Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
b9098935
Commit
b9098935
authored
Dec 14, 2020
by
Leif
Browse files
Merge remote-tracking branch 'upstream/dygraph' into dy3
parents
47752ddf
0e32093f
Changes
132
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
0 additions
and
2628 deletions
+0
-2628
deploy/android_demo/app/src/main/cpp/ocr_clipper.hpp
deploy/android_demo/app/src/main/cpp/ocr_clipper.hpp
+0
-547
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.cpp
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.cpp
+0
-140
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.h
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.h
+0
-19
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.cpp
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.cpp
+0
-336
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.h
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.h
+0
-17
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.cpp
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.cpp
+0
-186
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.h
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.h
+0
-112
deploy/android_demo/app/src/main/cpp/ppredictor.cpp
deploy/android_demo/app/src/main/cpp/ppredictor.cpp
+0
-70
deploy/android_demo/app/src/main/cpp/ppredictor.h
deploy/android_demo/app/src/main/cpp/ppredictor.h
+0
-74
deploy/android_demo/app/src/main/cpp/predictor_input.cpp
deploy/android_demo/app/src/main/cpp/predictor_input.cpp
+0
-29
deploy/android_demo/app/src/main/cpp/predictor_input.h
deploy/android_demo/app/src/main/cpp/predictor_input.h
+0
-28
deploy/android_demo/app/src/main/cpp/predictor_output.cpp
deploy/android_demo/app/src/main/cpp/predictor_output.cpp
+0
-27
deploy/android_demo/app/src/main/cpp/predictor_output.h
deploy/android_demo/app/src/main/cpp/predictor_output.h
+0
-35
deploy/android_demo/app/src/main/cpp/preprocess.cpp
deploy/android_demo/app/src/main/cpp/preprocess.cpp
+0
-84
deploy/android_demo/app/src/main/cpp/preprocess.h
deploy/android_demo/app/src/main/cpp/preprocess.h
+0
-14
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/AppCompatPreferenceActivity.java
...idu/paddle/lite/demo/ocr/AppCompatPreferenceActivity.java
+0
-128
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/MainActivity.java
...ain/java/com/baidu/paddle/lite/demo/ocr/MainActivity.java
+0
-473
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/MiniActivity.java
...ain/java/com/baidu/paddle/lite/demo/ocr/MiniActivity.java
+0
-157
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/OCRPredictorNative.java
...va/com/baidu/paddle/lite/demo/ocr/OCRPredictorNative.java
+0
-100
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/OcrResultModel.java
...n/java/com/baidu/paddle/lite/demo/ocr/OcrResultModel.java
+0
-52
No files found.
deploy/android_demo/app/src/main/cpp/ocr_clipper.hpp
deleted
100644 → 0
View file @
47752ddf
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#define CLIPPER_VERSION "6.4.2"
//use_int32: When enabled 32bit ints are used instead of 64bit ints. This
//improve performance but coordinate values are limited to the range +/- 46340
//#define use_int32
//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
//use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
//use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <vector>
#include <list>
#include <set>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
#include <queue>
namespace
ClipperLib
{
enum
ClipType
{
ctIntersection
,
ctUnion
,
ctDifference
,
ctXor
};
enum
PolyType
{
ptSubject
,
ptClip
};
//By far the most widely used winding rules for polygon filling are
//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
//see http://glprogramming.com/red/chapter11.html
enum
PolyFillType
{
pftEvenOdd
,
pftNonZero
,
pftPositive
,
pftNegative
};
#ifdef use_int32
typedef
int
cInt
;
static
cInt
const
loRange
=
0x7FFF
;
static
cInt
const
hiRange
=
0x7FFF
;
#else
typedef
signed
long
long
cInt
;
static
cInt
const
loRange
=
0x3FFFFFFF
;
static
cInt
const
hiRange
=
0x3FFFFFFFFFFFFFFFLL
;
typedef
signed
long
long
long64
;
//used by Int128 class
typedef
unsigned
long
long
ulong64
;
#endif
struct
IntPoint
{
cInt
X
;
cInt
Y
;
#ifdef use_xyz
cInt
Z
;
IntPoint
(
cInt
x
=
0
,
cInt
y
=
0
,
cInt
z
=
0
)
:
X
(
x
),
Y
(
y
),
Z
(
z
)
{};
#else
IntPoint
(
cInt
x
=
0
,
cInt
y
=
0
)
:
X
(
x
),
Y
(
y
)
{};
#endif
friend
inline
bool
operator
==
(
const
IntPoint
&
a
,
const
IntPoint
&
b
)
{
return
a
.
X
==
b
.
X
&&
a
.
Y
==
b
.
Y
;
}
friend
inline
bool
operator
!=
(
const
IntPoint
&
a
,
const
IntPoint
&
b
)
{
return
a
.
X
!=
b
.
X
||
a
.
Y
!=
b
.
Y
;
}
};
//------------------------------------------------------------------------------
typedef
std
::
vector
<
IntPoint
>
Path
;
typedef
std
::
vector
<
Path
>
Paths
;
inline
Path
&
operator
<<
(
Path
&
poly
,
const
IntPoint
&
p
)
{
poly
.
push_back
(
p
);
return
poly
;
}
inline
Paths
&
operator
<<
(
Paths
&
polys
,
const
Path
&
p
)
{
polys
.
push_back
(
p
);
return
polys
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
IntPoint
&
p
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
Path
&
p
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
Paths
&
p
);
struct
DoublePoint
{
double
X
;
double
Y
;
DoublePoint
(
double
x
=
0
,
double
y
=
0
)
:
X
(
x
),
Y
(
y
)
{}
DoublePoint
(
IntPoint
ip
)
:
X
((
double
)
ip
.
X
),
Y
((
double
)
ip
.
Y
)
{}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef
void
(
*
ZFillCallback
)(
IntPoint
&
e1bot
,
IntPoint
&
e1top
,
IntPoint
&
e2bot
,
IntPoint
&
e2top
,
IntPoint
&
pt
);
#endif
enum
InitOptions
{
ioReverseSolution
=
1
,
ioStrictlySimple
=
2
,
ioPreserveCollinear
=
4
};
enum
JoinType
{
jtSquare
,
jtRound
,
jtMiter
};
enum
EndType
{
etClosedPolygon
,
etClosedLine
,
etOpenButt
,
etOpenSquare
,
etOpenRound
};
class
PolyNode
;
typedef
std
::
vector
<
PolyNode
*>
PolyNodes
;
class
PolyNode
{
public:
PolyNode
();
virtual
~
PolyNode
()
{};
Path
Contour
;
PolyNodes
Childs
;
PolyNode
*
Parent
;
PolyNode
*
GetNext
()
const
;
bool
IsHole
()
const
;
bool
IsOpen
()
const
;
int
ChildCount
()
const
;
private:
//PolyNode& operator =(PolyNode& other);
unsigned
Index
;
//node index in Parent.Childs
bool
m_IsOpen
;
JoinType
m_jointype
;
EndType
m_endtype
;
PolyNode
*
GetNextSiblingUp
()
const
;
void
AddChild
(
PolyNode
&
child
);
friend
class
Clipper
;
//to access Index
friend
class
ClipperOffset
;
};
class
PolyTree
:
public
PolyNode
{
public:
~
PolyTree
()
{
Clear
();
};
PolyNode
*
GetFirst
()
const
;
void
Clear
();
int
Total
()
const
;
private:
//PolyTree& operator =(PolyTree& other);
PolyNodes
AllNodes
;
friend
class
Clipper
;
//to access AllNodes
};
bool
Orientation
(
const
Path
&
poly
);
double
Area
(
const
Path
&
poly
);
int
PointInPolygon
(
const
IntPoint
&
pt
,
const
Path
&
path
);
void
SimplifyPolygon
(
const
Path
&
in_poly
,
Paths
&
out_polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
SimplifyPolygons
(
const
Paths
&
in_polys
,
Paths
&
out_polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
SimplifyPolygons
(
Paths
&
polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
CleanPolygon
(
const
Path
&
in_poly
,
Path
&
out_poly
,
double
distance
=
1.415
);
void
CleanPolygon
(
Path
&
poly
,
double
distance
=
1.415
);
void
CleanPolygons
(
const
Paths
&
in_polys
,
Paths
&
out_polys
,
double
distance
=
1.415
);
void
CleanPolygons
(
Paths
&
polys
,
double
distance
=
1.415
);
void
MinkowskiSum
(
const
Path
&
pattern
,
const
Path
&
path
,
Paths
&
solution
,
bool
pathIsClosed
);
void
MinkowskiSum
(
const
Path
&
pattern
,
const
Paths
&
paths
,
Paths
&
solution
,
bool
pathIsClosed
);
void
MinkowskiDiff
(
const
Path
&
poly1
,
const
Path
&
poly2
,
Paths
&
solution
);
void
PolyTreeToPaths
(
const
PolyTree
&
polytree
,
Paths
&
paths
);
void
ClosedPathsFromPolyTree
(
const
PolyTree
&
polytree
,
Paths
&
paths
);
void
OpenPathsFromPolyTree
(
PolyTree
&
polytree
,
Paths
&
paths
);
void
ReversePath
(
Path
&
p
);
void
ReversePaths
(
Paths
&
p
);
struct
IntRect
{
cInt
left
;
cInt
top
;
cInt
right
;
cInt
bottom
;
};
//enums that are used internally ...
enum
EdgeSide
{
esLeft
=
1
,
esRight
=
2
};
//forward declarations (for stuff used internally) ...
struct
TEdge
;
struct
IntersectNode
;
struct
LocalMinimum
;
struct
OutPt
;
struct
OutRec
;
struct
Join
;
typedef
std
::
vector
<
OutRec
*>
PolyOutList
;
typedef
std
::
vector
<
TEdge
*>
EdgeList
;
typedef
std
::
vector
<
Join
*>
JoinList
;
typedef
std
::
vector
<
IntersectNode
*>
IntersectList
;
//------------------------------------------------------------------------------
//ClipperBase is the ancestor to the Clipper class. It should not be
//instantiated directly. This class simply abstracts the conversion of sets of
//polygon coordinates into edge objects that are stored in a LocalMinima list.
class
ClipperBase
{
public:
ClipperBase
();
virtual
~
ClipperBase
();
virtual
bool
AddPath
(
const
Path
&
pg
,
PolyType
PolyTyp
,
bool
Closed
);
bool
AddPaths
(
const
Paths
&
ppg
,
PolyType
PolyTyp
,
bool
Closed
);
virtual
void
Clear
();
IntRect
GetBounds
();
bool
PreserveCollinear
()
{
return
m_PreserveCollinear
;
};
void
PreserveCollinear
(
bool
value
)
{
m_PreserveCollinear
=
value
;
};
protected:
void
DisposeLocalMinimaList
();
TEdge
*
AddBoundsToLML
(
TEdge
*
e
,
bool
IsClosed
);
virtual
void
Reset
();
TEdge
*
ProcessBound
(
TEdge
*
E
,
bool
IsClockwise
);
void
InsertScanbeam
(
const
cInt
Y
);
bool
PopScanbeam
(
cInt
&
Y
);
bool
LocalMinimaPending
();
bool
PopLocalMinima
(
cInt
Y
,
const
LocalMinimum
*&
locMin
);
OutRec
*
CreateOutRec
();
void
DisposeAllOutRecs
();
void
DisposeOutRec
(
PolyOutList
::
size_type
index
);
void
SwapPositionsInAEL
(
TEdge
*
edge1
,
TEdge
*
edge2
);
void
DeleteFromAEL
(
TEdge
*
e
);
void
UpdateEdgeIntoAEL
(
TEdge
*&
e
);
typedef
std
::
vector
<
LocalMinimum
>
MinimaList
;
MinimaList
::
iterator
m_CurrentLM
;
MinimaList
m_MinimaList
;
bool
m_UseFullRange
;
EdgeList
m_edges
;
bool
m_PreserveCollinear
;
bool
m_HasOpenPaths
;
PolyOutList
m_PolyOuts
;
TEdge
*
m_ActiveEdges
;
typedef
std
::
priority_queue
<
cInt
>
ScanbeamList
;
ScanbeamList
m_Scanbeam
;
};
//------------------------------------------------------------------------------
class
Clipper
:
public
virtual
ClipperBase
{
public:
Clipper
(
int
initOptions
=
0
);
bool
Execute
(
ClipType
clipType
,
Paths
&
solution
,
PolyFillType
fillType
=
pftEvenOdd
);
bool
Execute
(
ClipType
clipType
,
Paths
&
solution
,
PolyFillType
subjFillType
,
PolyFillType
clipFillType
);
bool
Execute
(
ClipType
clipType
,
PolyTree
&
polytree
,
PolyFillType
fillType
=
pftEvenOdd
);
bool
Execute
(
ClipType
clipType
,
PolyTree
&
polytree
,
PolyFillType
subjFillType
,
PolyFillType
clipFillType
);
bool
ReverseSolution
()
{
return
m_ReverseOutput
;
};
void
ReverseSolution
(
bool
value
)
{
m_ReverseOutput
=
value
;
};
bool
StrictlySimple
()
{
return
m_StrictSimple
;
};
void
StrictlySimple
(
bool
value
)
{
m_StrictSimple
=
value
;
};
//set the callback function for z value filling on intersections (otherwise Z is 0)
#ifdef use_xyz
void
ZFillFunction
(
ZFillCallback
zFillFunc
);
#endif
protected:
virtual
bool
ExecuteInternal
();
private:
JoinList
m_Joins
;
JoinList
m_GhostJoins
;
IntersectList
m_IntersectList
;
ClipType
m_ClipType
;
typedef
std
::
list
<
cInt
>
MaximaList
;
MaximaList
m_Maxima
;
TEdge
*
m_SortedEdges
;
bool
m_ExecuteLocked
;
PolyFillType
m_ClipFillType
;
PolyFillType
m_SubjFillType
;
bool
m_ReverseOutput
;
bool
m_UsingPolyTree
;
bool
m_StrictSimple
;
#ifdef use_xyz
ZFillCallback
m_ZFill
;
//custom callback
#endif
void
SetWindingCount
(
TEdge
&
edge
);
bool
IsEvenOddFillType
(
const
TEdge
&
edge
)
const
;
bool
IsEvenOddAltFillType
(
const
TEdge
&
edge
)
const
;
void
InsertLocalMinimaIntoAEL
(
const
cInt
botY
);
void
InsertEdgeIntoAEL
(
TEdge
*
edge
,
TEdge
*
startEdge
);
void
AddEdgeToSEL
(
TEdge
*
edge
);
bool
PopEdgeFromSEL
(
TEdge
*&
edge
);
void
CopyAELToSEL
();
void
DeleteFromSEL
(
TEdge
*
e
);
void
SwapPositionsInSEL
(
TEdge
*
edge1
,
TEdge
*
edge2
);
bool
IsContributing
(
const
TEdge
&
edge
)
const
;
bool
IsTopHorz
(
const
cInt
XPos
);
void
DoMaxima
(
TEdge
*
e
);
void
ProcessHorizontals
();
void
ProcessHorizontal
(
TEdge
*
horzEdge
);
void
AddLocalMaxPoly
(
TEdge
*
e1
,
TEdge
*
e2
,
const
IntPoint
&
pt
);
OutPt
*
AddLocalMinPoly
(
TEdge
*
e1
,
TEdge
*
e2
,
const
IntPoint
&
pt
);
OutRec
*
GetOutRec
(
int
idx
);
void
AppendPolygon
(
TEdge
*
e1
,
TEdge
*
e2
);
void
IntersectEdges
(
TEdge
*
e1
,
TEdge
*
e2
,
IntPoint
&
pt
);
OutPt
*
AddOutPt
(
TEdge
*
e
,
const
IntPoint
&
pt
);
OutPt
*
GetLastOutPt
(
TEdge
*
e
);
bool
ProcessIntersections
(
const
cInt
topY
);
void
BuildIntersectList
(
const
cInt
topY
);
void
ProcessIntersectList
();
void
ProcessEdgesAtTopOfScanbeam
(
const
cInt
topY
);
void
BuildResult
(
Paths
&
polys
);
void
BuildResult2
(
PolyTree
&
polytree
);
void
SetHoleState
(
TEdge
*
e
,
OutRec
*
outrec
);
void
DisposeIntersectNodes
();
bool
FixupIntersectionOrder
();
void
FixupOutPolygon
(
OutRec
&
outrec
);
void
FixupOutPolyline
(
OutRec
&
outrec
);
bool
IsHole
(
TEdge
*
e
);
bool
FindOwnerFromSplitRecs
(
OutRec
&
outRec
,
OutRec
*&
currOrfl
);
void
FixHoleLinkage
(
OutRec
&
outrec
);
void
AddJoin
(
OutPt
*
op1
,
OutPt
*
op2
,
const
IntPoint
offPt
);
void
ClearJoins
();
void
ClearGhostJoins
();
void
AddGhostJoin
(
OutPt
*
op
,
const
IntPoint
offPt
);
bool
JoinPoints
(
Join
*
j
,
OutRec
*
outRec1
,
OutRec
*
outRec2
);
void
JoinCommonEdges
();
void
DoSimplePolygons
();
void
FixupFirstLefts1
(
OutRec
*
OldOutRec
,
OutRec
*
NewOutRec
);
void
FixupFirstLefts2
(
OutRec
*
InnerOutRec
,
OutRec
*
OuterOutRec
);
void
FixupFirstLefts3
(
OutRec
*
OldOutRec
,
OutRec
*
NewOutRec
);
#ifdef use_xyz
void
SetZ
(
IntPoint
&
pt
,
TEdge
&
e1
,
TEdge
&
e2
);
#endif
};
//------------------------------------------------------------------------------
class
ClipperOffset
{
public:
ClipperOffset
(
double
miterLimit
=
2.0
,
double
roundPrecision
=
0.25
);
~
ClipperOffset
();
void
AddPath
(
const
Path
&
path
,
JoinType
joinType
,
EndType
endType
);
void
AddPaths
(
const
Paths
&
paths
,
JoinType
joinType
,
EndType
endType
);
void
Execute
(
Paths
&
solution
,
double
delta
);
void
Execute
(
PolyTree
&
solution
,
double
delta
);
void
Clear
();
double
MiterLimit
;
double
ArcTolerance
;
private:
Paths
m_destPolys
;
Path
m_srcPoly
;
Path
m_destPoly
;
std
::
vector
<
DoublePoint
>
m_normals
;
double
m_delta
,
m_sinA
,
m_sin
,
m_cos
;
double
m_miterLim
,
m_StepsPerRad
;
IntPoint
m_lowest
;
PolyNode
m_polyNodes
;
void
FixOrientations
();
void
DoOffset
(
double
delta
);
void
OffsetPoint
(
int
j
,
int
&
k
,
JoinType
jointype
);
void
DoSquare
(
int
j
,
int
k
);
void
DoMiter
(
int
j
,
int
k
,
double
r
);
void
DoRound
(
int
j
,
int
k
);
};
//------------------------------------------------------------------------------
class
clipperException
:
public
std
::
exception
{
public:
clipperException
(
const
char
*
description
)
:
m_descr
(
description
)
{}
virtual
~
clipperException
()
throw
()
{}
virtual
const
char
*
what
()
const
throw
()
{
return
m_descr
.
c_str
();
}
private:
std
::
string
m_descr
;
};
//------------------------------------------------------------------------------
}
//ClipperLib namespace
#endif //clipper_hpp
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.cpp
deleted
100644 → 0
View file @
47752ddf
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ocr_crnn_process.h"
#include <iostream>
#include <vector>
#include <iostream>
#include <cstring>
#include <fstream>
#include <cmath>
const
std
::
string
CHARACTER_TYPE
=
"ch"
;
const
int
MAX_DICT_LENGTH
=
6624
;
const
std
::
vector
<
int
>
REC_IMAGE_SHAPE
=
{
3
,
32
,
320
};
static
cv
::
Mat
crnn_resize_norm_img
(
cv
::
Mat
img
,
float
wh_ratio
)
{
int
imgC
=
REC_IMAGE_SHAPE
[
0
];
int
imgW
=
REC_IMAGE_SHAPE
[
2
];
int
imgH
=
REC_IMAGE_SHAPE
[
1
];
if
(
CHARACTER_TYPE
==
"ch"
)
imgW
=
int
(
32
*
wh_ratio
);
float
ratio
=
float
(
img
.
cols
)
/
float
(
img
.
rows
);
int
resize_w
=
0
;
if
(
ceilf
(
imgH
*
ratio
)
>
imgW
)
resize_w
=
imgW
;
else
resize_w
=
int
(
ceilf
(
imgH
*
ratio
));
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
imgH
),
0.
f
,
0.
f
,
cv
::
INTER_CUBIC
);
resize_img
.
convertTo
(
resize_img
,
CV_32FC3
,
1
/
255.
f
);
for
(
int
h
=
0
;
h
<
resize_img
.
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
resize_img
.
cols
;
w
++
)
{
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
0.5
)
*
2
;
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
0.5
)
*
2
;
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
resize_img
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
0.5
)
*
2
;
}
}
cv
::
Mat
dist
;
cv
::
copyMakeBorder
(
resize_img
,
dist
,
0
,
0
,
0
,
int
(
imgW
-
resize_w
),
cv
::
BORDER_CONSTANT
,
{
0
,
0
,
0
});
return
dist
;
}
cv
::
Mat
crnn_resize_img
(
const
cv
::
Mat
&
img
,
float
wh_ratio
)
{
int
imgC
=
REC_IMAGE_SHAPE
[
0
];
int
imgW
=
REC_IMAGE_SHAPE
[
2
];
int
imgH
=
REC_IMAGE_SHAPE
[
1
];
if
(
CHARACTER_TYPE
==
"ch"
)
{
imgW
=
int
(
32
*
wh_ratio
);
}
float
ratio
=
float
(
img
.
cols
)
/
float
(
img
.
rows
);
int
resize_w
=
0
;
if
(
ceilf
(
imgH
*
ratio
)
>
imgW
)
resize_w
=
imgW
;
else
resize_w
=
int
(
ceilf
(
imgH
*
ratio
));
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
imgH
));
return
resize_img
;
}
cv
::
Mat
get_rotate_crop_image
(
const
cv
::
Mat
&
srcimage
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
box
)
{
std
::
vector
<
std
::
vector
<
int
>>
points
=
box
;
int
x_collect
[
4
]
=
{
box
[
0
][
0
],
box
[
1
][
0
],
box
[
2
][
0
],
box
[
3
][
0
]};
int
y_collect
[
4
]
=
{
box
[
0
][
1
],
box
[
1
][
1
],
box
[
2
][
1
],
box
[
3
][
1
]};
int
left
=
int
(
*
std
::
min_element
(
x_collect
,
x_collect
+
4
));
int
right
=
int
(
*
std
::
max_element
(
x_collect
,
x_collect
+
4
));
int
top
=
int
(
*
std
::
min_element
(
y_collect
,
y_collect
+
4
));
int
bottom
=
int
(
*
std
::
max_element
(
y_collect
,
y_collect
+
4
));
cv
::
Mat
img_crop
;
srcimage
(
cv
::
Rect
(
left
,
top
,
right
-
left
,
bottom
-
top
)).
copyTo
(
img_crop
);
for
(
int
i
=
0
;
i
<
points
.
size
();
i
++
)
{
points
[
i
][
0
]
-=
left
;
points
[
i
][
1
]
-=
top
;
}
int
img_crop_width
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
1
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
1
][
1
],
2
)));
int
img_crop_height
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
3
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
3
][
1
],
2
)));
cv
::
Point2f
pts_std
[
4
];
pts_std
[
0
]
=
cv
::
Point2f
(
0.
,
0.
);
pts_std
[
1
]
=
cv
::
Point2f
(
img_crop_width
,
0.
);
pts_std
[
2
]
=
cv
::
Point2f
(
img_crop_width
,
img_crop_height
);
pts_std
[
3
]
=
cv
::
Point2f
(
0.
f
,
img_crop_height
);
cv
::
Point2f
pointsf
[
4
];
pointsf
[
0
]
=
cv
::
Point2f
(
points
[
0
][
0
],
points
[
0
][
1
]);
pointsf
[
1
]
=
cv
::
Point2f
(
points
[
1
][
0
],
points
[
1
][
1
]);
pointsf
[
2
]
=
cv
::
Point2f
(
points
[
2
][
0
],
points
[
2
][
1
]);
pointsf
[
3
]
=
cv
::
Point2f
(
points
[
3
][
0
],
points
[
3
][
1
]);
cv
::
Mat
M
=
cv
::
getPerspectiveTransform
(
pointsf
,
pts_std
);
cv
::
Mat
dst_img
;
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
Size
(
img_crop_width
,
img_crop_height
),
cv
::
BORDER_REPLICATE
);
if
(
float
(
dst_img
.
rows
)
>=
float
(
dst_img
.
cols
)
*
1.5
)
{
/*
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
*/
cv
::
transpose
(
dst_img
,
dst_img
);
cv
::
flip
(
dst_img
,
dst_img
,
0
);
return
dst_img
;
}
else
{
return
dst_img
;
}
}
deploy/android_demo/app/src/main/cpp/ocr_crnn_process.h
deleted
100644 → 0
View file @
47752ddf
//
// Created by fujiayi on 2020/7/3.
//
#pragma once
#include <vector>
#include <opencv2/opencv.hpp>
#include "common.h"
extern
const
std
::
vector
<
int
>
REC_IMAGE_SHAPE
;
cv
::
Mat
get_rotate_crop_image
(
const
cv
::
Mat
&
srcimage
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
box
);
cv
::
Mat
crnn_resize_img
(
const
cv
::
Mat
&
img
,
float
wh_ratio
);
template
<
class
ForwardIterator
>
inline
size_t
argmax
(
ForwardIterator
first
,
ForwardIterator
last
)
{
return
std
::
distance
(
first
,
std
::
max_element
(
first
,
last
));
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.cpp
deleted
100644 → 0
View file @
47752ddf
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include <math.h>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "ocr_clipper.hpp"
static
void
getcontourarea
(
float
**
box
,
float
unclip_ratio
,
float
&
distance
)
{
int
pts_num
=
4
;
float
area
=
0.0
f
;
float
dist
=
0.0
f
;
for
(
int
i
=
0
;
i
<
pts_num
;
i
++
)
{
area
+=
box
[
i
][
0
]
*
box
[(
i
+
1
)
%
pts_num
][
1
]
-
box
[
i
][
1
]
*
box
[(
i
+
1
)
%
pts_num
][
0
];
dist
+=
sqrtf
(
(
box
[
i
][
0
]
-
box
[(
i
+
1
)
%
pts_num
][
0
])
*
(
box
[
i
][
0
]
-
box
[(
i
+
1
)
%
pts_num
][
0
])
+
(
box
[
i
][
1
]
-
box
[(
i
+
1
)
%
pts_num
][
1
])
*
(
box
[
i
][
1
]
-
box
[(
i
+
1
)
%
pts_num
][
1
]));
}
area
=
fabs
(
float
(
area
/
2.0
));
distance
=
area
*
unclip_ratio
/
dist
;
}
static
cv
::
RotatedRect
unclip
(
float
**
box
)
{
float
unclip_ratio
=
2.0
;
float
distance
=
1.0
;
getcontourarea
(
box
,
unclip_ratio
,
distance
);
ClipperLib
::
ClipperOffset
offset
;
ClipperLib
::
Path
p
;
p
<<
ClipperLib
::
IntPoint
(
int
(
box
[
0
][
0
]),
int
(
box
[
0
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
1
][
0
]),
int
(
box
[
1
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
2
][
0
]),
int
(
box
[
2
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
3
][
0
]),
int
(
box
[
3
][
1
]));
offset
.
AddPath
(
p
,
ClipperLib
::
jtRound
,
ClipperLib
::
etClosedPolygon
);
ClipperLib
::
Paths
soln
;
offset
.
Execute
(
soln
,
distance
);
std
::
vector
<
cv
::
Point2f
>
points
;
for
(
int
j
=
0
;
j
<
soln
.
size
();
j
++
)
{
for
(
int
i
=
0
;
i
<
soln
[
soln
.
size
()
-
1
].
size
();
i
++
)
{
points
.
emplace_back
(
soln
[
j
][
i
].
X
,
soln
[
j
][
i
].
Y
);
}
}
cv
::
RotatedRect
res
=
cv
::
minAreaRect
(
points
);
return
res
;
}
static
float
**
Mat2Vec
(
cv
::
Mat
mat
)
{
auto
**
array
=
new
float
*
[
mat
.
rows
];
for
(
int
i
=
0
;
i
<
mat
.
rows
;
++
i
){
array
[
i
]
=
new
float
[
mat
.
cols
];
}
for
(
int
i
=
0
;
i
<
mat
.
rows
;
++
i
)
{
for
(
int
j
=
0
;
j
<
mat
.
cols
;
++
j
)
{
array
[
i
][
j
]
=
mat
.
at
<
float
>
(
i
,
j
);
}
}
return
array
;
}
static
void
quickSort
(
float
**
s
,
int
l
,
int
r
)
{
if
(
l
<
r
)
{
int
i
=
l
,
j
=
r
;
float
x
=
s
[
l
][
0
];
float
*
xp
=
s
[
l
];
while
(
i
<
j
)
{
while
(
i
<
j
&&
s
[
j
][
0
]
>=
x
){
j
--
;
}
if
(
i
<
j
){
std
::
swap
(
s
[
i
++
],
s
[
j
]);
}
while
(
i
<
j
&&
s
[
i
][
0
]
<
x
){
i
++
;
}
if
(
i
<
j
){
std
::
swap
(
s
[
j
--
],
s
[
i
]);
}
}
s
[
i
]
=
xp
;
quickSort
(
s
,
l
,
i
-
1
);
quickSort
(
s
,
i
+
1
,
r
);
}
}
static
void
quickSort_vector
(
std
::
vector
<
std
::
vector
<
int
>>
&
box
,
int
l
,
int
r
,
int
axis
)
{
if
(
l
<
r
)
{
int
i
=
l
,
j
=
r
;
int
x
=
box
[
l
][
axis
];
std
::
vector
<
int
>
xp
(
box
[
l
]);
while
(
i
<
j
)
{
while
(
i
<
j
&&
box
[
j
][
axis
]
>=
x
){
j
--
;
}
if
(
i
<
j
){
std
::
swap
(
box
[
i
++
],
box
[
j
]);
}
while
(
i
<
j
&&
box
[
i
][
axis
]
<
x
){
i
++
;
}
if
(
i
<
j
){
std
::
swap
(
box
[
j
--
],
box
[
i
]);
}
}
box
[
i
]
=
xp
;
quickSort_vector
(
box
,
l
,
i
-
1
,
axis
);
quickSort_vector
(
box
,
i
+
1
,
r
,
axis
);
}
}
static
std
::
vector
<
std
::
vector
<
int
>>
order_points_clockwise
(
std
::
vector
<
std
::
vector
<
int
>>
pts
)
{
std
::
vector
<
std
::
vector
<
int
>>
box
=
pts
;
quickSort_vector
(
box
,
0
,
int
(
box
.
size
()
-
1
),
0
);
std
::
vector
<
std
::
vector
<
int
>>
leftmost
=
{
box
[
0
],
box
[
1
]};
std
::
vector
<
std
::
vector
<
int
>>
rightmost
=
{
box
[
2
],
box
[
3
]};
if
(
leftmost
[
0
][
1
]
>
leftmost
[
1
][
1
]){
std
::
swap
(
leftmost
[
0
],
leftmost
[
1
]);
}
if
(
rightmost
[
0
][
1
]
>
rightmost
[
1
][
1
]){
std
::
swap
(
rightmost
[
0
],
rightmost
[
1
]);
}
std
::
vector
<
std
::
vector
<
int
>>
rect
=
{
leftmost
[
0
],
rightmost
[
0
],
rightmost
[
1
],
leftmost
[
1
]};
return
rect
;
}
static
float
**
get_mini_boxes
(
cv
::
RotatedRect
box
,
float
&
ssid
)
{
ssid
=
box
.
size
.
width
>=
box
.
size
.
height
?
box
.
size
.
height
:
box
.
size
.
width
;
cv
::
Mat
points
;
cv
::
boxPoints
(
box
,
points
);
// sorted box points
auto
array
=
Mat2Vec
(
points
);
quickSort
(
array
,
0
,
3
);
float
*
idx1
=
array
[
0
],
*
idx2
=
array
[
1
],
*
idx3
=
array
[
2
],
*
idx4
=
array
[
3
];
if
(
array
[
3
][
1
]
<=
array
[
2
][
1
])
{
idx2
=
array
[
3
];
idx3
=
array
[
2
];
}
else
{
idx2
=
array
[
2
];
idx3
=
array
[
3
];
}
if
(
array
[
1
][
1
]
<=
array
[
0
][
1
])
{
idx1
=
array
[
1
];
idx4
=
array
[
0
];
}
else
{
idx1
=
array
[
0
];
idx4
=
array
[
1
];
}
array
[
0
]
=
idx1
;
array
[
1
]
=
idx2
;
array
[
2
]
=
idx3
;
array
[
3
]
=
idx4
;
return
array
;
}
template
<
class
T
>
T
clamp
(
T
x
,
T
min
,
T
max
)
{
if
(
x
>
max
){
return
max
;
}
if
(
x
<
min
){
return
min
;
}
return
x
;
}
static
float
clampf
(
float
x
,
float
min
,
float
max
)
{
if
(
x
>
max
)
return
max
;
if
(
x
<
min
)
return
min
;
return
x
;
}
float
box_score_fast
(
float
**
box_array
,
cv
::
Mat
pred
)
{
auto
array
=
box_array
;
int
width
=
pred
.
cols
;
int
height
=
pred
.
rows
;
float
box_x
[
4
]
=
{
array
[
0
][
0
],
array
[
1
][
0
],
array
[
2
][
0
],
array
[
3
][
0
]};
float
box_y
[
4
]
=
{
array
[
0
][
1
],
array
[
1
][
1
],
array
[
2
][
1
],
array
[
3
][
1
]};
int
xmin
=
clamp
(
int
(
std
::
floorf
(
*
(
std
::
min_element
(
box_x
,
box_x
+
4
)))),
0
,
width
-
1
);
int
xmax
=
clamp
(
int
(
std
::
ceilf
(
*
(
std
::
max_element
(
box_x
,
box_x
+
4
)))),
0
,
width
-
1
);
int
ymin
=
clamp
(
int
(
std
::
floorf
(
*
(
std
::
min_element
(
box_y
,
box_y
+
4
)))),
0
,
height
-
1
);
int
ymax
=
clamp
(
int
(
std
::
ceilf
(
*
(
std
::
max_element
(
box_y
,
box_y
+
4
)))),
0
,
height
-
1
);
cv
::
Mat
mask
;
mask
=
cv
::
Mat
::
zeros
(
ymax
-
ymin
+
1
,
xmax
-
xmin
+
1
,
CV_8UC1
);
cv
::
Point
root_point
[
4
];
root_point
[
0
]
=
cv
::
Point
(
int
(
array
[
0
][
0
])
-
xmin
,
int
(
array
[
0
][
1
])
-
ymin
);
root_point
[
1
]
=
cv
::
Point
(
int
(
array
[
1
][
0
])
-
xmin
,
int
(
array
[
1
][
1
])
-
ymin
);
root_point
[
2
]
=
cv
::
Point
(
int
(
array
[
2
][
0
])
-
xmin
,
int
(
array
[
2
][
1
])
-
ymin
);
root_point
[
3
]
=
cv
::
Point
(
int
(
array
[
3
][
0
])
-
xmin
,
int
(
array
[
3
][
1
])
-
ymin
);
const
cv
::
Point
*
ppt
[
1
]
=
{
root_point
};
int
npt
[]
=
{
4
};
cv
::
fillPoly
(
mask
,
ppt
,
npt
,
1
,
cv
::
Scalar
(
1
));
cv
::
Mat
croppedImg
;
pred
(
cv
::
Rect
(
xmin
,
ymin
,
xmax
-
xmin
+
1
,
ymax
-
ymin
+
1
)).
copyTo
(
croppedImg
);
auto
score
=
cv
::
mean
(
croppedImg
,
mask
)[
0
];
return
score
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes_from_bitmap
(
const
cv
::
Mat
&
pred
,
const
cv
::
Mat
&
bitmap
)
{
const
int
min_size
=
3
;
const
int
max_candidates
=
1000
;
const
float
box_thresh
=
0.5
;
int
width
=
bitmap
.
cols
;
int
height
=
bitmap
.
rows
;
std
::
vector
<
std
::
vector
<
cv
::
Point
>>
contours
;
std
::
vector
<
cv
::
Vec4i
>
hierarchy
;
cv
::
findContours
(
bitmap
,
contours
,
hierarchy
,
cv
::
RETR_LIST
,
cv
::
CHAIN_APPROX_SIMPLE
);
int
num_contours
=
contours
.
size
()
>=
max_candidates
?
max_candidates
:
contours
.
size
();
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
for
(
int
_i
=
0
;
_i
<
num_contours
;
_i
++
)
{
float
ssid
;
cv
::
RotatedRect
box
=
cv
::
minAreaRect
(
contours
[
_i
]);
auto
array
=
get_mini_boxes
(
box
,
ssid
);
auto
box_for_unclip
=
array
;
//end get_mini_box
if
(
ssid
<
min_size
)
{
continue
;
}
float
score
;
score
=
box_score_fast
(
array
,
pred
);
//end box_score_fast
if
(
score
<
box_thresh
){
continue
;
}
// start for unclip
cv
::
RotatedRect
points
=
unclip
(
box_for_unclip
);
// end for unclip
cv
::
RotatedRect
clipbox
=
points
;
auto
cliparray
=
get_mini_boxes
(
clipbox
,
ssid
);
if
(
ssid
<
min_size
+
2
)
continue
;
int
dest_width
=
pred
.
cols
;
int
dest_height
=
pred
.
rows
;
std
::
vector
<
std
::
vector
<
int
>>
intcliparray
;
for
(
int
num_pt
=
0
;
num_pt
<
4
;
num_pt
++
)
{
std
::
vector
<
int
>
a
{
int
(
clampf
(
roundf
(
cliparray
[
num_pt
][
0
]
/
float
(
width
)
*
float
(
dest_width
)),
0
,
float
(
dest_width
))),
int
(
clampf
(
roundf
(
cliparray
[
num_pt
][
1
]
/
float
(
height
)
*
float
(
dest_height
)),
0
,
float
(
dest_height
)))};
intcliparray
.
emplace_back
(
std
::
move
(
a
));
}
boxes
.
emplace_back
(
std
::
move
(
intcliparray
));
}
//end for
return
boxes
;
}
int
_max
(
int
a
,
int
b
)
{
return
a
>=
b
?
a
:
b
;
}
int
_min
(
int
a
,
int
b
)
{
return
a
>=
b
?
b
:
a
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filter_tag_det_res
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>&
o_boxes
,
float
ratio_h
,
float
ratio_w
,
const
cv
::
Mat
&
srcimg
)
{
int
oriimg_h
=
srcimg
.
rows
;
int
oriimg_w
=
srcimg
.
cols
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
{
o_boxes
};
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
root_points
;
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
boxes
[
n
]
=
order_points_clockwise
(
boxes
[
n
]);
for
(
int
m
=
0
;
m
<
boxes
[
0
].
size
();
m
++
)
{
boxes
[
n
][
m
][
0
]
/=
ratio_w
;
boxes
[
n
][
m
][
1
]
/=
ratio_h
;
boxes
[
n
][
m
][
0
]
=
int
(
_min
(
_max
(
boxes
[
n
][
m
][
0
],
0
),
oriimg_w
-
1
));
boxes
[
n
][
m
][
1
]
=
int
(
_min
(
_max
(
boxes
[
n
][
m
][
1
],
0
),
oriimg_h
-
1
));
}
}
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
int
rect_width
,
rect_height
;
rect_width
=
int
(
sqrt
(
pow
(
boxes
[
n
][
0
][
0
]
-
boxes
[
n
][
1
][
0
],
2
)
+
pow
(
boxes
[
n
][
0
][
1
]
-
boxes
[
n
][
1
][
1
],
2
)));
rect_height
=
int
(
sqrt
(
pow
(
boxes
[
n
][
0
][
0
]
-
boxes
[
n
][
3
][
0
],
2
)
+
pow
(
boxes
[
n
][
0
][
1
]
-
boxes
[
n
][
3
][
1
],
2
)));
if
(
rect_width
<=
10
||
rect_height
<=
10
)
continue
;
root_points
.
push_back
(
boxes
[
n
]);
}
return
root_points
;
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/ocr_db_post_process.h
deleted
100644 → 0
View file @
47752ddf
//
// Created by fujiayi on 2020/7/2.
//
#pragma once
#include <vector>
#include <opencv2/opencv.hpp>
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes_from_bitmap
(
const
cv
::
Mat
&
pred
,
const
cv
::
Mat
&
bitmap
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filter_tag_det_res
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
o_boxes
,
float
ratio_h
,
float
ratio_w
,
const
cv
::
Mat
&
srcimg
);
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.cpp
deleted
100644 → 0
View file @
47752ddf
//
// Created by fujiayi on 2020/7/1.
//
#include "ocr_ppredictor.h"
#include "preprocess.h"
#include "common.h"
#include "ocr_db_post_process.h"
#include "ocr_crnn_process.h"
namespace
ppredictor
{
OCR_PPredictor
::
OCR_PPredictor
(
const
OCR_Config
&
config
)
:
_config
(
config
)
{
}
int
OCR_PPredictor
::
init
(
const
std
::
string
&
det_model_content
,
const
std
::
string
&
rec_model_content
)
{
_det_predictor
=
std
::
unique_ptr
<
PPredictor
>
(
new
PPredictor
{
_config
.
thread_num
,
NET_OCR
,
_config
.
mode
});
_det_predictor
->
init_nb
(
det_model_content
);
_rec_predictor
=
std
::
unique_ptr
<
PPredictor
>
(
new
PPredictor
{
_config
.
thread_num
,
NET_OCR_INTERNAL
,
_config
.
mode
});
_rec_predictor
->
init_nb
(
rec_model_content
);
return
RETURN_OK
;
}
int
OCR_PPredictor
::
init_from_file
(
const
std
::
string
&
det_model_path
,
const
std
::
string
&
rec_model_path
){
_det_predictor
=
std
::
unique_ptr
<
PPredictor
>
(
new
PPredictor
{
_config
.
thread_num
,
NET_OCR
,
_config
.
mode
});
_det_predictor
->
init_from_file
(
det_model_path
);
_rec_predictor
=
std
::
unique_ptr
<
PPredictor
>
(
new
PPredictor
{
_config
.
thread_num
,
NET_OCR_INTERNAL
,
_config
.
mode
});
_rec_predictor
->
init_from_file
(
rec_model_path
);
return
RETURN_OK
;
}
/**
* for debug use, show result of First Step
* @param filter_boxes
* @param boxes
* @param srcimg
*/
static
void
visual_img
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
filter_boxes
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
,
const
cv
::
Mat
&
srcimg
)
{
// visualization
cv
::
Point
rook_points
[
filter_boxes
.
size
()][
4
];
for
(
int
n
=
0
;
n
<
filter_boxes
.
size
();
n
++
)
{
for
(
int
m
=
0
;
m
<
filter_boxes
[
0
].
size
();
m
++
)
{
rook_points
[
n
][
m
]
=
cv
::
Point
(
int
(
filter_boxes
[
n
][
m
][
0
]),
int
(
filter_boxes
[
n
][
m
][
1
]));
}
}
cv
::
Mat
img_vis
;
srcimg
.
copyTo
(
img_vis
);
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
const
cv
::
Point
*
ppt
[
1
]
=
{
rook_points
[
n
]};
int
npt
[]
=
{
4
};
cv
::
polylines
(
img_vis
,
ppt
,
npt
,
1
,
1
,
CV_RGB
(
0
,
255
,
0
),
2
,
8
,
0
);
}
// 调试用,自行替换需要修改的路径
cv
::
imwrite
(
"/sdcard/1/vis.png"
,
img_vis
);
}
std
::
vector
<
OCRPredictResult
>
OCR_PPredictor
::
infer_ocr
(
const
std
::
vector
<
int64_t
>
&
dims
,
const
float
*
input_data
,
int
input_len
,
int
net_flag
,
cv
::
Mat
&
origin
)
{
PredictorInput
input
=
_det_predictor
->
get_first_input
();
input
.
set_dims
(
dims
);
input
.
set_data
(
input_data
,
input_len
);
std
::
vector
<
PredictorOutput
>
results
=
_det_predictor
->
infer
();
PredictorOutput
&
res
=
results
.
at
(
0
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filtered_box
=
calc_filtered_boxes
(
res
.
get_float_data
(),
res
.
get_size
(),
(
int
)
dims
[
2
],
(
int
)
dims
[
3
],
origin
);
LOGI
(
"Filter_box size %ld"
,
filtered_box
.
size
());
return
infer_rec
(
filtered_box
,
origin
);
}
std
::
vector
<
OCRPredictResult
>
OCR_PPredictor
::
infer_rec
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
,
const
cv
::
Mat
&
origin_img
)
{
std
::
vector
<
float
>
mean
=
{
0.5
f
,
0.5
f
,
0.5
f
};
std
::
vector
<
float
>
scale
=
{
1
/
0.5
f
,
1
/
0.5
f
,
1
/
0.5
f
};
std
::
vector
<
int64_t
>
dims
=
{
1
,
3
,
0
,
0
};
std
::
vector
<
OCRPredictResult
>
ocr_results
;
PredictorInput
input
=
_rec_predictor
->
get_first_input
();
for
(
auto
bp
=
boxes
.
crbegin
();
bp
!=
boxes
.
crend
();
++
bp
)
{
const
std
::
vector
<
std
::
vector
<
int
>>
&
box
=
*
bp
;
cv
::
Mat
crop_img
=
get_rotate_crop_image
(
origin_img
,
box
);
float
wh_ratio
=
float
(
crop_img
.
cols
)
/
float
(
crop_img
.
rows
);
cv
::
Mat
input_image
=
crnn_resize_img
(
crop_img
,
wh_ratio
);
input_image
.
convertTo
(
input_image
,
CV_32FC3
,
1
/
255.0
f
);
const
float
*
dimg
=
reinterpret_cast
<
const
float
*>
(
input_image
.
data
);
int
input_size
=
input_image
.
rows
*
input_image
.
cols
;
dims
[
2
]
=
input_image
.
rows
;
dims
[
3
]
=
input_image
.
cols
;
input
.
set_dims
(
dims
);
neon_mean_scale
(
dimg
,
input
.
get_mutable_float_data
(),
input_size
,
mean
,
scale
);
std
::
vector
<
PredictorOutput
>
results
=
_rec_predictor
->
infer
();
OCRPredictResult
res
;
res
.
word_index
=
postprocess_rec_word_index
(
results
.
at
(
0
));
if
(
res
.
word_index
.
empty
())
{
continue
;
}
res
.
score
=
postprocess_rec_score
(
results
.
at
(
1
));
res
.
points
=
box
;
ocr_results
.
emplace_back
(
std
::
move
(
res
));
}
LOGI
(
"ocr_results finished %lu"
,
ocr_results
.
size
());
return
ocr_results
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
OCR_PPredictor
::
calc_filtered_boxes
(
const
float
*
pred
,
int
pred_size
,
int
output_height
,
int
output_width
,
const
cv
::
Mat
&
origin
)
{
const
double
threshold
=
0.3
;
const
double
maxvalue
=
1
;
cv
::
Mat
pred_map
=
cv
::
Mat
::
zeros
(
output_height
,
output_width
,
CV_32F
);
memcpy
(
pred_map
.
data
,
pred
,
pred_size
*
sizeof
(
float
));
cv
::
Mat
cbuf_map
;
pred_map
.
convertTo
(
cbuf_map
,
CV_8UC1
);
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
=
boxes_from_bitmap
(
pred_map
,
bit_map
);
float
ratio_h
=
output_height
*
1.0
f
/
origin
.
rows
;
float
ratio_w
=
output_width
*
1.0
f
/
origin
.
cols
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filter_boxes
=
filter_tag_det_res
(
boxes
,
ratio_h
,
ratio_w
,
origin
);
return
filter_boxes
;
}
std
::
vector
<
int
>
OCR_PPredictor
::
postprocess_rec_word_index
(
const
PredictorOutput
&
res
)
{
const
int
*
rec_idx
=
res
.
get_int_data
();
const
std
::
vector
<
std
::
vector
<
uint64_t
>>
rec_idx_lod
=
res
.
get_lod
();
std
::
vector
<
int
>
pred_idx
;
for
(
int
n
=
int
(
rec_idx_lod
[
0
][
0
]);
n
<
int
(
rec_idx_lod
[
0
][
1
]
*
2
);
n
+=
2
)
{
pred_idx
.
emplace_back
(
rec_idx
[
n
]);
}
return
pred_idx
;
}
float
OCR_PPredictor
::
postprocess_rec_score
(
const
PredictorOutput
&
res
)
{
const
float
*
predict_batch
=
res
.
get_float_data
();
const
std
::
vector
<
int64_t
>
predict_shape
=
res
.
get_shape
();
const
std
::
vector
<
std
::
vector
<
uint64_t
>>
predict_lod
=
res
.
get_lod
();
int
blank
=
predict_shape
[
1
];
float
score
=
0.
f
;
int
count
=
0
;
for
(
int
n
=
predict_lod
[
0
][
0
];
n
<
predict_lod
[
0
][
1
]
-
1
;
n
++
)
{
int
argmax_idx
=
argmax
(
predict_batch
+
n
*
predict_shape
[
1
],
predict_batch
+
(
n
+
1
)
*
predict_shape
[
1
]);
float
max_value
=
predict_batch
[
n
*
predict_shape
[
1
]
+
argmax_idx
];
if
(
blank
-
1
-
argmax_idx
>
1e-5
)
{
score
+=
max_value
;
count
+=
1
;
}
}
if
(
count
==
0
)
{
LOGE
(
"calc score count 0"
);
}
else
{
score
/=
count
;
}
LOGI
(
"calc score: %f"
,
score
);
return
score
;
}
NET_TYPE
OCR_PPredictor
::
get_net_flag
()
const
{
return
NET_OCR
;
}
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/ocr_ppredictor.h
deleted
100644 → 0
View file @
47752ddf
//
// Created by fujiayi on 2020/7/1.
//
#pragma once
#include <string>
#include <opencv2/opencv.hpp>
#include <paddle_api.h>
#include "ppredictor.h"
namespace
ppredictor
{
/**
* Config
*/
struct
OCR_Config
{
int
thread_num
=
4
;
// Thread num
paddle
::
lite_api
::
PowerMode
mode
=
paddle
::
lite_api
::
LITE_POWER_HIGH
;
// PaddleLite Mode
};
/**
* PolyGone Result
*/
struct
OCRPredictResult
{
std
::
vector
<
int
>
word_index
;
std
::
vector
<
std
::
vector
<
int
>>
points
;
float
score
;
};
/**
* OCR there are 2 models
* 1. First model(det),select polygones to show where are the texts
* 2. crop from the origin images, use these polygones to infer
*/
class
OCR_PPredictor
:
public
PPredictor_Interface
{
public:
OCR_PPredictor
(
const
OCR_Config
&
config
);
virtual
~
OCR_PPredictor
()
{
}
/**
* 初始化二个模型的Predictor
* @param det_model_content
* @param rec_model_content
* @return
*/
int
init
(
const
std
::
string
&
det_model_content
,
const
std
::
string
&
rec_model_content
);
int
init_from_file
(
const
std
::
string
&
det_model_path
,
const
std
::
string
&
rec_model_path
);
/**
* Return OCR result
* @param dims
* @param input_data
* @param input_len
* @param net_flag
* @param origin
* @return
*/
virtual
std
::
vector
<
OCRPredictResult
>
infer_ocr
(
const
std
::
vector
<
int64_t
>
&
dims
,
const
float
*
input_data
,
int
input_len
,
int
net_flag
,
cv
::
Mat
&
origin
);
virtual
NET_TYPE
get_net_flag
()
const
;
private:
/**
* calcul Polygone from the result image of first model
* @param pred
* @param output_height
* @param output_width
* @param origin
* @return
*/
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
calc_filtered_boxes
(
const
float
*
pred
,
int
pred_size
,
int
output_height
,
int
output_width
,
const
cv
::
Mat
&
origin
);
/**
* infer for second model
*
* @param boxes
* @param origin
* @return
*/
std
::
vector
<
OCRPredictResult
>
infer_rec
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
,
const
cv
::
Mat
&
origin
);
/**
* Postprocess or sencod model to extract text
* @param res
* @return
*/
std
::
vector
<
int
>
postprocess_rec_word_index
(
const
PredictorOutput
&
res
);
/**
* calculate confidence of second model text result
* @param res
* @return
*/
float
postprocess_rec_score
(
const
PredictorOutput
&
res
);
std
::
unique_ptr
<
PPredictor
>
_det_predictor
;
std
::
unique_ptr
<
PPredictor
>
_rec_predictor
;
OCR_Config
_config
;
};
}
deploy/android_demo/app/src/main/cpp/ppredictor.cpp
deleted
100644 → 0
View file @
47752ddf
#include "ppredictor.h"
#include "common.h"
namespace
ppredictor
{
PPredictor
::
PPredictor
(
int
thread_num
,
int
net_flag
,
paddle
::
lite_api
::
PowerMode
mode
)
:
_thread_num
(
thread_num
),
_net_flag
(
net_flag
),
_mode
(
mode
)
{
}
int
PPredictor
::
init_nb
(
const
std
::
string
&
model_content
)
{
paddle
::
lite_api
::
MobileConfig
config
;
config
.
set_model_from_buffer
(
model_content
);
return
_init
(
config
);
}
int
PPredictor
::
init_from_file
(
const
std
::
string
&
model_content
){
paddle
::
lite_api
::
MobileConfig
config
;
config
.
set_model_from_file
(
model_content
);
return
_init
(
config
);
}
template
<
typename
ConfigT
>
int
PPredictor
::
_init
(
ConfigT
&
config
)
{
config
.
set_threads
(
_thread_num
);
config
.
set_power_mode
(
_mode
);
_predictor
=
paddle
::
lite_api
::
CreatePaddlePredictor
(
config
);
LOGI
(
"paddle instance created"
);
return
RETURN_OK
;
}
PredictorInput
PPredictor
::
get_input
(
int
index
)
{
PredictorInput
input
{
_predictor
->
GetInput
(
index
),
index
,
_net_flag
};
_is_input_get
=
true
;
return
input
;
}
std
::
vector
<
PredictorInput
>
PPredictor
::
get_inputs
(
int
num
)
{
std
::
vector
<
PredictorInput
>
results
;
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
results
.
emplace_back
(
get_input
(
i
));
}
return
results
;
}
PredictorInput
PPredictor
::
get_first_input
()
{
return
get_input
(
0
);
}
std
::
vector
<
PredictorOutput
>
PPredictor
::
infer
()
{
LOGI
(
"infer Run start %d"
,
_net_flag
);
std
::
vector
<
PredictorOutput
>
results
;
if
(
!
_is_input_get
)
{
return
results
;
}
_predictor
->
Run
();
LOGI
(
"infer Run end"
);
for
(
int
i
=
0
;
i
<
_predictor
->
GetOutputNames
().
size
();
i
++
)
{
std
::
unique_ptr
<
const
paddle
::
lite_api
::
Tensor
>
output_tensor
=
_predictor
->
GetOutput
(
i
);
LOGI
(
"output tensor[%d] size %ld"
,
i
,
product
(
output_tensor
->
shape
()));
PredictorOutput
result
{
std
::
move
(
output_tensor
),
i
,
_net_flag
};
results
.
emplace_back
(
std
::
move
(
result
));
}
return
results
;
}
NET_TYPE
PPredictor
::
get_net_flag
()
const
{
return
(
NET_TYPE
)
_net_flag
;
}
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/ppredictor.h
deleted
100644 → 0
View file @
47752ddf
#pragma once
#include "paddle_api.h"
#include "predictor_input.h"
#include "predictor_output.h"
namespace
ppredictor
{
/**
* PaddleLite Preditor Common Interface
*/
class
PPredictor_Interface
{
public:
virtual
~
PPredictor_Interface
()
{
}
virtual
NET_TYPE
get_net_flag
()
const
=
0
;
};
/**
* Common Predictor
*/
class
PPredictor
:
public
PPredictor_Interface
{
public:
PPredictor
(
int
thread_num
,
int
net_flag
=
0
,
paddle
::
lite_api
::
PowerMode
mode
=
paddle
::
lite_api
::
LITE_POWER_HIGH
);
virtual
~
PPredictor
()
{
}
/**
* init paddlitelite opt model,nb format ,or use ini_paddle
* @param model_content
* @return 0
*/
virtual
int
init_nb
(
const
std
::
string
&
model_content
);
virtual
int
init_from_file
(
const
std
::
string
&
model_content
);
std
::
vector
<
PredictorOutput
>
infer
();
std
::
shared_ptr
<
paddle
::
lite_api
::
PaddlePredictor
>
get_predictor
()
{
return
_predictor
;
}
virtual
std
::
vector
<
PredictorInput
>
get_inputs
(
int
num
);
virtual
PredictorInput
get_input
(
int
index
);
virtual
PredictorInput
get_first_input
();
virtual
NET_TYPE
get_net_flag
()
const
;
protected:
template
<
typename
ConfigT
>
int
_init
(
ConfigT
&
config
);
private:
int
_thread_num
;
paddle
::
lite_api
::
PowerMode
_mode
;
std
::
shared_ptr
<
paddle
::
lite_api
::
PaddlePredictor
>
_predictor
;
bool
_is_input_get
=
false
;
int
_net_flag
;
};
}
deploy/android_demo/app/src/main/cpp/predictor_input.cpp
deleted
100644 → 0
View file @
47752ddf
#include "predictor_input.h"
namespace
ppredictor
{
void
PredictorInput
::
set_dims
(
std
::
vector
<
int64_t
>
dims
)
{
// yolov3
if
(
_net_flag
==
101
&&
_index
==
1
)
{
_tensor
->
Resize
({
1
,
2
});
_tensor
->
mutable_data
<
int
>
()[
0
]
=
(
int
)
dims
.
at
(
2
);
_tensor
->
mutable_data
<
int
>
()[
1
]
=
(
int
)
dims
.
at
(
3
);
}
else
{
_tensor
->
Resize
(
dims
);
}
_is_dims_set
=
true
;
}
float
*
PredictorInput
::
get_mutable_float_data
()
{
if
(
!
_is_dims_set
)
{
LOGE
(
"PredictorInput::set_dims is not called"
);
}
return
_tensor
->
mutable_data
<
float
>
();
}
void
PredictorInput
::
set_data
(
const
float
*
input_data
,
int
input_float_len
)
{
float
*
input_raw_data
=
get_mutable_float_data
();
memcpy
(
input_raw_data
,
input_data
,
input_float_len
*
sizeof
(
float
));
}
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/predictor_input.h
deleted
100644 → 0
View file @
47752ddf
#pragma once
#include <paddle_api.h>
#include <vector>
#include "common.h"
namespace
ppredictor
{
class
PredictorInput
{
public:
PredictorInput
(
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
&&
tensor
,
int
index
,
int
net_flag
)
:
_tensor
(
std
::
move
(
tensor
)),
_index
(
index
),
_net_flag
(
net_flag
)
{
}
void
set_dims
(
std
::
vector
<
int64_t
>
dims
);
float
*
get_mutable_float_data
();
void
set_data
(
const
float
*
input_data
,
int
input_float_len
);
private:
std
::
unique_ptr
<
paddle
::
lite_api
::
Tensor
>
_tensor
;
bool
_is_dims_set
=
false
;
int
_index
;
int
_net_flag
;
};
}
deploy/android_demo/app/src/main/cpp/predictor_output.cpp
deleted
100644 → 0
View file @
47752ddf
#include "predictor_output.h"
namespace
ppredictor
{
const
float
*
PredictorOutput
::
get_float_data
()
const
{
return
_tensor
->
data
<
float
>
();
}
const
int
*
PredictorOutput
::
get_int_data
()
const
{
return
_tensor
->
data
<
int
>
();
}
const
std
::
vector
<
std
::
vector
<
uint64_t
>>
PredictorOutput
::
get_lod
()
const
{
return
_tensor
->
lod
();
}
int64_t
PredictorOutput
::
get_size
()
const
{
if
(
_net_flag
==
NET_OCR
)
{
return
_tensor
->
shape
().
at
(
2
)
*
_tensor
->
shape
().
at
(
3
);
}
else
{
return
product
(
_tensor
->
shape
());
}
}
const
std
::
vector
<
int64_t
>
PredictorOutput
::
get_shape
()
const
{
return
_tensor
->
shape
();
}
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/predictor_output.h
deleted
100644 → 0
View file @
47752ddf
#pragma once
#include <paddle_api.h>
#include <vector>
#include "common.h"
namespace
ppredictor
{
class
PredictorOutput
{
public:
PredictorOutput
(){
}
PredictorOutput
(
std
::
unique_ptr
<
const
paddle
::
lite_api
::
Tensor
>
&&
tensor
,
int
index
,
int
net_flag
)
:
_tensor
(
std
::
move
(
tensor
)),
_index
(
index
),
_net_flag
(
net_flag
)
{
}
const
float
*
get_float_data
()
const
;
const
int
*
get_int_data
()
const
;
int64_t
get_size
()
const
;
const
std
::
vector
<
std
::
vector
<
uint64_t
>>
get_lod
()
const
;
const
std
::
vector
<
int64_t
>
get_shape
()
const
;
std
::
vector
<
float
>
data
;
// return float, or use data_int
std
::
vector
<
int
>
data_int
;
// several layers return int ,or use data
std
::
vector
<
int64_t
>
shape
;
// PaddleLite output shape
std
::
vector
<
std
::
vector
<
uint64_t
>>
lod
;
// PaddleLite output lod
private:
std
::
unique_ptr
<
const
paddle
::
lite_api
::
Tensor
>
_tensor
;
int
_index
;
int
_net_flag
;
};
}
deploy/android_demo/app/src/main/cpp/preprocess.cpp
deleted
100644 → 0
View file @
47752ddf
#include "preprocess.h"
#include <android/bitmap.h>
cv
::
Mat
bitmap_to_cv_mat
(
JNIEnv
*
env
,
jobject
bitmap
)
{
AndroidBitmapInfo
info
;
int
result
=
AndroidBitmap_getInfo
(
env
,
bitmap
,
&
info
);
if
(
result
!=
ANDROID_BITMAP_RESULT_SUCCESS
)
{
LOGE
(
"AndroidBitmap_getInfo failed, result: %d"
,
result
);
return
cv
::
Mat
{};
}
if
(
info
.
format
!=
ANDROID_BITMAP_FORMAT_RGBA_8888
)
{
LOGE
(
"Bitmap format is not RGBA_8888 !"
);
return
cv
::
Mat
{};
}
unsigned
char
*
srcData
=
NULL
;
AndroidBitmap_lockPixels
(
env
,
bitmap
,
(
void
**
)
&
srcData
);
cv
::
Mat
mat
=
cv
::
Mat
::
zeros
(
info
.
height
,
info
.
width
,
CV_8UC4
);
memcpy
(
mat
.
data
,
srcData
,
info
.
height
*
info
.
width
*
4
);
AndroidBitmap_unlockPixels
(
env
,
bitmap
);
cv
::
cvtColor
(
mat
,
mat
,
cv
::
COLOR_RGBA2BGR
);
/**
if (!cv::imwrite("/sdcard/1/copy.jpg", mat)){
LOGE("Write image failed " );
}
*/
return
mat
;
}
cv
::
Mat
resize_img
(
const
cv
::
Mat
&
img
,
int
height
,
int
width
){
if
(
img
.
rows
==
height
&&
img
.
cols
==
width
){
return
img
;
}
cv
::
Mat
new_img
;
cv
::
resize
(
img
,
new_img
,
cv
::
Size
(
height
,
width
));
return
new_img
;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void
neon_mean_scale
(
const
float
*
din
,
float
*
dout
,
int
size
,
const
std
::
vector
<
float
>&
mean
,
const
std
::
vector
<
float
>&
scale
)
{
if
(
mean
.
size
()
!=
3
||
scale
.
size
()
!=
3
)
{
LOGE
(
"[ERROR] mean or scale size must equal to 3"
);
return
;
}
float32x4_t
vmean0
=
vdupq_n_f32
(
mean
[
0
]);
float32x4_t
vmean1
=
vdupq_n_f32
(
mean
[
1
]);
float32x4_t
vmean2
=
vdupq_n_f32
(
mean
[
2
]);
float32x4_t
vscale0
=
vdupq_n_f32
(
scale
[
0
]);
float32x4_t
vscale1
=
vdupq_n_f32
(
scale
[
1
]);
float32x4_t
vscale2
=
vdupq_n_f32
(
scale
[
2
]);
float
*
dout_c0
=
dout
;
float
*
dout_c1
=
dout
+
size
;
float
*
dout_c2
=
dout
+
size
*
2
;
int
i
=
0
;
for
(;
i
<
size
-
3
;
i
+=
4
)
{
float32x4x3_t
vin3
=
vld3q_f32
(
din
);
float32x4_t
vsub0
=
vsubq_f32
(
vin3
.
val
[
0
],
vmean0
);
float32x4_t
vsub1
=
vsubq_f32
(
vin3
.
val
[
1
],
vmean1
);
float32x4_t
vsub2
=
vsubq_f32
(
vin3
.
val
[
2
],
vmean2
);
float32x4_t
vs0
=
vmulq_f32
(
vsub0
,
vscale0
);
float32x4_t
vs1
=
vmulq_f32
(
vsub1
,
vscale1
);
float32x4_t
vs2
=
vmulq_f32
(
vsub2
,
vscale2
);
vst1q_f32
(
dout_c0
,
vs0
);
vst1q_f32
(
dout_c1
,
vs1
);
vst1q_f32
(
dout_c2
,
vs2
);
din
+=
12
;
dout_c0
+=
4
;
dout_c1
+=
4
;
dout_c2
+=
4
;
}
for
(;
i
<
size
;
i
++
)
{
*
(
dout_c0
++
)
=
(
*
(
din
++
)
-
mean
[
0
])
*
scale
[
0
];
*
(
dout_c1
++
)
=
(
*
(
din
++
)
-
mean
[
1
])
*
scale
[
1
];
*
(
dout_c2
++
)
=
(
*
(
din
++
)
-
mean
[
2
])
*
scale
[
2
];
}
}
\ No newline at end of file
deploy/android_demo/app/src/main/cpp/preprocess.h
deleted
100644 → 0
View file @
47752ddf
#pragma once
#include <jni.h>
#include <opencv2/opencv.hpp>
#include "common.h"
cv
::
Mat
bitmap_to_cv_mat
(
JNIEnv
*
env
,
jobject
bitmap
);
cv
::
Mat
resize_img
(
const
cv
::
Mat
&
img
,
int
height
,
int
width
);
void
neon_mean_scale
(
const
float
*
din
,
float
*
dout
,
int
size
,
const
std
::
vector
<
float
>&
mean
,
const
std
::
vector
<
float
>&
scale
);
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/AppCompatPreferenceActivity.java
deleted
100644 → 0
View file @
47752ddf
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package
com.baidu.paddle.lite.demo.ocr
;
import
android.content.res.Configuration
;
import
android.os.Bundle
;
import
android.preference.PreferenceActivity
;
import
android.view.MenuInflater
;
import
android.view.View
;
import
android.view.ViewGroup
;
import
androidx.annotation.LayoutRes
;
import
androidx.annotation.Nullable
;
import
androidx.appcompat.app.ActionBar
;
import
androidx.appcompat.app.AppCompatDelegate
;
import
androidx.appcompat.widget.Toolbar
;
/**
* A {@link PreferenceActivity} which implements and proxies the necessary calls
* to be used with AppCompat.
* <p>
* This technique can be used with an {@link android.app.Activity} class, not just
* {@link PreferenceActivity}.
*/
public
abstract
class
AppCompatPreferenceActivity
extends
PreferenceActivity
{
private
AppCompatDelegate
mDelegate
;
@Override
protected
void
onCreate
(
Bundle
savedInstanceState
)
{
getDelegate
().
installViewFactory
();
getDelegate
().
onCreate
(
savedInstanceState
);
super
.
onCreate
(
savedInstanceState
);
}
@Override
protected
void
onPostCreate
(
Bundle
savedInstanceState
)
{
super
.
onPostCreate
(
savedInstanceState
);
getDelegate
().
onPostCreate
(
savedInstanceState
);
}
public
ActionBar
getSupportActionBar
()
{
return
getDelegate
().
getSupportActionBar
();
}
public
void
setSupportActionBar
(
@Nullable
Toolbar
toolbar
)
{
getDelegate
().
setSupportActionBar
(
toolbar
);
}
@Override
public
MenuInflater
getMenuInflater
()
{
return
getDelegate
().
getMenuInflater
();
}
@Override
public
void
setContentView
(
@LayoutRes
int
layoutResID
)
{
getDelegate
().
setContentView
(
layoutResID
);
}
@Override
public
void
setContentView
(
View
view
)
{
getDelegate
().
setContentView
(
view
);
}
@Override
public
void
setContentView
(
View
view
,
ViewGroup
.
LayoutParams
params
)
{
getDelegate
().
setContentView
(
view
,
params
);
}
@Override
public
void
addContentView
(
View
view
,
ViewGroup
.
LayoutParams
params
)
{
getDelegate
().
addContentView
(
view
,
params
);
}
@Override
protected
void
onPostResume
()
{
super
.
onPostResume
();
getDelegate
().
onPostResume
();
}
@Override
protected
void
onTitleChanged
(
CharSequence
title
,
int
color
)
{
super
.
onTitleChanged
(
title
,
color
);
getDelegate
().
setTitle
(
title
);
}
@Override
public
void
onConfigurationChanged
(
Configuration
newConfig
)
{
super
.
onConfigurationChanged
(
newConfig
);
getDelegate
().
onConfigurationChanged
(
newConfig
);
}
@Override
protected
void
onStop
()
{
super
.
onStop
();
getDelegate
().
onStop
();
}
@Override
protected
void
onDestroy
()
{
super
.
onDestroy
();
getDelegate
().
onDestroy
();
}
public
void
invalidateOptionsMenu
()
{
getDelegate
().
invalidateOptionsMenu
();
}
private
AppCompatDelegate
getDelegate
()
{
if
(
mDelegate
==
null
)
{
mDelegate
=
AppCompatDelegate
.
create
(
this
,
null
);
}
return
mDelegate
;
}
}
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/MainActivity.java
deleted
100644 → 0
View file @
47752ddf
package
com.baidu.paddle.lite.demo.ocr
;
import
android.Manifest
;
import
android.app.ProgressDialog
;
import
android.content.ContentResolver
;
import
android.content.Context
;
import
android.content.Intent
;
import
android.content.SharedPreferences
;
import
android.content.pm.PackageManager
;
import
android.database.Cursor
;
import
android.graphics.Bitmap
;
import
android.graphics.BitmapFactory
;
import
android.media.ExifInterface
;
import
android.net.Uri
;
import
android.os.Bundle
;
import
android.os.Environment
;
import
android.os.Handler
;
import
android.os.HandlerThread
;
import
android.os.Message
;
import
android.preference.PreferenceManager
;
import
android.provider.MediaStore
;
import
android.text.method.ScrollingMovementMethod
;
import
android.util.Log
;
import
android.view.Menu
;
import
android.view.MenuInflater
;
import
android.view.MenuItem
;
import
android.widget.ImageView
;
import
android.widget.TextView
;
import
android.widget.Toast
;
import
androidx.annotation.NonNull
;
import
androidx.appcompat.app.AppCompatActivity
;
import
androidx.core.app.ActivityCompat
;
import
androidx.core.content.ContextCompat
;
import
androidx.core.content.FileProvider
;
import
java.io.File
;
import
java.io.IOException
;
import
java.io.InputStream
;
import
java.text.SimpleDateFormat
;
import
java.util.Date
;
public
class
MainActivity
extends
AppCompatActivity
{
private
static
final
String
TAG
=
MainActivity
.
class
.
getSimpleName
();
public
static
final
int
OPEN_GALLERY_REQUEST_CODE
=
0
;
public
static
final
int
TAKE_PHOTO_REQUEST_CODE
=
1
;
public
static
final
int
REQUEST_LOAD_MODEL
=
0
;
public
static
final
int
REQUEST_RUN_MODEL
=
1
;
public
static
final
int
RESPONSE_LOAD_MODEL_SUCCESSED
=
0
;
public
static
final
int
RESPONSE_LOAD_MODEL_FAILED
=
1
;
public
static
final
int
RESPONSE_RUN_MODEL_SUCCESSED
=
2
;
public
static
final
int
RESPONSE_RUN_MODEL_FAILED
=
3
;
protected
ProgressDialog
pbLoadModel
=
null
;
protected
ProgressDialog
pbRunModel
=
null
;
protected
Handler
receiver
=
null
;
// Receive messages from worker thread
protected
Handler
sender
=
null
;
// Send command to worker thread
protected
HandlerThread
worker
=
null
;
// Worker thread to load&run model
// UI components of object detection
protected
TextView
tvInputSetting
;
protected
ImageView
ivInputImage
;
protected
TextView
tvOutputResult
;
protected
TextView
tvInferenceTime
;
// Model settings of object detection
protected
String
modelPath
=
""
;
protected
String
labelPath
=
""
;
protected
String
imagePath
=
""
;
protected
int
cpuThreadNum
=
1
;
protected
String
cpuPowerMode
=
""
;
protected
String
inputColorFormat
=
""
;
protected
long
[]
inputShape
=
new
long
[]{};
protected
float
[]
inputMean
=
new
float
[]{};
protected
float
[]
inputStd
=
new
float
[]{};
protected
float
scoreThreshold
=
0.1f
;
private
String
currentPhotoPath
;
protected
Predictor
predictor
=
new
Predictor
();
@Override
protected
void
onCreate
(
Bundle
savedInstanceState
)
{
super
.
onCreate
(
savedInstanceState
);
setContentView
(
R
.
layout
.
activity_main
);
// Clear all setting items to avoid app crashing due to the incorrect settings
SharedPreferences
sharedPreferences
=
PreferenceManager
.
getDefaultSharedPreferences
(
this
);
SharedPreferences
.
Editor
editor
=
sharedPreferences
.
edit
();
editor
.
clear
();
editor
.
commit
();
// Prepare the worker thread for mode loading and inference
receiver
=
new
Handler
()
{
@Override
public
void
handleMessage
(
Message
msg
)
{
switch
(
msg
.
what
)
{
case
RESPONSE_LOAD_MODEL_SUCCESSED:
pbLoadModel
.
dismiss
();
onLoadModelSuccessed
();
break
;
case
RESPONSE_LOAD_MODEL_FAILED:
pbLoadModel
.
dismiss
();
Toast
.
makeText
(
MainActivity
.
this
,
"Load model failed!"
,
Toast
.
LENGTH_SHORT
).
show
();
onLoadModelFailed
();
break
;
case
RESPONSE_RUN_MODEL_SUCCESSED:
pbRunModel
.
dismiss
();
onRunModelSuccessed
();
break
;
case
RESPONSE_RUN_MODEL_FAILED:
pbRunModel
.
dismiss
();
Toast
.
makeText
(
MainActivity
.
this
,
"Run model failed!"
,
Toast
.
LENGTH_SHORT
).
show
();
onRunModelFailed
();
break
;
default
:
break
;
}
}
};
worker
=
new
HandlerThread
(
"Predictor Worker"
);
worker
.
start
();
sender
=
new
Handler
(
worker
.
getLooper
())
{
public
void
handleMessage
(
Message
msg
)
{
switch
(
msg
.
what
)
{
case
REQUEST_LOAD_MODEL:
// Load model and reload test image
if
(
onLoadModel
())
{
receiver
.
sendEmptyMessage
(
RESPONSE_LOAD_MODEL_SUCCESSED
);
}
else
{
receiver
.
sendEmptyMessage
(
RESPONSE_LOAD_MODEL_FAILED
);
}
break
;
case
REQUEST_RUN_MODEL:
// Run model if model is loaded
if
(
onRunModel
())
{
receiver
.
sendEmptyMessage
(
RESPONSE_RUN_MODEL_SUCCESSED
);
}
else
{
receiver
.
sendEmptyMessage
(
RESPONSE_RUN_MODEL_FAILED
);
}
break
;
default
:
break
;
}
}
};
// Setup the UI components
tvInputSetting
=
findViewById
(
R
.
id
.
tv_input_setting
);
ivInputImage
=
findViewById
(
R
.
id
.
iv_input_image
);
tvInferenceTime
=
findViewById
(
R
.
id
.
tv_inference_time
);
tvOutputResult
=
findViewById
(
R
.
id
.
tv_output_result
);
tvInputSetting
.
setMovementMethod
(
ScrollingMovementMethod
.
getInstance
());
tvOutputResult
.
setMovementMethod
(
ScrollingMovementMethod
.
getInstance
());
}
@Override
protected
void
onResume
()
{
super
.
onResume
();
SharedPreferences
sharedPreferences
=
PreferenceManager
.
getDefaultSharedPreferences
(
this
);
boolean
settingsChanged
=
false
;
String
model_path
=
sharedPreferences
.
getString
(
getString
(
R
.
string
.
MODEL_PATH_KEY
),
getString
(
R
.
string
.
MODEL_PATH_DEFAULT
));
String
label_path
=
sharedPreferences
.
getString
(
getString
(
R
.
string
.
LABEL_PATH_KEY
),
getString
(
R
.
string
.
LABEL_PATH_DEFAULT
));
String
image_path
=
sharedPreferences
.
getString
(
getString
(
R
.
string
.
IMAGE_PATH_KEY
),
getString
(
R
.
string
.
IMAGE_PATH_DEFAULT
));
settingsChanged
|=
!
model_path
.
equalsIgnoreCase
(
modelPath
);
settingsChanged
|=
!
label_path
.
equalsIgnoreCase
(
labelPath
);
settingsChanged
|=
!
image_path
.
equalsIgnoreCase
(
imagePath
);
int
cpu_thread_num
=
Integer
.
parseInt
(
sharedPreferences
.
getString
(
getString
(
R
.
string
.
CPU_THREAD_NUM_KEY
),
getString
(
R
.
string
.
CPU_THREAD_NUM_DEFAULT
)));
settingsChanged
|=
cpu_thread_num
!=
cpuThreadNum
;
String
cpu_power_mode
=
sharedPreferences
.
getString
(
getString
(
R
.
string
.
CPU_POWER_MODE_KEY
),
getString
(
R
.
string
.
CPU_POWER_MODE_DEFAULT
));
settingsChanged
|=
!
cpu_power_mode
.
equalsIgnoreCase
(
cpuPowerMode
);
String
input_color_format
=
sharedPreferences
.
getString
(
getString
(
R
.
string
.
INPUT_COLOR_FORMAT_KEY
),
getString
(
R
.
string
.
INPUT_COLOR_FORMAT_DEFAULT
));
settingsChanged
|=
!
input_color_format
.
equalsIgnoreCase
(
inputColorFormat
);
long
[]
input_shape
=
Utils
.
parseLongsFromString
(
sharedPreferences
.
getString
(
getString
(
R
.
string
.
INPUT_SHAPE_KEY
),
getString
(
R
.
string
.
INPUT_SHAPE_DEFAULT
)),
","
);
float
[]
input_mean
=
Utils
.
parseFloatsFromString
(
sharedPreferences
.
getString
(
getString
(
R
.
string
.
INPUT_MEAN_KEY
),
getString
(
R
.
string
.
INPUT_MEAN_DEFAULT
)),
","
);
float
[]
input_std
=
Utils
.
parseFloatsFromString
(
sharedPreferences
.
getString
(
getString
(
R
.
string
.
INPUT_STD_KEY
)
,
getString
(
R
.
string
.
INPUT_STD_DEFAULT
)),
","
);
settingsChanged
|=
input_shape
.
length
!=
inputShape
.
length
;
settingsChanged
|=
input_mean
.
length
!=
inputMean
.
length
;
settingsChanged
|=
input_std
.
length
!=
inputStd
.
length
;
if
(!
settingsChanged
)
{
for
(
int
i
=
0
;
i
<
input_shape
.
length
;
i
++)
{
settingsChanged
|=
input_shape
[
i
]
!=
inputShape
[
i
];
}
for
(
int
i
=
0
;
i
<
input_mean
.
length
;
i
++)
{
settingsChanged
|=
input_mean
[
i
]
!=
inputMean
[
i
];
}
for
(
int
i
=
0
;
i
<
input_std
.
length
;
i
++)
{
settingsChanged
|=
input_std
[
i
]
!=
inputStd
[
i
];
}
}
float
score_threshold
=
Float
.
parseFloat
(
sharedPreferences
.
getString
(
getString
(
R
.
string
.
SCORE_THRESHOLD_KEY
),
getString
(
R
.
string
.
SCORE_THRESHOLD_DEFAULT
)));
settingsChanged
|=
scoreThreshold
!=
score_threshold
;
if
(
settingsChanged
)
{
modelPath
=
model_path
;
labelPath
=
label_path
;
imagePath
=
image_path
;
cpuThreadNum
=
cpu_thread_num
;
cpuPowerMode
=
cpu_power_mode
;
inputColorFormat
=
input_color_format
;
inputShape
=
input_shape
;
inputMean
=
input_mean
;
inputStd
=
input_std
;
scoreThreshold
=
score_threshold
;
// Update UI
tvInputSetting
.
setText
(
"Model: "
+
modelPath
.
substring
(
modelPath
.
lastIndexOf
(
"/"
)
+
1
)
+
"\n"
+
"CPU"
+
" Thread Num: "
+
Integer
.
toString
(
cpuThreadNum
)
+
"\n"
+
"CPU Power Mode: "
+
cpuPowerMode
);
tvInputSetting
.
scrollTo
(
0
,
0
);
// Reload model if configure has been changed
loadModel
();
}
}
public
void
loadModel
()
{
pbLoadModel
=
ProgressDialog
.
show
(
this
,
""
,
"Loading model..."
,
false
,
false
);
sender
.
sendEmptyMessage
(
REQUEST_LOAD_MODEL
);
}
public
void
runModel
()
{
pbRunModel
=
ProgressDialog
.
show
(
this
,
""
,
"Running model..."
,
false
,
false
);
sender
.
sendEmptyMessage
(
REQUEST_RUN_MODEL
);
}
public
boolean
onLoadModel
()
{
return
predictor
.
init
(
MainActivity
.
this
,
modelPath
,
labelPath
,
cpuThreadNum
,
cpuPowerMode
,
inputColorFormat
,
inputShape
,
inputMean
,
inputStd
,
scoreThreshold
);
}
public
boolean
onRunModel
()
{
return
predictor
.
isLoaded
()
&&
predictor
.
runModel
();
}
public
void
onLoadModelSuccessed
()
{
// Load test image from path and run model
try
{
if
(
imagePath
.
isEmpty
())
{
return
;
}
Bitmap
image
=
null
;
// Read test image file from custom path if the first character of mode path is '/', otherwise read test
// image file from assets
if
(!
imagePath
.
substring
(
0
,
1
).
equals
(
"/"
))
{
InputStream
imageStream
=
getAssets
().
open
(
imagePath
);
image
=
BitmapFactory
.
decodeStream
(
imageStream
);
}
else
{
if
(!
new
File
(
imagePath
).
exists
())
{
return
;
}
image
=
BitmapFactory
.
decodeFile
(
imagePath
);
}
if
(
image
!=
null
&&
predictor
.
isLoaded
())
{
predictor
.
setInputImage
(
image
);
runModel
();
}
}
catch
(
IOException
e
)
{
Toast
.
makeText
(
MainActivity
.
this
,
"Load image failed!"
,
Toast
.
LENGTH_SHORT
).
show
();
e
.
printStackTrace
();
}
}
public
void
onLoadModelFailed
()
{
}
public
void
onRunModelSuccessed
()
{
// Obtain results and update UI
tvInferenceTime
.
setText
(
"Inference time: "
+
predictor
.
inferenceTime
()
+
" ms"
);
Bitmap
outputImage
=
predictor
.
outputImage
();
if
(
outputImage
!=
null
)
{
ivInputImage
.
setImageBitmap
(
outputImage
);
}
tvOutputResult
.
setText
(
predictor
.
outputResult
());
tvOutputResult
.
scrollTo
(
0
,
0
);
}
public
void
onRunModelFailed
()
{
}
public
void
onImageChanged
(
Bitmap
image
)
{
// Rerun model if users pick test image from gallery or camera
if
(
image
!=
null
&&
predictor
.
isLoaded
())
{
predictor
.
setInputImage
(
image
);
runModel
();
}
}
public
void
onSettingsClicked
()
{
startActivity
(
new
Intent
(
MainActivity
.
this
,
SettingsActivity
.
class
));
}
@Override
public
boolean
onCreateOptionsMenu
(
Menu
menu
)
{
MenuInflater
inflater
=
getMenuInflater
();
inflater
.
inflate
(
R
.
menu
.
menu_action_options
,
menu
);
return
true
;
}
public
boolean
onPrepareOptionsMenu
(
Menu
menu
)
{
boolean
isLoaded
=
predictor
.
isLoaded
();
menu
.
findItem
(
R
.
id
.
open_gallery
).
setEnabled
(
isLoaded
);
menu
.
findItem
(
R
.
id
.
take_photo
).
setEnabled
(
isLoaded
);
return
super
.
onPrepareOptionsMenu
(
menu
);
}
@Override
public
boolean
onOptionsItemSelected
(
MenuItem
item
)
{
switch
(
item
.
getItemId
())
{
case
android
.
R
.
id
.
home
:
finish
();
break
;
case
R
.
id
.
open_gallery
:
if
(
requestAllPermissions
())
{
openGallery
();
}
break
;
case
R
.
id
.
take_photo
:
if
(
requestAllPermissions
())
{
takePhoto
();
}
break
;
case
R
.
id
.
settings
:
if
(
requestAllPermissions
())
{
// Make sure we have SDCard r&w permissions to load model from SDCard
onSettingsClicked
();
}
break
;
}
return
super
.
onOptionsItemSelected
(
item
);
}
@Override
public
void
onRequestPermissionsResult
(
int
requestCode
,
@NonNull
String
[]
permissions
,
@NonNull
int
[]
grantResults
)
{
super
.
onRequestPermissionsResult
(
requestCode
,
permissions
,
grantResults
);
if
(
grantResults
[
0
]
!=
PackageManager
.
PERMISSION_GRANTED
||
grantResults
[
1
]
!=
PackageManager
.
PERMISSION_GRANTED
)
{
Toast
.
makeText
(
this
,
"Permission Denied"
,
Toast
.
LENGTH_SHORT
).
show
();
}
}
private
boolean
requestAllPermissions
()
{
if
(
ContextCompat
.
checkSelfPermission
(
this
,
Manifest
.
permission
.
WRITE_EXTERNAL_STORAGE
)
!=
PackageManager
.
PERMISSION_GRANTED
||
ContextCompat
.
checkSelfPermission
(
this
,
Manifest
.
permission
.
CAMERA
)
!=
PackageManager
.
PERMISSION_GRANTED
)
{
ActivityCompat
.
requestPermissions
(
this
,
new
String
[]{
Manifest
.
permission
.
WRITE_EXTERNAL_STORAGE
,
Manifest
.
permission
.
CAMERA
},
0
);
return
false
;
}
return
true
;
}
private
void
openGallery
()
{
Intent
intent
=
new
Intent
(
Intent
.
ACTION_PICK
,
null
);
intent
.
setDataAndType
(
MediaStore
.
Images
.
Media
.
EXTERNAL_CONTENT_URI
,
"image/*"
);
startActivityForResult
(
intent
,
OPEN_GALLERY_REQUEST_CODE
);
}
private
void
takePhoto
()
{
Intent
takePictureIntent
=
new
Intent
(
MediaStore
.
ACTION_IMAGE_CAPTURE
);
// Ensure that there's a camera activity to handle the intent
if
(
takePictureIntent
.
resolveActivity
(
getPackageManager
())
!=
null
)
{
// Create the File where the photo should go
File
photoFile
=
null
;
try
{
photoFile
=
createImageFile
();
}
catch
(
IOException
ex
)
{
Log
.
e
(
"MainActitity"
,
ex
.
getMessage
(),
ex
);
Toast
.
makeText
(
MainActivity
.
this
,
"Create Camera temp file failed: "
+
ex
.
getMessage
(),
Toast
.
LENGTH_SHORT
).
show
();
}
// Continue only if the File was successfully created
if
(
photoFile
!=
null
)
{
Log
.
i
(
TAG
,
"FILEPATH "
+
getExternalFilesDir
(
"Pictures"
).
getAbsolutePath
());
Uri
photoURI
=
FileProvider
.
getUriForFile
(
this
,
"com.baidu.paddle.lite.demo.ocr.fileprovider"
,
photoFile
);
currentPhotoPath
=
photoFile
.
getAbsolutePath
();
takePictureIntent
.
putExtra
(
MediaStore
.
EXTRA_OUTPUT
,
photoURI
);
startActivityForResult
(
takePictureIntent
,
TAKE_PHOTO_REQUEST_CODE
);
Log
.
i
(
TAG
,
"startActivityForResult finished"
);
}
}
}
private
File
createImageFile
()
throws
IOException
{
// Create an image file name
String
timeStamp
=
new
SimpleDateFormat
(
"yyyyMMdd_HHmmss"
).
format
(
new
Date
());
String
imageFileName
=
"JPEG_"
+
timeStamp
+
"_"
;
File
storageDir
=
getExternalFilesDir
(
Environment
.
DIRECTORY_PICTURES
);
File
image
=
File
.
createTempFile
(
imageFileName
,
/* prefix */
".bmp"
,
/* suffix */
storageDir
/* directory */
);
return
image
;
}
@Override
protected
void
onActivityResult
(
int
requestCode
,
int
resultCode
,
Intent
data
)
{
super
.
onActivityResult
(
requestCode
,
resultCode
,
data
);
if
(
resultCode
==
RESULT_OK
)
{
switch
(
requestCode
)
{
case
OPEN_GALLERY_REQUEST_CODE:
if
(
data
==
null
)
{
break
;
}
try
{
ContentResolver
resolver
=
getContentResolver
();
Uri
uri
=
data
.
getData
();
Bitmap
image
=
MediaStore
.
Images
.
Media
.
getBitmap
(
resolver
,
uri
);
String
[]
proj
=
{
MediaStore
.
Images
.
Media
.
DATA
};
Cursor
cursor
=
managedQuery
(
uri
,
proj
,
null
,
null
,
null
);
cursor
.
moveToFirst
();
onImageChanged
(
image
);
}
catch
(
IOException
e
)
{
Log
.
e
(
TAG
,
e
.
toString
());
}
break
;
case
TAKE_PHOTO_REQUEST_CODE:
if
(
currentPhotoPath
!=
null
)
{
ExifInterface
exif
=
null
;
try
{
exif
=
new
ExifInterface
(
currentPhotoPath
);
}
catch
(
IOException
e
)
{
e
.
printStackTrace
();
}
int
orientation
=
exif
.
getAttributeInt
(
ExifInterface
.
TAG_ORIENTATION
,
ExifInterface
.
ORIENTATION_UNDEFINED
);
Log
.
i
(
TAG
,
"rotation "
+
orientation
);
Bitmap
image
=
BitmapFactory
.
decodeFile
(
currentPhotoPath
);
image
=
Utils
.
rotateBitmap
(
image
,
orientation
);
onImageChanged
(
image
);
}
else
{
Log
.
e
(
TAG
,
"currentPhotoPath is null"
);
}
break
;
default
:
break
;
}
}
}
@Override
protected
void
onDestroy
()
{
if
(
predictor
!=
null
)
{
predictor
.
releaseModel
();
}
worker
.
quit
();
super
.
onDestroy
();
}
}
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/MiniActivity.java
deleted
100644 → 0
View file @
47752ddf
package
com.baidu.paddle.lite.demo.ocr
;
import
android.graphics.Bitmap
;
import
android.graphics.BitmapFactory
;
import
android.os.Build
;
import
android.os.Bundle
;
import
android.os.Handler
;
import
android.os.HandlerThread
;
import
android.os.Message
;
import
android.util.Log
;
import
android.view.View
;
import
android.widget.Button
;
import
android.widget.ImageView
;
import
android.widget.TextView
;
import
android.widget.Toast
;
import
androidx.appcompat.app.AppCompatActivity
;
import
java.io.IOException
;
import
java.io.InputStream
;
public
class
MiniActivity
extends
AppCompatActivity
{
public
static
final
int
REQUEST_LOAD_MODEL
=
0
;
public
static
final
int
REQUEST_RUN_MODEL
=
1
;
public
static
final
int
REQUEST_UNLOAD_MODEL
=
2
;
public
static
final
int
RESPONSE_LOAD_MODEL_SUCCESSED
=
0
;
public
static
final
int
RESPONSE_LOAD_MODEL_FAILED
=
1
;
public
static
final
int
RESPONSE_RUN_MODEL_SUCCESSED
=
2
;
public
static
final
int
RESPONSE_RUN_MODEL_FAILED
=
3
;
private
static
final
String
TAG
=
"MiniActivity"
;
protected
Handler
receiver
=
null
;
// Receive messages from worker thread
protected
Handler
sender
=
null
;
// Send command to worker thread
protected
HandlerThread
worker
=
null
;
// Worker thread to load&run model
protected
volatile
Predictor
predictor
=
null
;
private
String
assetModelDirPath
=
"models/ocr_v1_for_cpu"
;
private
String
assetlabelFilePath
=
"labels/ppocr_keys_v1.txt"
;
private
Button
button
;
private
ImageView
imageView
;
// image result
private
TextView
textView
;
// text result
@Override
protected
void
onCreate
(
Bundle
savedInstanceState
)
{
super
.
onCreate
(
savedInstanceState
);
setContentView
(
R
.
layout
.
activity_mini
);
Log
.
i
(
TAG
,
"SHOW in Logcat"
);
// Prepare the worker thread for mode loading and inference
worker
=
new
HandlerThread
(
"Predictor Worker"
);
worker
.
start
();
sender
=
new
Handler
(
worker
.
getLooper
())
{
public
void
handleMessage
(
Message
msg
)
{
switch
(
msg
.
what
)
{
case
REQUEST_LOAD_MODEL:
// Load model and reload test image
if
(!
onLoadModel
())
{
runOnUiThread
(
new
Runnable
()
{
@Override
public
void
run
()
{
Toast
.
makeText
(
MiniActivity
.
this
,
"Load model failed!"
,
Toast
.
LENGTH_SHORT
).
show
();
}
});
}
break
;
case
REQUEST_RUN_MODEL:
// Run model if model is loaded
final
boolean
isSuccessed
=
onRunModel
();
runOnUiThread
(
new
Runnable
()
{
@Override
public
void
run
()
{
if
(
isSuccessed
){
onRunModelSuccessed
();
}
else
{
Toast
.
makeText
(
MiniActivity
.
this
,
"Run model failed!"
,
Toast
.
LENGTH_SHORT
).
show
();
}
}
});
break
;
}
}
};
sender
.
sendEmptyMessage
(
REQUEST_LOAD_MODEL
);
// corresponding to REQUEST_LOAD_MODEL, to call onLoadModel()
imageView
=
findViewById
(
R
.
id
.
imageView
);
textView
=
findViewById
(
R
.
id
.
sample_text
);
button
=
findViewById
(
R
.
id
.
button
);
button
.
setOnClickListener
(
new
View
.
OnClickListener
()
{
@Override
public
void
onClick
(
View
v
)
{
sender
.
sendEmptyMessage
(
REQUEST_RUN_MODEL
);
}
});
}
@Override
protected
void
onDestroy
()
{
onUnloadModel
();
if
(
Build
.
VERSION
.
SDK_INT
>=
Build
.
VERSION_CODES
.
JELLY_BEAN_MR2
)
{
worker
.
quitSafely
();
}
else
{
worker
.
quit
();
}
super
.
onDestroy
();
}
/**
* call in onCreate, model init
*
* @return
*/
private
boolean
onLoadModel
()
{
if
(
predictor
==
null
)
{
predictor
=
new
Predictor
();
}
return
predictor
.
init
(
this
,
assetModelDirPath
,
assetlabelFilePath
);
}
/**
* init engine
* call in onCreate
*
* @return
*/
private
boolean
onRunModel
()
{
try
{
String
assetImagePath
=
"images/5.jpg"
;
InputStream
imageStream
=
getAssets
().
open
(
assetImagePath
);
Bitmap
image
=
BitmapFactory
.
decodeStream
(
imageStream
);
// Input is Bitmap
predictor
.
setInputImage
(
image
);
return
predictor
.
isLoaded
()
&&
predictor
.
runModel
();
}
catch
(
IOException
e
)
{
e
.
printStackTrace
();
return
false
;
}
}
private
void
onRunModelSuccessed
()
{
Log
.
i
(
TAG
,
"onRunModelSuccessed"
);
textView
.
setText
(
predictor
.
outputResult
);
imageView
.
setImageBitmap
(
predictor
.
outputImage
);
}
private
void
onUnloadModel
()
{
if
(
predictor
!=
null
)
{
predictor
.
releaseModel
();
}
}
}
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/OCRPredictorNative.java
deleted
100644 → 0
View file @
47752ddf
package
com.baidu.paddle.lite.demo.ocr
;
import
android.graphics.Bitmap
;
import
android.util.Log
;
import
java.util.ArrayList
;
import
java.util.concurrent.atomic.AtomicBoolean
;
public
class
OCRPredictorNative
{
private
static
final
AtomicBoolean
isSOLoaded
=
new
AtomicBoolean
();
public
static
void
loadLibrary
()
throws
RuntimeException
{
if
(!
isSOLoaded
.
get
()
&&
isSOLoaded
.
compareAndSet
(
false
,
true
))
{
try
{
System
.
loadLibrary
(
"Native"
);
}
catch
(
Throwable
e
)
{
RuntimeException
exception
=
new
RuntimeException
(
"Load libNative.so failed, please check it exists in apk file."
,
e
);
throw
exception
;
}
}
}
private
Config
config
;
private
long
nativePointer
=
0
;
public
OCRPredictorNative
(
Config
config
)
{
this
.
config
=
config
;
loadLibrary
();
nativePointer
=
init
(
config
.
detModelFilename
,
config
.
recModelFilename
,
config
.
cpuThreadNum
,
config
.
cpuPower
);
Log
.
i
(
"OCRPredictorNative"
,
"load success "
+
nativePointer
);
}
public
void
release
()
{
if
(
nativePointer
!=
0
)
{
nativePointer
=
0
;
destory
(
nativePointer
);
}
}
public
ArrayList
<
OcrResultModel
>
runImage
(
float
[]
inputData
,
int
width
,
int
height
,
int
channels
,
Bitmap
originalImage
)
{
Log
.
i
(
"OCRPredictorNative"
,
"begin to run image "
+
inputData
.
length
+
" "
+
width
+
" "
+
height
);
float
[]
dims
=
new
float
[]{
1
,
channels
,
height
,
width
};
float
[]
rawResults
=
forward
(
nativePointer
,
inputData
,
dims
,
originalImage
);
ArrayList
<
OcrResultModel
>
results
=
postprocess
(
rawResults
);
return
results
;
}
public
static
class
Config
{
public
int
cpuThreadNum
;
public
String
cpuPower
;
public
String
detModelFilename
;
public
String
recModelFilename
;
}
protected
native
long
init
(
String
detModelPath
,
String
recModelPath
,
int
threadNum
,
String
cpuMode
);
protected
native
float
[]
forward
(
long
pointer
,
float
[]
buf
,
float
[]
ddims
,
Bitmap
originalImage
);
protected
native
void
destory
(
long
pointer
);
private
ArrayList
<
OcrResultModel
>
postprocess
(
float
[]
raw
)
{
ArrayList
<
OcrResultModel
>
results
=
new
ArrayList
<
OcrResultModel
>();
int
begin
=
0
;
while
(
begin
<
raw
.
length
)
{
int
point_num
=
Math
.
round
(
raw
[
begin
]);
int
word_num
=
Math
.
round
(
raw
[
begin
+
1
]);
OcrResultModel
model
=
parse
(
raw
,
begin
+
2
,
point_num
,
word_num
);
begin
+=
2
+
1
+
point_num
*
2
+
word_num
;
results
.
add
(
model
);
}
return
results
;
}
private
OcrResultModel
parse
(
float
[]
raw
,
int
begin
,
int
pointNum
,
int
wordNum
)
{
int
current
=
begin
;
OcrResultModel
model
=
new
OcrResultModel
();
model
.
setConfidence
(
raw
[
current
]);
current
++;
for
(
int
i
=
0
;
i
<
pointNum
;
i
++)
{
model
.
addPoints
(
Math
.
round
(
raw
[
current
+
i
*
2
]),
Math
.
round
(
raw
[
current
+
i
*
2
+
1
]));
}
current
+=
(
pointNum
*
2
);
for
(
int
i
=
0
;
i
<
wordNum
;
i
++)
{
int
index
=
Math
.
round
(
raw
[
current
+
i
]);
model
.
addWordIndex
(
index
);
}
Log
.
i
(
"OCRPredictorNative"
,
"word finished "
+
wordNum
);
return
model
;
}
}
deploy/android_demo/app/src/main/java/com/baidu/paddle/lite/demo/ocr/OcrResultModel.java
deleted
100644 → 0
View file @
47752ddf
package
com.baidu.paddle.lite.demo.ocr
;
import
android.graphics.Point
;
import
java.util.ArrayList
;
import
java.util.List
;
public
class
OcrResultModel
{
private
List
<
Point
>
points
;
private
List
<
Integer
>
wordIndex
;
private
String
label
;
private
float
confidence
;
public
OcrResultModel
()
{
super
();
points
=
new
ArrayList
<>();
wordIndex
=
new
ArrayList
<>();
}
public
void
addPoints
(
int
x
,
int
y
)
{
Point
point
=
new
Point
(
x
,
y
);
points
.
add
(
point
);
}
public
void
addWordIndex
(
int
index
)
{
wordIndex
.
add
(
index
);
}
public
List
<
Point
>
getPoints
()
{
return
points
;
}
public
List
<
Integer
>
getWordIndex
()
{
return
wordIndex
;
}
public
String
getLabel
()
{
return
label
;
}
public
void
setLabel
(
String
label
)
{
this
.
label
=
label
;
}
public
float
getConfidence
()
{
return
confidence
;
}
public
void
setConfidence
(
float
confidence
)
{
this
.
confidence
=
confidence
;
}
}
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment