Commit dad8397f authored by LDOUBLEV's avatar LDOUBLEV
Browse files

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into test_v7

parents 5801311c da5d7ee3
......@@ -2,7 +2,8 @@ include LICENSE
include README.md
recursive-include ppocr/utils *.txt utility.py logging.py network.py
recursive-include ppocr/data/ *.py
recursive-include ppocr/data *.py
recursive-include ppocr/postprocess *.py
recursive-include tools/infer *.py
recursive-include ppocr/utils/e2e_utils/ *.py
\ No newline at end of file
recursive-include ppocr/utils/e2e_utils *.py
recursive-include ppstructure *.py
\ No newline at end of file
......@@ -11,7 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddleocr
from .paddleocr import *
__all__ = ['PaddleOCR', 'draw_ocr']
from .paddleocr import PaddleOCR
from .tools.infer.utility import draw_ocr
__version__ = paddleocr.VERSION
__all__ = ['PaddleOCR', 'PPStructure', 'draw_ocr', 'draw_structure_result', 'save_structure_res','download_with_progressbar']
......@@ -14,7 +14,7 @@ PaddleOCR在Windows 平台下基于`Visual Studio 2019 Community` 进行了测
### Step1: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/windows_cpp_inference.html)
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows)
解压后`D:\projects\fluid_inference`目录包含内容为:
```
......@@ -93,3 +93,5 @@ cd D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release
### 注意
* 在Windows下的终端中执行文件exe时,可能会发生乱码的现象,此时需要在终端中输入`CHCP 65001`,将终端的编码方式由GBK编码(默认)改为UTF-8编码,更加具体的解释可以参考这篇博客:[https://blog.csdn.net/qq_35038153/article/details/78430359](https://blog.csdn.net/qq_35038153/article/details/78430359)
* 编译时,如果报错`错误:C1083 无法打开包括文件:"dirent.h":No such file or directory`,可以参考该[文档](https://blog.csdn.net/Dora_blank/article/details/117740837#41_C1083_direnthNo_such_file_or_directory_54),新建`dirent.h`文件,并添加到`VC++`的包含目录中。
......@@ -18,6 +18,7 @@ PaddleOCR模型部署。
* 首先需要从opencv官网上下载在Linux环境下源码编译的包,以opencv3.4.7为例,下载命令如下。
```
cd deploy/cpp_infer
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
......@@ -184,7 +185,7 @@ cmake .. \
make -j
```
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`**注意**:以上路径都写绝对路径,不要写相对路径。
* 编译完成之后,会在`build`文件夹下生成一个名为`ocr_system`的可执行文件。
......
......@@ -18,6 +18,7 @@ PaddleOCR model deployment.
* First of all, you need to download the source code compiled package in the Linux environment from the opencv official website. Taking opencv3.4.7 as an example, the download command is as follows.
```
cd deploy/cpp_infer
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
......
......@@ -29,6 +29,7 @@ deploy/hubserving/ocr_system/
### 1. 准备环境
```shell
# 安装paddlehub
# paddlehub 需要 python>3.6.2
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
......
......@@ -30,6 +30,7 @@ The following steps take the 2-stage series service as an example. If only the d
### 1. Prepare the environment
```shell
# Install paddlehub
# python>3.6.2 is required bt paddlehub
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
......
......@@ -18,9 +18,9 @@ PaddleOCR 也提供了数据格式转换脚本,可以将官网 label 转换支
```
# 将官网下载的标签文件转换为 train_icdar2015_label.txt
python gen_label.py --mode="det" --root_path="icdar_c4_train_imgs/" \
--input_path="ch4_training_localization_transcription_gt" \
--output_label="train_icdar2015_label.txt"
python gen_label.py --mode="det" --root_path="/path/to/icdar_c4_train_imgs/" \
--input_path="/path/to/ch4_training_localization_transcription_gt" \
--output_label="/path/to/train_icdar2015_label.txt"
```
解压数据集和下载标注文件后,PaddleOCR/train_data/ 有两个文件夹和两个文件,分别是:
......
......@@ -147,12 +147,12 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_m
如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
如果想使用CPU进行预测,执行命令如下
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="DB文本检测模型推理"></a>
......@@ -221,7 +221,7 @@ python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Gl
```
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_sast_polygon=True`,**可以执行如下命令:
SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`,同时,还需要增加参数`--det_sast_polygon=True`,可以执行如下命令:
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
```
......
......@@ -330,6 +330,8 @@ PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi
```
意大利文由拉丁字母组成,因此执行完命令后会得到名为 rec_latin_lite_train.yml 的配置文件。
2. 手动修改配置文件
您也可以手动修改模版中的以下几个字段:
......
......@@ -5,23 +5,29 @@
### 1.1 安装whl包
pip安装
```bash
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
```
本地构建并安装
```bash
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x是paddleocr的版本号
```
## 2 使用
### 2.1 代码使用
paddleocr whl包会自动下载ppocr轻量级模型作为默认模型,可以根据第3节**自定义模型**进行自定义更换。
* 检测+方向分类器+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
......@@ -32,6 +38,7 @@ for line in result:
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
......@@ -40,31 +47,36 @@ im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```
结果可视化
<div align="center">
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>
* 检测+识别
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path,cls=False)
result = ocr.ocr(img_path, cls=False)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
......@@ -73,37 +85,45 @@ im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```
结果可视化
<div align="center">
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>
* 方向分类器+识别
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```
* 单独执行检测
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path, rec=False)
......@@ -118,13 +138,16 @@ im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/Pa
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```
结果可视化
......@@ -133,29 +156,37 @@ im_show.save('result.jpg')
</div>
* 单独执行识别
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR() # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path, det=False)
for line in result:
print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```
* 单独执行方向分类器
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
for line in result:
print(line)
```
结果是一个list,每个item只包含分类结果和分类置信度
```bash
['0', 0.9999924]
```
......@@ -163,15 +194,19 @@ for line in result:
### 2.2 通过命令行使用
查看帮助信息
```bash
paddleocr -h
```
* 检测+方向分类器+识别全流程
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --use_angle_cls true
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
......@@ -180,10 +215,13 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --use_angle_cls true
```
* 检测+识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
......@@ -192,20 +230,25 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
* 方向分类器+识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```
* 单独执行检测
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
......@@ -214,34 +257,42 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
* 单独执行识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```
* 单独执行方向分类器
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false --rec false
```
结果是一个list,每个item只包含分类结果和分类置信度
```bash
['0', 0.9999924]
```
## 3 自定义模型
当内置模型无法满足需求时,需要使用到自己训练的模型。
首先,参照[inference.md](./inference.md) 第一节转换将检测、分类和识别模型转换为inference模型,然后按照如下方式使用
当内置模型无法满足需求时,需要使用到自己训练的模型。 首先,参照[inference.md](./inference.md) 第一节转换将检测、分类和识别模型转换为inference模型,然后按照如下方式使用
### 3.1 代码使用
```python
from paddleocr import PaddleOCR, draw_ocr
# 模型路径下必须含有model和params文件
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}',
rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}',
use_angle_cls=True)
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
......@@ -249,6 +300,7 @@ for line in result:
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
......@@ -269,8 +321,10 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_
### 4.1 网络图片
- 代码使用
```python
from paddleocr import PaddleOCR, draw_ocr
from paddleocr import PaddleOCR, draw_ocr, download_with_progressbar
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
......@@ -281,7 +335,9 @@ for line in result:
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
download_with_progressbar(img_path, 'tmp.jpg')
image = Image.open('tmp.jpg').convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
......@@ -289,15 +345,21 @@ im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
- 命令行模式
```bash
paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg --use_angle_cls=true
```
### 4.2 numpy数组
仅通过代码使用时支持numpy数组作为输入
```python
import cv2
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
......@@ -310,6 +372,7 @@ for line in result:
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
......@@ -356,3 +419,4 @@ im_show.save('result.jpg')
| rec | 前向时是否启动识别 | TRUE |
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
| show_log | 是否打印det和rec等信息 | FALSE |
| type | 执行ocr或者表格结构化, 值可选['ocr','structure'] | ocr |
......@@ -154,12 +154,12 @@ Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest si
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="DB_DETECTION"></a>
......@@ -230,7 +230,7 @@ First, convert the model saved in the SAST text detection training process into
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_tt
```
**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:
For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`, run the following command:
```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
......
......@@ -329,6 +329,7 @@ There are two ways to create the required configuration file::
...
```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.
2. Manually modify the configuration file
......
......@@ -305,7 +305,8 @@ paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-f
Support numpy array as input only when used by code
```python
from paddleocr import PaddleOCR, draw_ocr
import cv2
from paddleocr import PaddleOCR, draw_ocr, download_with_progressbar
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
img = cv2.imread(img_path)
......@@ -316,7 +317,9 @@ for line in result:
# show result
from PIL import Image
image = Image.open(img_path).convert('RGB')
download_with_progressbar(img_path, 'tmp.jpg')
image = Image.open('tmp.jpg').convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
......@@ -362,5 +365,5 @@ im_show.save('result.jpg')
| det | Enable detction when `ppocr.ocr` func exec | TRUE |
| rec | Enable recognition when `ppocr.ocr` func exec | TRUE |
| cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE |
| show_log | Whether to print log in det and rec
| FALSE |
\ No newline at end of file
| show_log | Whether to print log in det and rec | FALSE |
| type | Perform ocr or table structuring, the value is selected in ['ocr','structure'] | ocr |
\ No newline at end of file
doc/joinus.PNG

189 KB | W: | H:

doc/joinus.PNG

213 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment