"src/lib/vscode:/vscode.git/clone" did not exist on "2fedd42e12dece984d871395b04e22588df27ba3"
Commit c1fd4664 authored by tink2123's avatar tink2123
Browse files

add srn for dygraph

parent de3e2e7c
Global:
use_gpu: true
use_gpu: True
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
......@@ -59,7 +59,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -78,7 +78,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
......@@ -58,7 +58,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -77,7 +77,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
......@@ -63,7 +63,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -82,7 +82,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
......@@ -58,7 +58,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -77,7 +77,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
......@@ -56,7 +56,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -75,7 +75,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
......@@ -62,7 +62,7 @@ Metric:
Train:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
......@@ -81,7 +81,7 @@ Train:
Eval:
dataset:
name: LMDBDateSet
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
......
Global:
use_gpu: True
epoch_num: 72
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/rec/srn
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
num_heads: 8
infer_mode: False
use_space_char: False
Optimizer:
name: Adam
lr:
name: Cosine
learning_rate: 0.0001
Architecture:
model_type: rec
algorithm: SRN
in_channels: 1
Transform:
Backbone:
name: ResNetFPN
Head:
name: SRNHead
max_text_length: 25
num_heads: 8
num_encoder_TUs: 2
num_decoder_TUs: 4
hidden_dims: 512
Loss:
name: SRNLoss
PostProcess:
name: SRNLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/srn_train_data_duiqi
#label_file_list: ["./train_data/ic15_data/1.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SRNLabelEncode: # Class handling label
- SRNRecResizeImg:
image_shape: [1, 64, 256]
- KeepKeys:
keep_keys: ['image',
'label',
'length',
'encoder_word_pos',
'gsrm_word_pos',
'gsrm_slf_attn_bias1',
'gsrm_slf_attn_bias2'] # dataloader will return list in this order
loader:
shuffle: False
batch_size_per_card: 64
drop_last: True
num_workers: 4
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SRNLabelEncode: # Class handling label
- SRNRecResizeImg:
image_shape: [1, 64, 256]
- KeepKeys:
keep_keys: ['image',
'label',
'length',
'encoder_word_pos',
'gsrm_word_pos',
'gsrm_slf_attn_bias1',
'gsrm_slf_attn_bias2']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 32
num_workers: 4
......@@ -33,7 +33,7 @@ import paddle.distributed as dist
from ppocr.data.imaug import transform, create_operators
from ppocr.data.simple_dataset import SimpleDataSet
from ppocr.data.lmdb_dataset import LMDBDateSet
from ppocr.data.lmdb_dataset import LMDBDataSet
__all__ = ['build_dataloader', 'transform', 'create_operators']
......@@ -54,7 +54,7 @@ signal.signal(signal.SIGTERM, term_mp)
def build_dataloader(config, mode, device, logger):
config = copy.deepcopy(config)
support_dict = ['SimpleDataSet', 'LMDBDateSet']
support_dict = ['SimpleDataSet', 'LMDBDataSet']
module_name = config[mode]['dataset']['name']
assert module_name in support_dict, Exception(
'DataSet only support {}'.format(support_dict))
......
......@@ -21,7 +21,7 @@ from .make_border_map import MakeBorderMap
from .make_shrink_map import MakeShrinkMap
from .random_crop_data import EastRandomCropData, PSERandomCrop
from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg
from .rec_img_aug import RecAug, RecResizeImg, ClsResizeImg, SRNRecResizeImg
from .randaugment import RandAugment
from .operators import *
from .label_ops import *
......
......@@ -98,6 +98,8 @@ class BaseRecLabelEncode(object):
support_character_type, character_type)
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
......@@ -213,3 +215,49 @@ class AttnLabelEncode(BaseRecLabelEncode):
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length=25,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
char_num = len(self.character_str)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data['length'] = np.array(len(text))
text = text + [char_num] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
......@@ -12,20 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import cv2
import numpy as np
......@@ -77,6 +63,26 @@ class RecResizeImg(object):
return data
class SRNRecResizeImg(object):
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
self.image_shape = image_shape
self.num_heads = num_heads
self.max_text_length = max_text_length
def __call__(self, data):
img = data['image']
norm_img = resize_norm_img_srn(img, self.image_shape)
data['image'] = norm_img
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
data['encoder_word_pos'] = encoder_word_pos
data['gsrm_word_pos'] = gsrm_word_pos
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
return data
def resize_norm_img(img, image_shape):
imgC, imgH, imgW = image_shape
h = img.shape[0]
......@@ -103,7 +109,7 @@ def resize_norm_img(img, image_shape):
def resize_norm_img_chinese(img, image_shape):
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
max_wh_ratio = 0
max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio)
......@@ -126,6 +132,60 @@ def resize_norm_img_chinese(img, image_shape):
return padding_im
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
[num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
[num_heads, 1, 1]) * [-1e9]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def flag():
"""
flag
......
......@@ -20,9 +20,9 @@ import cv2
from .imaug import transform, create_operators
class LMDBDateSet(Dataset):
class LMDBDataSet(Dataset):
def __init__(self, config, mode, logger):
super(LMDBDateSet, self).__init__()
super(LMDBDataSet, self).__init__()
global_config = config['Global']
dataset_config = config[mode]['dataset']
......
......@@ -23,11 +23,14 @@ def build_loss(config):
# rec loss
from .rec_ctc_loss import CTCLoss
from .rec_srn_loss import SRNLoss
# cls loss
from .cls_loss import ClsLoss
support_dict = ['DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss']
support_dict = [
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'SRNLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class SRNLoss(nn.Layer):
def __init__(self, **kwargs):
super(SRNLoss, self).__init__()
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="sum")
def forward(self, predicts, batch):
predict = predicts['predict']
word_predict = predicts['word_out']
gsrm_predict = predicts['gsrm_out']
label = batch[1]
casted_label = paddle.cast(x=label, dtype='int64')
casted_label = paddle.reshape(x=casted_label, shape=[-1, 1])
cost_word = self.loss_func(word_predict, label=casted_label)
cost_gsrm = self.loss_func(gsrm_predict, label=casted_label)
cost_vsfd = self.loss_func(predict, label=casted_label)
cost_word = paddle.reshape(x=paddle.sum(cost_word), shape=[1])
cost_gsrm = paddle.reshape(x=paddle.sum(cost_gsrm), shape=[1])
cost_vsfd = paddle.reshape(x=paddle.sum(cost_vsfd), shape=[1])
sum_cost = cost_word + cost_vsfd * 2.0 + cost_gsrm * 0.15
return {'loss': sum_cost, 'word_loss': cost_word, 'img_loss': cost_vsfd}
......@@ -26,6 +26,7 @@ def build_metric(config):
from .det_metric import DetMetric
from .rec_metric import RecMetric
from .cls_metric import ClsMetric
from .rec_metric import RecMetric
support_dict = ['DetMetric', 'RecMetric', 'ClsMetric']
......
......@@ -31,8 +31,6 @@ class RecMetric(object):
if pred == target:
correct_num += 1
all_num += 1
# if all_num < 10 and kwargs.get('show_str', False):
# print('{} -> {}'.format(pred, target))
self.correct_num += correct_num
self.all_num += all_num
self.norm_edit_dis += norm_edit_dis
......@@ -48,7 +46,7 @@ class RecMetric(object):
'norm_edit_dis': 0,
}
"""
acc = self.correct_num / self.all_num
acc = 1.0 * self.correct_num / self.all_num
norm_edit_dis = 1 - self.norm_edit_dis / self.all_num
self.reset()
return {'acc': acc, 'norm_edit_dis': norm_edit_dis}
......
......@@ -68,11 +68,14 @@ class BaseModel(nn.Layer):
config["Head"]['in_channels'] = in_channels
self.head = build_head(config["Head"])
def forward(self, x):
def forward(self, x, data=None):
if self.use_transform:
x = self.transform(x)
x = self.backbone(x)
if self.use_neck:
x = self.neck(x)
if data is None:
x = self.head(x)
else:
x = self.head(x, data)
return x
......@@ -24,7 +24,8 @@ def build_backbone(config, model_type):
elif model_type == 'rec' or model_type == 'cls':
from .rec_mobilenet_v3 import MobileNetV3
from .rec_resnet_vd import ResNet
support_dict = ['MobileNetV3', 'ResNet', 'ResNet_FPN']
from .rec_resnet_fpn import ResNetFPN
support_dict = ['MobileNetV3', 'ResNet', 'ResNetFPN']
else:
raise NotImplementedError
......
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle.fluid as fluid
import paddle
import numpy as np
__all__ = ["ResNetFPN"]
class ResNetFPN(nn.Layer):
def __init__(self, in_channels=1, layers=50, **kwargs):
super(ResNetFPN, self).__init__()
supported_layers = {
18: {
'depth': [2, 2, 2, 2],
'block_class': BasicBlock
},
34: {
'depth': [3, 4, 6, 3],
'block_class': BasicBlock
},
50: {
'depth': [3, 4, 6, 3],
'block_class': BottleneckBlock
},
101: {
'depth': [3, 4, 23, 3],
'block_class': BottleneckBlock
},
152: {
'depth': [3, 8, 36, 3],
'block_class': BottleneckBlock
}
}
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
num_filters = [64, 128, 256, 512]
self.depth = supported_layers[layers]['depth']
self.F = []
self.conv = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=7,
stride=2,
act="relu",
name="conv1")
self.block_list = []
in_ch = 64
if layers >= 50:
for block in range(len(self.depth)):
for i in range(self.depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
block_list = self.add_sublayer(
"bottleneckBlock_{}_{}".format(block, i),
BottleneckBlock(
in_channels=in_ch,
out_channels=num_filters[block],
stride=stride_list[block] if i == 0 else 1,
name=conv_name))
in_ch = num_filters[block] * 4
self.block_list.append(block_list)
self.F.append(block_list)
else:
for block in range(len(self.depth)):
for i in range(self.depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
basic_block = self.add_sublayer(
conv_name,
BasicBlock(
in_channels=in_ch,
out_channels=num_filters[block],
stride=stride_list[block] if i == 0 else 1,
is_first=block == i == 0,
name=conv_name))
in_ch = basic_block.out_channels
self.block_list.append(basic_block)
out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
self.base_block = []
self.conv_trans = []
self.bn_block = []
for i in [-2, -3]:
in_channels = out_ch_list[i + 1] + out_ch_list[i]
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_0".format(i),
nn.Conv2D(
in_channels=in_channels,
out_channels=out_ch_list[i],
kernel_size=1,
weight_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_1".format(i),
nn.Conv2D(
in_channels=out_ch_list[i],
out_channels=out_ch_list[i],
kernel_size=3,
padding=1,
weight_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_2".format(i),
nn.BatchNorm(
num_channels=out_ch_list[i],
act="relu",
param_attr=ParamAttr(trainable=True),
bias_attr=ParamAttr(trainable=True))))
self.base_block.append(
self.add_sublayer(
"F_{}_base_block_3".format(i),
nn.Conv2D(
in_channels=out_ch_list[i],
out_channels=512,
kernel_size=1,
bias_attr=ParamAttr(trainable=True),
weight_attr=ParamAttr(trainable=True))))
self.out_channels = 512
def __call__(self, x):
x = self.conv(x)
fpn_list = []
F = []
for i in range(len(self.depth)):
fpn_list.append(np.sum(self.depth[:i + 1]))
for i, block in enumerate(self.block_list):
x = block(x)
for number in fpn_list:
if i + 1 == number:
F.append(x)
base = F[-1]
j = 0
for i, block in enumerate(self.base_block):
if i % 3 == 0 and i < 6:
j = j + 1
b, c, w, h = F[-j - 1].shape
if [w, h] == list(base.shape[2:]):
base = base
else:
base = self.conv_trans[j - 1](base)
base = self.bn_block[j - 1](base)
base = paddle.concat([base, F[-j - 1]], axis=1)
base = block(base)
return base
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=2 if stride == (1, 1) else kernel_size,
dilation=2 if stride == (1, 1) else 1,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
bias_attr=False, )
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=name + '.output.1.w_0'),
bias_attr=ParamAttr(name=name + '.output.1.b_0'),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def __call__(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class ShortCut(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, is_first=False):
super(ShortCut, self).__init__()
self.use_conv = True
if in_channels != out_channels or stride != 1 or is_first == True:
if stride == (1, 1):
self.conv = ConvBNLayer(
in_channels, out_channels, 1, 1, name=name)
else: # stride==(2,2)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
self.use_conv = False
def forward(self, x):
if self.use_conv:
x = self.conv(x)
return x
class BottleneckBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels * 4,
stride=stride,
is_first=False,
name=name + "_branch1")
self.out_channels = out_channels * 4
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = self.conv2(y)
y = y + self.short(x)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, is_first):
super(BasicBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
is_first=is_first,
name=name + "_branch1")
self.out_channels = out_channels
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = y + self.short(x)
return F.relu(y)
......@@ -23,10 +23,13 @@ def build_head(config):
# rec head
from .rec_ctc_head import CTCHead
from .rec_srn_head import SRNHead
# cls head
from .cls_head import ClsHead
support_dict = ['DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead']
support_dict = [
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'SRNHead'
]
module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment