Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
d73ed79c
"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "a752db35675b3bf0d38990047861d150f9a1ffae"
Commit
d73ed79c
authored
Dec 08, 2021
by
Leif
Browse files
Merge remote-tracking branch 'Evezerest/dygraph' into dygraph
parents
af77d08c
2945abd7
Changes
153
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1473 additions
and
111 deletions
+1473
-111
test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt
test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml
test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml
+108
-0
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
..._tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
+134
-0
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml
...et_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml
+111
-0
test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/train_infer_python.txt
...nfigs/det_r50_vd_sast_icdar15_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml
..._r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml
+108
-0
test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/train_infer_python.txt
...igs/det_r50_vd_sast_totaltext_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/en_server_pgnetA/train_infer_python.txt
test_tipc/configs/en_server_pgnetA/train_infer_python.txt
+51
-0
test_tipc/configs/ppocr_det_mobile/train_linux_gpu_normal_normal_infer_python_windows.txt
...le/train_linux_gpu_normal_normal_infer_python_windows.txt
+0
-111
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
+103
-0
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
+52
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
...onfigs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
+97
-0
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
...nfigs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
.../configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
+96
-0
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
...configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
+51
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
...gs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
+103
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
...onfigs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
+52
-0
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
...configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
+101
-0
No files found.
test_tipc/configs/det_r50_db_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:det_r50_db_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_lite_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/det/det_r50_vd_db.yml -o
quant_export:null
fpgm_export:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c configs/det/det_r50_vd_db.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/ch_ppocr_server_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
null:null
\ No newline at end of file
test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
true
epoch_num
:
10000
log_smooth_window
:
20
print_batch_step
:
2
save_model_dir
:
./output/east_r50_vd/
save_epoch_step
:
1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
4000
,
5000
]
cal_metric_during_train
:
False
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
save_res_path
:
./output/det_east/predicts_east.txt
Architecture
:
model_type
:
det
algorithm
:
EAST
Transform
:
Backbone
:
name
:
ResNet
layers
:
50
Neck
:
name
:
EASTFPN
model_name
:
large
Head
:
name
:
EASTHead
model_name
:
large
Loss
:
name
:
EASTLoss
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
# name: Cosine
learning_rate
:
0.001
# warmup_epoch: 0
regularizer
:
name
:
'
L2'
factor
:
0
PostProcess
:
name
:
EASTPostProcess
score_thresh
:
0.8
cover_thresh
:
0.1
nms_thresh
:
0.2
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
EASTProcessTrain
:
image_shape
:
[
512
,
512
]
background_ratio
:
0.125
min_crop_side_ratio
:
0.1
min_text_size
:
10
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
score_map'
,
'
geo_map'
,
'
training_mask'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
8
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms
:
-
DecodeImage
:
# load image
Fa
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
2400
limit_type
:
max
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
2
\ No newline at end of file
test_tipc/configs/det_r50_vd_east_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:det_r50_vd_east_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_r50_vd_east/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_east_v2.0/det_r50_vd_east.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:EAST
test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
true
epoch_num
:
600
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/det_r50_vd_pse/
save_epoch_step
:
600
# evaluation is run every 125 iterations
eval_batch_step
:
[
0
,
1000
]
cal_metric_during_train
:
False
pretrained_model
:
checkpoints
:
#./output/det_r50_vd_pse_batch8_ColorJitter/best_accuracy
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_en/img_10.jpg
save_res_path
:
./output/det_pse/predicts_pse.txt
Architecture
:
model_type
:
det
algorithm
:
PSE
Transform
:
Backbone
:
name
:
ResNet
layers
:
50
Neck
:
name
:
FPN
out_channels
:
256
Head
:
name
:
PSEHead
hidden_dim
:
256
out_channels
:
7
Loss
:
name
:
PSELoss
alpha
:
0.7
ohem_ratio
:
3
kernel_sample_mask
:
pred
reduction
:
none
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Step
learning_rate
:
0.0001
step_size
:
200
gamma
:
0.1
regularizer
:
name
:
'
L2'
factor
:
0.0005
PostProcess
:
name
:
PSEPostProcess
thresh
:
0
box_thresh
:
0.85
min_area
:
16
box_type
:
box
# 'box' or 'poly'
scale
:
1
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
ColorJitter
:
brightness
:
0.12549019607843137
saturation
:
0.5
-
IaaAugment
:
augmenter_args
:
-
{
'
type'
:
Resize
,
'
args'
:
{
'
size'
:
[
0.5
,
3
]
}
}
-
{
'
type'
:
Fliplr
,
'
args'
:
{
'
p'
:
0.5
}
}
-
{
'
type'
:
Affine
,
'
args'
:
{
'
rotate'
:
[
-10
,
10
]
}
}
-
MakePseGt
:
kernel_num
:
7
min_shrink_ratio
:
0.4
size
:
640
-
RandomCropImgMask
:
size
:
[
640
,
640
]
main_key
:
gt_text
crop_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
gt_text'
,
'
gt_kernels'
,
'
mask'
]
# the order of the dataloader list
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
8
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
limit_side_len
:
736
limit_type
:
min
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
8
\ No newline at end of file
test_tipc/configs/det_r50_vd_pse_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:det_r50_vd_pse_v2.0
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
train_model:./inference/det_r50_vd_pse/best_accuracy
infer_export:tools/export_model.py -c test_tipc/cconfigs/det_r50_vd_pse_v2.0/det_r50_vd_pse.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
--det_algorithm:PSE
test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
true
epoch_num
:
5000
log_smooth_window
:
20
print_batch_step
:
2
save_model_dir
:
./output/sast_r50_vd_ic15/
save_epoch_step
:
1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
4000
,
5000
]
cal_metric_during_train
:
False
pretrained_model
:
./pretrain_models/ResNet50_vd_ssld_pretrained
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
save_res_path
:
./output/sast_r50_vd_ic15/predicts_sast.txt
Architecture
:
model_type
:
det
algorithm
:
SAST
Transform
:
Backbone
:
name
:
ResNet_SAST
layers
:
50
Neck
:
name
:
SASTFPN
with_cab
:
True
Head
:
name
:
SASTHead
Loss
:
name
:
SASTLoss
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
# name: Cosine
learning_rate
:
0.001
# warmup_epoch: 0
regularizer
:
name
:
'
L2'
factor
:
0
PostProcess
:
name
:
SASTPostProcess
score_thresh
:
0.5
sample_pts_num
:
2
nms_thresh
:
0.2
expand_scale
:
1.0
shrink_ratio_of_width
:
0.3
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list
:
[
0.1
,
0.45
,
0.3
,
0.15
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
SASTProcessTrain
:
image_shape
:
[
512
,
512
]
min_crop_side_ratio
:
0.3
min_crop_size
:
24
min_text_size
:
4
max_text_size
:
512
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
score_map'
,
'
border_map'
,
'
training_mask'
,
'
tvo_map'
,
'
tco_map'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
4
num_workers
:
4
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/icdar2015/text_localization/
label_file_list
:
-
./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
resize_long
:
1536
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
2
test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:det_r50_vd_sast_icdar15_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=5000
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/det_r50_vd_sast_icdar15_v2.0_train/best_accuracy
infer_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_sast_icdar15_v2.0/det_r50_vd_sast_icdar2015.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
true
epoch_num
:
5000
log_smooth_window
:
20
print_batch_step
:
2
save_model_dir
:
./output/sast_r50_vd_tt/
save_epoch_step
:
1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
4000
,
5000
]
cal_metric_during_train
:
False
pretrained_model
:
./pretrain_models/ResNet50_vd_ssld_pretrained
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
save_res_path
:
./output/sast_r50_vd_tt/predicts_sast.txt
Architecture
:
model_type
:
det
algorithm
:
SAST
Transform
:
Backbone
:
name
:
ResNet_SAST
layers
:
50
Neck
:
name
:
SASTFPN
with_cab
:
True
Head
:
name
:
SASTHead
Loss
:
name
:
SASTLoss
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
# name: Cosine
learning_rate
:
0.001
# warmup_epoch: 0
regularizer
:
name
:
'
L2'
factor
:
0
PostProcess
:
name
:
SASTPostProcess
score_thresh
:
0.5
sample_pts_num
:
6
nms_thresh
:
0.2
expand_scale
:
1.2
shrink_ratio_of_width
:
0.2
Metric
:
name
:
DetMetric
main_indicator
:
hmean
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/total_text/train
label_file_list
:
[
./train_data/total_text/train/train.txt
]
ratio_list
:
[
1.0
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
SASTProcessTrain
:
image_shape
:
[
512
,
512
]
min_crop_side_ratio
:
0.3
min_crop_size
:
24
min_text_size
:
4
max_text_size
:
512
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
score_map'
,
'
border_map'
,
'
training_mask'
,
'
tvo_map'
,
'
tco_map'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
drop_last
:
False
batch_size_per_card
:
4
num_workers
:
4
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/
label_file_list
:
-
./train_data/total_text/test/test.txt
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
DetLabelEncode
:
# Class handling label
-
DetResizeForTest
:
resize_long
:
768
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
hwc'
-
ToCHWImage
:
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
shape'
,
'
polys'
,
'
ignore_tags'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
1
# must be 1
num_workers
:
2
\ No newline at end of file
test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:det_r50_vd_sast_totaltext_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=5000
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/det_r50_vd_sast_totaltext_v2.0/best_accuracy
infer_export:tools/export_model.py -c test_tipc/configs/det_r50_vd_sast_totaltext_v2.0/det_r50_vd_sast_totaltext.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
test_tipc/configs/en_server_pgnetA/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:en_server_pgnetA
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=14
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/total_text/test/rgb/
null:null
##
trainer:norm_train
norm_train:tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/en_server_pgnetA/best_accuracy
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/en_server_pgnetA/best_accuracy
infer_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o
infer_quant:False
inference:tools/infer/predict_e2e.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--e2e_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
test_tipc/configs/ppocr_det_mobile/train_linux_gpu_normal_normal_infer_python_windows.txt
deleted
100644 → 0
View file @
af77d08c
===========================train_params===========================
model_name:ocr_det
python:python
gpu_list:0
Global.use_gpu:True
Global.auto_cast:fp32|amp
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
===========================serving_params===========================
model_name:ocr_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
--model_filename:inference.pdmodel
--params_filename:inference.pdiparams
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
serving_dir:./deploy/pdserving
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
op.det.local_service_conf.devices:null|0
op.det.local_service_conf.use_mkldnn:True|False
op.det.local_service_conf.thread_num:1|6
op.det.local_service_conf.use_trt:False|True
op.det.local_service_conf.precision:fp32|fp16|int8
pipline:pipeline_http_client.py|pipeline_rpc_client.py
--image_dir=../../doc/imgs
===========================kl_quant_params===========================
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
null:null
--benchmark:True
null:null
null:null
===========================lite_params===========================
inference:./ocr_db_crnn det
infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
--cpu_threads:1|4
--batch_size:1
--power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
True
epoch_num
:
21
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/nrtr/
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
ppocr/utils/EN_symbol_dict.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_nrtr.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.99
clip_norm
:
5.0
lr
:
name
:
Cosine
learning_rate
:
0.0005
warmup_epoch
:
2
regularizer
:
name
:
'
L2'
factor
:
0.
Architecture
:
model_type
:
rec
algorithm
:
NRTR
in_channels
:
1
Transform
:
Backbone
:
name
:
MTB
cnn_num
:
2
Head
:
name
:
Transformer
d_model
:
512
num_encoder_layers
:
6
beam_size
:
-1
# When Beam size is greater than 0, it means to use beam search when evaluation.
Loss
:
name
:
NRTRLoss
smoothing
:
True
PostProcess
:
name
:
NRTRLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
512
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
use_shared_memory
:
False
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:rec_mtb_nrtr
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:rec_mv3_none_bilstm_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_none_none_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_none_none_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
Rosetta
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
reshape
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/rec_mv3_none_none_ctc_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:rec_mv3_none_none_ctc_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/rec_mv3_tps_bilstm_att/
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_att.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
RARE
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
AttentionHead
hidden_size
:
96
Loss
:
name
:
AttentionLoss
PostProcess
:
name
:
AttnLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
0 → 100644
View file @
d73ed79c
===========================train_params===========================
model_name:rec_mv3_tps_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml
0 → 100644
View file @
d73ed79c
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/mv3_tps_bilstm_ctc/
save_epoch_step
:
3
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_ctc.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
STARNet
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
CTCHead
fc_decay
:
0.0004
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
4
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment