"doc/vscode:/vscode.git/clone" did not exist on "65e61f441c839b12a6573b7686620ad3b9ebbe9a"
Unverified Commit acd479ea authored by xiaoting's avatar xiaoting Committed by GitHub
Browse files

Merge pull request #1597 from tink2123/dygraph_for_srn

【Do not merge】Add srn model
parents fad40158 6ebbbfe4
...@@ -26,11 +26,12 @@ def build_post_process(config, global_config=None): ...@@ -26,11 +26,12 @@ def build_post_process(config, global_config=None):
from .db_postprocess import DBPostProcess from .db_postprocess import DBPostProcess
from .east_postprocess import EASTPostProcess from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode
from .cls_postprocess import ClsPostProcess from .cls_postprocess import ClsPostProcess
support_dict = [ support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'AttnLabelDecode', 'ClsPostProcess' 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
......
...@@ -33,6 +33,9 @@ class BaseRecLabelDecode(object): ...@@ -33,6 +33,9 @@ class BaseRecLabelDecode(object):
assert character_type in support_character_type, "Only {} are supported now but get {}".format( assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type) support_character_type, character_type)
self.beg_str = "sos"
self.end_str = "eos"
if character_type == "en": if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
...@@ -109,7 +112,6 @@ class CTCLabelDecode(BaseRecLabelDecode): ...@@ -109,7 +112,6 @@ class CTCLabelDecode(BaseRecLabelDecode):
def __call__(self, preds, label=None, *args, **kwargs): def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor): if isinstance(preds, paddle.Tensor):
preds = preds.numpy() preds = preds.numpy()
preds_idx = preds.argmax(axis=2) preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2) preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
...@@ -158,3 +160,84 @@ class AttnLabelDecode(BaseRecLabelDecode): ...@@ -158,3 +160,84 @@ class AttnLabelDecode(BaseRecLabelDecode):
assert False, "unsupport type %s in get_beg_end_flag_idx" \ assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end % beg_or_end
return idx return idx
class SRNLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
pred = preds['predict']
char_num = len(self.character_str) + 2
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = np.reshape(pred, [-1, char_num])
preds_idx = np.argmax(pred, axis=1)
preds_prob = np.max(pred, axis=1)
preds_idx = np.reshape(preds_idx, [-1, 25])
preds_prob = np.reshape(preds_prob, [-1, 25])
text = self.decode(preds_idx, preds_prob)
if label is None:
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
return text
label = self.decode(label)
return text, label
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
return result_list
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
...@@ -31,6 +31,14 @@ from ppocr.utils.logging import get_logger ...@@ -31,6 +31,14 @@ from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser from tools.program import load_config, merge_config, ArgsParser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", help="configuration file to use")
parser.add_argument(
"-o", "--output_path", type=str, default='./output/infer/')
return parser.parse_args()
def main(): def main():
FLAGS = ArgsParser().parse_args() FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config) config = load_config(FLAGS.config)
...@@ -52,6 +60,22 @@ def main(): ...@@ -52,6 +60,22 @@ def main():
save_path = '{}/inference'.format(config['Global']['save_inference_dir']) save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
if config['Architecture']['algorithm'] == "SRN":
other_shape = [
paddle.static.InputSpec(
shape=[None, 1, 64, 256], dtype='float32'), [
paddle.static.InputSpec(
shape=[None, 256, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 25, 1],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64"),
paddle.static.InputSpec(
shape=[None, 8, 25, 25], dtype="int64")
]
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, -1, -1] infer_shape = [3, -1, -1]
if config['Architecture']['model_type'] == "rec": if config['Architecture']['model_type'] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32 infer_shape = [3, 32, -1] # for rec model, H must be 32
...@@ -62,13 +86,13 @@ def main(): ...@@ -62,13 +86,13 @@ def main():
'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training' 'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
) )
infer_shape[-1] = 100 infer_shape[-1] = 100
model = to_static( model = to_static(
model, model,
input_spec=[ input_spec=[
paddle.static.InputSpec( paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32') shape=[None] + infer_shape, dtype='float32')
]) ])
paddle.jit.save(model, save_path) paddle.jit.save(model, save_path)
logger.info('inference model is saved to {}'.format(save_path)) logger.info('inference model is saved to {}'.format(save_path))
......
...@@ -25,6 +25,7 @@ import numpy as np ...@@ -25,6 +25,7 @@ import numpy as np
import math import math
import time import time
import traceback import traceback
import paddle
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
...@@ -46,6 +47,13 @@ class TextRecognizer(object): ...@@ -46,6 +47,13 @@ class TextRecognizer(object):
"character_dict_path": args.rec_char_dict_path, "character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char "use_space_char": args.use_space_char
} }
if self.rec_algorithm == "SRN":
postprocess_params = {
'name': 'SRNLabelDecode',
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char
}
self.postprocess_op = build_post_process(postprocess_params) self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors = \ self.predictor, self.input_tensor, self.output_tensors = \
utility.create_predictor(args, 'rec', logger) utility.create_predictor(args, 'rec', logger)
...@@ -70,6 +78,78 @@ class TextRecognizer(object): ...@@ -70,6 +78,78 @@ class TextRecognizer(object):
padding_im[:, :, 0:resized_w] = resized_image padding_im[:, :, 0:resized_w] = resized_image
return padding_im return padding_im
def resize_norm_img_srn(self, img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(
gsrm_slf_attn_bias1,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(
gsrm_slf_attn_bias2,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
norm_img = self.resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
self.srn_other_inputs(image_shape, num_heads, max_text_length)
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
encoder_word_pos = encoder_word_pos.astype(np.int64)
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
def __call__(self, img_list): def __call__(self, img_list):
img_num = len(img_list) img_num = len(img_list)
# Calculate the aspect ratio of all text bars # Calculate the aspect ratio of all text bars
...@@ -93,21 +173,64 @@ class TextRecognizer(object): ...@@ -93,21 +173,64 @@ class TextRecognizer(object):
wh_ratio = w * 1.0 / h wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio) max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) if self.rec_algorithm != "SRN":
norm_img = self.resize_norm_img(img_list[indices[ino]], norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio) max_wh_ratio)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img) norm_img_batch.append(norm_img)
else:
norm_img = self.process_image_srn(
img_list[indices[ino]], self.rec_image_shape, 8, 25)
encoder_word_pos_list = []
gsrm_word_pos_list = []
gsrm_slf_attn_bias1_list = []
gsrm_slf_attn_bias2_list = []
encoder_word_pos_list.append(norm_img[1])
gsrm_word_pos_list.append(norm_img[2])
gsrm_slf_attn_bias1_list.append(norm_img[3])
gsrm_slf_attn_bias2_list.append(norm_img[4])
norm_img_batch.append(norm_img[0])
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
if self.rec_algorithm == "SRN":
starttime = time.time()
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
gsrm_slf_attn_bias1_list = np.concatenate(
gsrm_slf_attn_bias1_list)
gsrm_slf_attn_bias2_list = np.concatenate(
gsrm_slf_attn_bias2_list)
inputs = [
norm_img_batch,
encoder_word_pos_list,
gsrm_word_pos_list,
gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list,
]
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[
i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {"predict": outputs[2]}
else:
starttime = time.time() starttime = time.time()
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run() self.predictor.run()
outputs = [] outputs = []
for output_tensor in self.output_tensors: for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu() output = output_tensor.copy_to_cpu()
outputs.append(output) outputs.append(output)
preds = outputs[0] preds = outputs[0]
rec_result = self.postprocess_op(preds) rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)): for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno] rec_res[indices[beg_img_no + rno]] = rec_result[rno]
......
...@@ -62,6 +62,12 @@ def main(): ...@@ -62,6 +62,12 @@ def main():
elif op_name in ['RecResizeImg']: elif op_name in ['RecResizeImg']:
op[op_name]['infer_mode'] = True op[op_name]['infer_mode'] = True
elif op_name == 'KeepKeys': elif op_name == 'KeepKeys':
if config['Architecture']['algorithm'] == "SRN":
op[op_name]['keep_keys'] = [
'image', 'encoder_word_pos', 'gsrm_word_pos',
'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
]
else:
op[op_name]['keep_keys'] = ['image'] op[op_name]['keep_keys'] = ['image']
transforms.append(op) transforms.append(op)
global_config['infer_mode'] = True global_config['infer_mode'] = True
...@@ -74,9 +80,24 @@ def main(): ...@@ -74,9 +80,24 @@ def main():
img = f.read() img = f.read()
data = {'image': img} data = {'image': img}
batch = transform(data, ops) batch = transform(data, ops)
if config['Architecture']['algorithm'] == "SRN":
encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
others = [
paddle.to_tensor(encoder_word_pos_list),
paddle.to_tensor(gsrm_word_pos_list),
paddle.to_tensor(gsrm_slf_attn_bias1_list),
paddle.to_tensor(gsrm_slf_attn_bias2_list)
]
images = np.expand_dims(batch[0], axis=0) images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images) images = paddle.to_tensor(images)
if config['Architecture']['algorithm'] == "SRN":
preds = model(images, others)
else:
preds = model(images) preds = model(images)
post_result = post_process_class(preds) post_result = post_process_class(preds)
for rec_reuslt in post_result: for rec_reuslt in post_result:
......
...@@ -174,6 +174,7 @@ def train(config, ...@@ -174,6 +174,7 @@ def train(config,
best_model_dict = {main_indicator: 0} best_model_dict = {main_indicator: 0}
best_model_dict.update(pre_best_model_dict) best_model_dict.update(pre_best_model_dict)
train_stats = TrainingStats(log_smooth_window, ['lr']) train_stats = TrainingStats(log_smooth_window, ['lr'])
model_average = False
model.train() model.train()
if 'start_epoch' in best_model_dict: if 'start_epoch' in best_model_dict:
...@@ -194,6 +195,11 @@ def train(config, ...@@ -194,6 +195,11 @@ def train(config,
break break
lr = optimizer.get_lr() lr = optimizer.get_lr()
images = batch[0] images = batch[0]
if config['Architecture']['algorithm'] == "SRN":
others = batch[-4:]
preds = model(images, others)
model_average = True
else:
preds = model(images) preds = model(images)
loss = loss_class(preds, batch) loss = loss_class(preds, batch)
avg_loss = loss['loss'] avg_loss = loss['loss']
...@@ -238,7 +244,14 @@ def train(config, ...@@ -238,7 +244,14 @@ def train(config,
# eval # eval
if global_step > start_eval_step and \ if global_step > start_eval_step and \
(global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0: (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
cur_metric = eval(model, valid_dataloader, post_process_class, if model_average:
Model_Average = paddle.incubate.optimizer.ModelAverage(
0.15,
parameters=model.parameters(),
min_average_window=10000,
max_average_window=15625)
Model_Average.apply()
cur_metirc = eval(model, valid_dataloader, post_process_class,
eval_class) eval_class)
cur_metric_str = 'cur metric, {}'.format(', '.join( cur_metric_str = 'cur metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in cur_metric.items()])) ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
...@@ -273,6 +286,7 @@ def train(config, ...@@ -273,6 +286,7 @@ def train(config,
best_model_dict[main_indicator], best_model_dict[main_indicator],
global_step) global_step)
global_step += 1 global_step += 1
optimizer.clear_grad()
batch_start = time.time() batch_start = time.time()
if dist.get_rank() == 0: if dist.get_rank() == 0:
save_model( save_model(
...@@ -312,8 +326,9 @@ def eval(model, valid_dataloader, post_process_class, eval_class): ...@@ -312,8 +326,9 @@ def eval(model, valid_dataloader, post_process_class, eval_class):
if idx >= len(valid_dataloader): if idx >= len(valid_dataloader):
break break
images = batch[0] images = batch[0]
others = batch[-4:]
start = time.time() start = time.time()
preds = model(images) preds = model(images, others)
batch = [item.numpy() for item in batch] batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods # Obtain usable results from post-processing methods
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment