
score_map = score_map[0]
geo_map = np.swapaxes(geo_map, 1, 0)
geo_map = np.swapaxes(geo_map, 1, 2)
# filter the score map
xy_text = np.argwhere(score_map > score_thresh)
if len(xy_text) == 0:
return []
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
#restore quad proposals
text_box_restored = self.restore_rectangle_quad(
xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
if self.is_python35:
import lanms
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
else:
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0:
return []
# Here we filter some low score boxes by the average score map,
# this is different from the orginal paper.
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape(
(-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > cover_thresh]
return boxes
def sort_poly(self, p):
"""
Sort polygons.
"""
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis + 1) % 4,\
(min_axis + 2) % 4, (min_axis + 3) % 4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
def __call__(self, outs_dict, shape_list):
score_list = outs_dict['f_score']
geo_list = outs_dict['f_geo']
img_num = len(shape_list)
dt_boxes_list = []
for ino in range(img_num):
score = score_list[ino].numpy()
geo = geo_list[ino].numpy()
boxes = self.detect(
score_map=score,
geo_map=geo,
score_thresh=self.score_thresh,
cover_thresh=self.cover_thresh,
nms_thresh=self.nms_thresh)
boxes_norm = []
if len(boxes) > 0:
h, w = score.shape[1:]
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
for i_box, box in enumerate(boxes):
box = self.sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 \
or np.linalg.norm(box[3] - box[0]) < 5:
continue
boxes_norm.append(box)
dt_boxes_list.append({'points': np.array(boxes_norm)})
return dt_boxes_list
\ No newline at end of file
"""
Locality aware nms.
"""
import numpy as np
from shapely.geometry import Polygon
def intersection(g, p):
"""
Intersection.
"""
g = Polygon(g[:8].reshape((4, 2)))
p = Polygon(p[:8].reshape((4, 2)))
g = g.buffer(0)
p = p.buffer(0)
if not g.is_valid or not p.is_valid:
return 0
inter = Polygon(g).intersection(Polygon(p)).area
union = g.area + p.area - inter
if union == 0:
return 0
else:
return inter / union
def intersection_iog(g, p):
"""
Intersection_iog.
"""
g = Polygon(g[:8].reshape((4, 2)))
p = Polygon(p[:8].reshape((4, 2)))
if not g.is_valid or not p.is_valid:
return 0
inter = Polygon(g).intersection(Polygon(p)).area
#union = g.area + p.area - inter
union = p.area
if union == 0:
print("p_area is very small")
return 0
else:
return inter / union
def weighted_merge(g, p):
"""
Weighted merge.
"""
g[:8] = (g[8] * g[:8] + p[8] * p[:8]) / (g[8] + p[8])
g[8] = (g[8] + p[8])
return g
def standard_nms(S, thres):
"""
Standard nms.
"""
order = np.argsort(S[:, 8])[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return S[keep]
def standard_nms_inds(S, thres):
"""
Standard nms, retun inds.
"""
order = np.argsort(S[:, 8])[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return keep
def nms(S, thres):
"""
nms.
"""
order = np.argsort(S[:, 8])[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return keep
def soft_nms(boxes_in, Nt_thres=0.3, threshold=0.8, sigma=0.5, method=2):
"""
soft_nms
:para boxes_in, N x 9 (coords + score)
:para threshould, eliminate cases min score(0.001)
:para Nt_thres, iou_threshi
:para sigma, gaussian weght
:method, linear or gaussian
"""
boxes = boxes_in.copy()
N = boxes.shape[0]
if N is None or N < 1:
return np.array([])
pos, maxpos = 0, 0
weight = 0.0
inds = np.arange(N)
tbox, sbox = boxes[0].copy(), boxes[0].copy()
for i in range(N):
maxscore = boxes[i, 8]
maxpos = i
tbox = boxes[i].copy()
ti = inds[i]
pos = i + 1
#get max box
while pos < N:
if maxscore < boxes[pos, 8]:
maxscore = boxes[pos, 8]
maxpos = pos
pos = pos + 1
#add max box as a detection
boxes[i, :] = boxes[maxpos, :]
inds[i] = inds[maxpos]
#swap
boxes[maxpos, :] = tbox
inds[maxpos] = ti
tbox = boxes[i].copy()
pos = i + 1
#NMS iteration
while pos < N:
sbox = boxes[pos].copy()
ts_iou_val = intersection(tbox, sbox)
if ts_iou_val > 0:
if method == 1:
if ts_iou_val > Nt_thres:
weight = 1 - ts_iou_val
else:
weight = 1
elif method == 2:
weight = np.exp(-1.0 * ts_iou_val**2 / sigma)
else:
if ts_iou_val > Nt_thres:
weight = 0
else:
weight = 1
boxes[pos, 8] = weight * boxes[pos, 8]
#if box score falls below thresold, discard the box by
#swaping last box update N
if boxes[pos, 8] < threshold:
boxes[pos, :] = boxes[N - 1, :]
inds[pos] = inds[N - 1]
N = N - 1
pos = pos - 1
pos = pos + 1
return boxes[:N]
def nms_locality(polys, thres=0.3):
"""
locality aware nms of EAST
:param polys: a N*9 numpy array. first 8 coordinates, then prob
:return: boxes after nms
"""
S = []
p = None
for g in polys:
if p is not None and intersection(g, p) > thres:
p = weighted_merge(g, p)
else:
if p is not None:
S.append(p)
p = g
if p is not None:
S.append(p)
if len(S) == 0:
return np.array([])
return standard_nms(np.array(S), thres)
if __name__ == '__main__':
# 343,350,448,135,474,143,369,359
print(
Polygon(np.array([[343, 350], [448, 135], [474, 143], [369, 359]]))
.area)
\ No newline at end of file
......@@ -27,7 +27,7 @@ class BaseRecLabelDecode(object):
'ch', 'en', 'en_sensitive', 'french', 'german', 'japan', 'korean'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, self.character_str)
support_character_type, character_type)
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
import numpy as np
from .locality_aware_nms import nms_locality
# import lanms
import cv2
import time
class SASTPostProcess(object):
"""
The post process for SAST.
"""
def __init__(self,
score_thresh=0.5,
nms_thresh=0.2,
sample_pts_num=2,
shrink_ratio_of_width=0.3,
expand_scale=1.0,
tcl_map_thresh=0.5,
**kwargs):
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.sample_pts_num = sample_pts_num
self.shrink_ratio_of_width = shrink_ratio_of_width
self.expand_scale = expand_scale
self.tcl_map_thresh = tcl_map_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def point_pair2poly(self, point_pair_list):
"""
Transfer vertical point_pairs into poly point in clockwise.
"""
# constract poly
point_num = len(point_pair_list) * 2
point_list = [0] * point_num
for idx, point_pair in enumerate(point_pair_list):
point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2)
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
"""
expand poly along width.
"""
point_num = poly.shape[0]
left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
(np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0)
right_quad = np.array([poly[point_num // 2 - 2], poly[point_num // 2 - 1],
poly[point_num // 2], poly[point_num // 2 + 1]], dtype=np.float32)
right_ratio = 1.0 + \
shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
(np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio)
poly[0] = left_quad_expand[0]
poly[-1] = left_quad_expand[-1]
poly[point_num // 2 - 1] = right_quad_expand[1]
poly[point_num // 2] = right_quad_expand[2]
return poly
def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
"""Restore quad."""
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
xy_text = xy_text[:, ::-1] # (n, 2)
# Sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 1])]
scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
scores = scores[:, np.newaxis]
# Restore
point_num = int(tvo_map.shape[-1] / 2)
assert point_num == 4
tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
quads = xy_text_tile - tvo_map
return scores, quads, xy_text
def quad_area(self, quad):
"""
compute area of a quad.
"""
edge = [
(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
(quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
(quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
(quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])
]
return np.sum(edge) / 2.
def nms(self, dets):
if self.is_python35:
import lanms
dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
else:
dets = nms_locality(dets, self.nms_thresh)
return dets
def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
"""
Cluster pixels in tcl_map based on quads.
"""
instance_count = quads.shape[0] + 1 # contain background
instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
if instance_count == 1:
return instance_count, instance_label_map
# predict text center
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
n = xy_text.shape[0]
xy_text = xy_text[:, ::-1] # (n, 2)
tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
pred_tc = xy_text - tco
# get gt text center
m = quads.shape[0]
gt_tc = np.mean(quads, axis=1) # (m, 2)
pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2)
gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
return instance_count, instance_label_map
def estimate_sample_pts_num(self, quad, xy_text):
"""
Estimate sample points number.
"""
eh = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])) / 2.0
ew = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
dense_sample_pts_num = max(2, int(ew))
dense_xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, dense_sample_pts_num,
endpoint=True, dtype=np.float32).astype(np.int32)]
dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1]
estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1))
sample_pts_num = max(2, int(estimate_arc_len / eh))
return sample_pts_num
def detect_sast(self, tcl_map, tvo_map, tbo_map, tco_map, ratio_w, ratio_h, src_w, src_h,
shrink_ratio_of_width=0.3, tcl_map_thresh=0.5, offset_expand=1.0, out_strid=4.0):
"""
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
"""
# restore quad
scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map)
dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
dets = self.nms(dets)
if dets.shape[0] == 0:
return []
quads = dets[:, :-1].reshape(-1, 4, 2)
# Compute quad area
quad_areas = []
for quad in quads:
quad_areas.append(-self.quad_area(quad))
# instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count, instance_label_map = self.cluster_by_quads_tco(tcl_map, tcl_map_thresh, quads, tco_map)
# restore single poly with tcl instance.
poly_list = []
for instance_idx in range(1, instance_count):
xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
quad = quads[instance_idx - 1]
q_area = quad_areas[instance_idx - 1]
if q_area < 5:
continue
#
len1 = float(np.linalg.norm(quad[0] -quad[1]))
len2 = float(np.linalg.norm(quad[1] -quad[2]))
min_len = min(len1, len2)
if min_len < 3:
continue
# filter small CC
if xy_text.shape[0] <= 0:
continue
# filter low confidence instance
xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue
# sort xy_text
left_center_pt = np.array([[(quad[0, 0] + quad[-1, 0]) / 2.0,
(quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
right_center_pt = np.array([[(quad[1, 0] + quad[2, 0]) / 2.0,
(quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / \
(np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
xy_text = xy_text[np.argsort(proj_value)]
# Sample pts in tcl map
if self.sample_pts_num == 0:
sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
else:
sample_pts_num = self.sample_pts_num
xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, sample_pts_num,
endpoint=True, dtype=np.float32).astype(np.int32)]
point_pair_list = []
for x, y in xy_center_line:
# get corresponding offset
offset = tbo_map[y, x, :].reshape(2, 2)
if offset_expand != 1.0:
offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
expand_length = np.clip(offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0)
offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal
# original point
ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (ori_yx + offset)[:, ::-1]* out_strid / np.array([ratio_w, ratio_h]).reshape(-1, 2)
point_pair_list.append(point_pair)
# ndarry: (x, 2), expand poly along width
detected_poly = self.point_pair2poly(point_pair_list)
detected_poly = self.expand_poly_along_width(detected_poly, shrink_ratio_of_width)
detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)
poly_list.append(detected_poly)
return poly_list
def __call__(self, outs_dict, shape_list):
score_list = outs_dict['f_score']
border_list = outs_dict['f_border']
tvo_list = outs_dict['f_tvo']
tco_list = outs_dict['f_tco']
img_num = len(shape_list)
poly_lists = []
for ino in range(img_num):
p_score = score_list[ino].transpose((1,2,0)).numpy()
p_border = border_list[ino].transpose((1,2,0)).numpy()
p_tvo = tvo_list[ino].transpose((1,2,0)).numpy()
p_tco = tco_list[ino].transpose((1,2,0)).numpy()
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h,
shrink_ratio_of_width=self.shrink_ratio_of_width,
tcl_map_thresh=self.tcl_map_thresh, offset_expand=self.expand_scale)
poly_lists.append({'points': np.array(poly_list)})
return poly_lists
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import string
import re
from .check import check_config_params
import sys
class CharacterOps(object):
""" Convert between text-label and text-index """
def __init__(self, config):
self.character_type = config['character_type']
self.loss_type = config['loss_type']
self.max_text_len = config['max_text_length']
if self.character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif self.character_type == "ch":
character_dict_path = config['character_dict_path']
add_space = False
if 'use_space_char' in config:
add_space = config['use_space_char']
self.character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if add_space:
self.character_str += " "
dict_character = list(self.character_str)
elif self.character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
else:
self.character_str = None
assert self.character_str is not None, \
"Nonsupport type of the character: {}".format(self.character_str)
self.beg_str = "sos"
self.end_str = "eos"
if self.loss_type == "attention":
dict_character = [self.beg_str, self.end_str] + dict_character
elif self.loss_type == "srn":
dict_character = dict_character + [self.beg_str, self.end_str]
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
text = np.array(text_list)
return text
def decode(self, text_index, is_remove_duplicate=False):
""" convert text-index into text-label. """
char_list = []
char_num = self.get_char_num()
if self.loss_type == "attention":
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
ignored_tokens = [beg_idx, end_idx]
else:
ignored_tokens = [char_num]
for idx in range(len(text_index)):
if text_index[idx] in ignored_tokens:
continue
if is_remove_duplicate:
if idx > 0 and text_index[idx - 1] == text_index[idx]:
continue
char_list.append(self.character[int(text_index[idx])])
text = ''.join(char_list)
return text
def get_char_num(self):
return len(self.character)
def get_beg_end_flag_idx(self, beg_or_end):
if self.loss_type == "attention":
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx"\
% beg_or_end
return idx
else:
err = "error in get_beg_end_flag_idx when using the loss %s"\
% (self.loss_type)
assert False, err
def cal_predicts_accuracy(char_ops,
preds,
preds_lod,
labels,
labels_lod,
is_remove_duplicate=False):
acc_num = 0
img_num = 0
for ino in range(len(labels_lod) - 1):
beg_no = preds_lod[ino]
end_no = preds_lod[ino + 1]
preds_text = preds[beg_no:end_no].reshape(-1)
preds_text = char_ops.decode(preds_text, is_remove_duplicate)
beg_no = labels_lod[ino]
end_no = labels_lod[ino + 1]
labels_text = labels[beg_no:end_no].reshape(-1)
labels_text = char_ops.decode(labels_text, is_remove_duplicate)
img_num += 1
if preds_text == labels_text:
acc_num += 1
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def cal_predicts_accuracy_srn(char_ops,
preds,
labels,
max_text_len,
is_debug=False):
acc_num = 0
img_num = 0
char_num = char_ops.get_char_num()
total_len = preds.shape[0]
img_num = int(total_len / max_text_len)
for i in range(img_num):
cur_label = []
cur_pred = []
for j in range(max_text_len):
if labels[j + i * max_text_len] != int(char_num-1): #0
cur_label.append(labels[j + i * max_text_len][0])
else:
break
for j in range(max_text_len + 1):
if j < len(cur_label) and preds[j + i * max_text_len][
0] != cur_label[j]:
break
elif j == len(cur_label) and j == max_text_len:
acc_num += 1
break
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(char_num-1):
acc_num += 1
break
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def convert_rec_attention_infer_res(preds):
img_num = preds.shape[0]
target_lod = [0]
convert_ids = []
for ino in range(img_num):
end_pos = np.where(preds[ino, :] == 1)[0]
if len(end_pos) <= 1:
text_list = preds[ino, 1:]
else:
text_list = preds[ino, 1:end_pos[1]]
target_lod.append(target_lod[ino] + len(text_list))
convert_ids = convert_ids + list(text_list)
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
def convert_rec_label_to_lod(ori_labels):
img_num = len(ori_labels)
target_lod = [0]
convert_ids = []
for ino in range(img_num):
target_lod.append(target_lod[ino] + len(ori_labels[ino]))
convert_ids = convert_ids + list(ori_labels[ino])
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import logging
logger = logging.getLogger(__name__)
def check_config_params(config, config_name, params):
for param in params:
if param not in config:
err = "param %s didn't find in %s!" % (param, config_name)
assert False, err
return
......@@ -230,10 +230,10 @@ def draw_ocr_box_txt(image,
box[2][1], box[3][0], box[3][1]
],
outline=color)
box_height = math.sqrt((box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][
1]) ** 2)
box_width = math.sqrt((box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][
1]) ** 2)
box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
1])**2)
box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
1])**2)
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
......@@ -260,7 +260,6 @@ def str_count(s):
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
......@@ -295,7 +294,6 @@ def text_visual(texts,
img_w(int): the width of blank img
font_path: the path of font which is used to draw text
return(array):
"""
if scores is not None:
assert len(texts) == len(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment