Commit ac8c2a89 authored by WenmuZhou's avatar WenmuZhou
Browse files

merge dygraph

parents 88a8be12 e174e9ed
include LICENSE.txt
include LICENSE
include README.md
recursive-include ppocr/utils *.txt utility.py logging.py
recursive-include ppocr/utils *.txt utility.py logging.py network.py
recursive-include ppocr/data/ *.py
recursive-include ppocr/postprocess *.py
recursive-include tools/infer *.py
......
......@@ -52,9 +52,10 @@ Architecture:
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 48
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00001
Teacher:
pretrained:
......@@ -71,9 +72,10 @@ Architecture:
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 48
hidden_size: 64
Head:
name: CTCHead
mid_channels: 96
fc_decay: 0.00001
......
Global:
use_gpu: true
epoch_num: 50
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/table_mv3/
save_epoch_step: 5
# evaluation is run every 400 iterations after the 0th iteration
eval_batch_step: [0, 400]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
character_type: en
max_text_length: 100
max_elem_length: 500
max_cell_num: 500
infer_mode: False
process_total_num: 0
process_cut_num: 0
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
clip_norm: 5.0
lr:
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0.00000
Architecture:
model_type: table
algorithm: TableAttn
Backbone:
name: MobileNetV3
scale: 1.0
model_name: small
disable_se: True
Head:
name: TableAttentionHead
hidden_size: 256
l2_decay: 0.00001
loc_type: 2
Loss:
name: TableAttentionLoss
structure_weight: 100.0
loc_weight: 10000.0
PostProcess:
name: TableLabelDecode
Metric:
name: TableMetric
main_indicator: acc
Train:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/train/
label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ResizeTableImage:
max_len: 488
- TableLabelEncode:
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
loader:
shuffle: True
batch_size_per_card: 32
drop_last: True
num_workers: 1
Eval:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/val/
label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ResizeTableImage:
max_len: 488
- TableLabelEncode:
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 16
num_workers: 1
......@@ -47,16 +47,13 @@ void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
e /= 255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
}
std::vector<cv::Mat> bgr_channels(3);
cv::split(*im, bgr_channels);
for (auto i = 0; i < bgr_channels.size(); i++) {
bgr_channels[i].convertTo(bgr_channels[i], CV_32FC1, 1.0 * scale[i],
(0.0 - mean[i]) * scale[i]);
}
cv::merge(bgr_channels, *im);
}
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
......
......@@ -355,3 +355,4 @@ im_show.save('result.jpg')
| det | 前向时使用启动检测 | TRUE |
| rec | 前向时是否启动识别 | TRUE |
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
| show_log | 是否打印det和rec等信息 | FALSE |
......@@ -362,3 +362,5 @@ im_show.save('result.jpg')
| det | Enable detction when `ppocr.ocr` func exec | TRUE |
| rec | Enable recognition when `ppocr.ocr` func exec | TRUE |
| cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE |
| show_log | Whether to print log in det and rec
| FALSE |
\ No newline at end of file
doc/joinus.PNG

78.1 KB | W: | H:

doc/joinus.PNG

205 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
......@@ -19,17 +19,16 @@ __dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import logging
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm
from tools.infer import predict_system
from ppocr.utils.logging import get_logger
logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from ppocr.utils.network import maybe_download, download_with_progressbar, is_link, confirm_model_dir_url
from tools.infer.utility import draw_ocr, init_args, str2bool
__all__ = ['PaddleOCR']
......@@ -123,50 +122,6 @@ SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
logger.error("Something went wrong while downloading models")
sys.exit(0)
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def parse_args(mMain=True):
import argparse
parser = init_args()
......@@ -194,10 +149,12 @@ class PaddleOCR(predict_system.TextSystem):
args:
**kwargs: other params show in paddleocr --help
"""
postprocess_params = parse_args(mMain=False)
postprocess_params.__dict__.update(**kwargs)
self.use_angle_cls = postprocess_params.use_angle_cls
lang = postprocess_params.lang
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
if not params.show_log:
logger.setLevel(logging.INFO)
self.use_angle_cls = params.use_angle_cls
lang = params.lang
latin_lang = [
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga',
'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms',
......@@ -229,40 +186,39 @@ class PaddleOCR(predict_system.TextSystem):
else:
det_lang = "en"
use_inner_dict = False
if postprocess_params.rec_char_dict_path is None:
if params.rec_char_dict_path is None:
use_inner_dict = True
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path']
# init model dir
if postprocess_params.det_model_dir is None:
postprocess_params.det_model_dir = os.path.join(BASE_DIR, VERSION,
'det', det_lang)
if postprocess_params.rec_model_dir is None:
postprocess_params.rec_model_dir = os.path.join(BASE_DIR, VERSION,
'rec', lang)
if postprocess_params.cls_model_dir is None:
postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
print(postprocess_params)
# download model
maybe_download(postprocess_params.det_model_dir,
params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir,
os.path.join(BASE_DIR, VERSION, 'det', det_lang),
model_urls['det'][det_lang])
maybe_download(postprocess_params.rec_model_dir,
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'rec', lang),
model_urls['rec'][lang]['url'])
maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir,
os.path.join(BASE_DIR, VERSION, 'cls'),
model_urls['cls'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.cls_model_dir, cls_url)
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
if params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0)
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
if params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
if use_inner_dict:
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
params.rec_char_dict_path = str(
Path(__file__).parent / params.rec_char_dict_path)
print(params)
# init det_model and rec_model
super().__init__(postprocess_params)
super().__init__(params)
def ocr(self, img, det=True, rec=True, cls=True):
"""
......@@ -320,7 +276,7 @@ def main():
# for cmd
args = parse_args(mMain=True)
image_dir = args.image_dir
if image_dir.startswith('http'):
if is_link(image_dir):
download_with_progressbar(image_dir, 'tmp.jpg')
image_file_list = ['tmp.jpg']
else:
......
......@@ -35,6 +35,7 @@ from ppocr.data.imaug import transform, create_operators
from ppocr.data.simple_dataset import SimpleDataSet
from ppocr.data.lmdb_dataset import LMDBDataSet
from ppocr.data.pgnet_dataset import PGDataSet
from ppocr.data.pubtab_dataset import PubTabDataSet
__all__ = ['build_dataloader', 'transform', 'create_operators']
......@@ -55,7 +56,7 @@ signal.signal(signal.SIGTERM, term_mp)
def build_dataloader(config, mode, device, logger, seed=None):
config = copy.deepcopy(config)
support_dict = ['SimpleDataSet', 'LMDBDataSet', 'PGDataSet']
support_dict = ['SimpleDataSet', 'LMDBDataSet', 'PGDataSet', 'PubTabDataSet']
module_name = config[mode]['dataset']['name']
assert module_name in support_dict, Exception(
'DataSet only support {}'.format(support_dict))
......
......@@ -30,6 +30,7 @@ from .label_ops import *
from .east_process import *
from .sast_process import *
from .pg_process import *
from .gen_table_mask import *
def transform(data, ops=None):
......
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import six
import cv2
import numpy as np
class GenTableMask(object):
""" gen table mask """
def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
self.shrink_h_max = 5
self.shrink_w_max = 5
self.mask_type = mask_type
def projection(self, erosion, h, w, spilt_threshold=0):
# 水平投影
projection_map = np.ones_like(erosion)
project_val_array = [0 for _ in range(0, h)]
for j in range(0, h):
for i in range(0, w):
if erosion[j, i] == 255:
project_val_array[j] += 1
# 根据数组,获取切割点
start_idx = 0 # 记录进入字符区的索引
end_idx = 0 # 记录进入空白区域的索引
in_text = False # 是否遍历到了字符区内
box_list = []
for i in range(len(project_val_array)):
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
in_text = True
start_idx = i
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
end_idx = i
in_text = False
if end_idx - start_idx <= 2:
continue
box_list.append((start_idx, end_idx + 1))
if in_text:
box_list.append((start_idx, h - 1))
# 绘制投影直方图
for j in range(0, h):
for i in range(0, project_val_array[j]):
projection_map[j, i] = 0
return box_list, projection_map
def projection_cx(self, box_img):
box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
h, w = box_gray_img.shape
# 灰度图片进行二值化处理
ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
# 纵向腐蚀
if h < w:
kernel = np.ones((2, 1), np.uint8)
erode = cv2.erode(thresh1, kernel, iterations=1)
else:
erode = thresh1
# 水平膨胀
kernel = np.ones((1, 5), np.uint8)
erosion = cv2.dilate(erode, kernel, iterations=1)
# 水平投影
projection_map = np.ones_like(erosion)
project_val_array = [0 for _ in range(0, h)]
for j in range(0, h):
for i in range(0, w):
if erosion[j, i] == 255:
project_val_array[j] += 1
# 根据数组,获取切割点
start_idx = 0 # 记录进入字符区的索引
end_idx = 0 # 记录进入空白区域的索引
in_text = False # 是否遍历到了字符区内
box_list = []
spilt_threshold = 0
for i in range(len(project_val_array)):
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
in_text = True
start_idx = i
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
end_idx = i
in_text = False
if end_idx - start_idx <= 2:
continue
box_list.append((start_idx, end_idx + 1))
if in_text:
box_list.append((start_idx, h - 1))
# 绘制投影直方图
for j in range(0, h):
for i in range(0, project_val_array[j]):
projection_map[j, i] = 0
split_bbox_list = []
if len(box_list) > 1:
for i, (h_start, h_end) in enumerate(box_list):
if i == 0:
h_start = 0
if i == len(box_list):
h_end = h
word_img = erosion[h_start:h_end + 1, :]
word_h, word_w = word_img.shape
w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h)
w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
if h_start > 0:
h_start -= 1
h_end += 1
word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :]
split_bbox_list.append([w_start, h_start, w_end, h_end])
else:
split_bbox_list.append([0, 0, w, h])
return split_bbox_list
def shrink_bbox(self, bbox):
left, top, right, bottom = bbox
sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
left_new = left + sh_w
right_new = right - sh_w
top_new = top + sh_h
bottom_new = bottom - sh_h
if left_new >= right_new:
left_new = left
right_new = right
if top_new >= bottom_new:
top_new = top
bottom_new = bottom
return [left_new, top_new, right_new, bottom_new]
def __call__(self, data):
img = data['image']
cells = data['cells']
height, width = img.shape[0:2]
if self.mask_type == 1:
mask_img = np.zeros((height, width), dtype=np.float32)
else:
mask_img = np.zeros((height, width, 3), dtype=np.float32)
cell_num = len(cells)
for cno in range(cell_num):
if "bbox" in cells[cno]:
bbox = cells[cno]['bbox']
left, top, right, bottom = bbox
box_img = img[top:bottom, left:right, :].copy()
split_bbox_list = self.projection_cx(box_img)
for sno in range(len(split_bbox_list)):
split_bbox_list[sno][0] += left
split_bbox_list[sno][1] += top
split_bbox_list[sno][2] += left
split_bbox_list[sno][3] += top
for sno in range(len(split_bbox_list)):
left, top, right, bottom = split_bbox_list[sno]
left, top, right, bottom = self.shrink_bbox([left, top, right, bottom])
if self.mask_type == 1:
mask_img[top:bottom, left:right] = 1.0
data['mask_img'] = mask_img
else:
mask_img[top:bottom, left:right, :] = (255, 255, 255)
data['image'] = mask_img
return data
class ResizeTableImage(object):
def __init__(self, max_len, **kwargs):
super(ResizeTableImage, self).__init__()
self.max_len = max_len
def get_img_bbox(self, cells):
bbox_list = []
if len(cells) == 0:
return bbox_list
cell_num = len(cells)
for cno in range(cell_num):
if "bbox" in cells[cno]:
bbox = cells[cno]['bbox']
bbox_list.append(bbox)
return bbox_list
def resize_img_table(self, img, bbox_list, max_len):
height, width = img.shape[0:2]
ratio = max_len / (max(height, width) * 1.0)
resize_h = int(height * ratio)
resize_w = int(width * ratio)
img_new = cv2.resize(img, (resize_w, resize_h))
bbox_list_new = []
for bno in range(len(bbox_list)):
left, top, right, bottom = bbox_list[bno].copy()
left = int(left * ratio)
top = int(top * ratio)
right = int(right * ratio)
bottom = int(bottom * ratio)
bbox_list_new.append([left, top, right, bottom])
return img_new, bbox_list_new
def __call__(self, data):
img = data['image']
if 'cells' not in data:
cells = []
else:
cells = data['cells']
bbox_list = self.get_img_bbox(cells)
img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
data['image'] = img_new
cell_num = len(cells)
bno = 0
for cno in range(cell_num):
if "bbox" in data['cells'][cno]:
data['cells'][cno]['bbox'] = bbox_list_new[bno]
bno += 1
data['max_len'] = self.max_len
return data
class PaddingTableImage(object):
def __init__(self, **kwargs):
super(PaddingTableImage, self).__init__()
def __call__(self, data):
img = data['image']
max_len = data['max_len']
padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
height, width = img.shape[0:2]
padding_img[0:height, 0:width, :] = img.copy()
data['image'] = padding_img
return data
\ No newline at end of file
......@@ -351,3 +351,162 @@ class SRNLabelEncode(BaseRecLabelEncode):
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
class TableLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
span_weight = 1.0,
**kwargs):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
for i, char in enumerate(list_character):
self.dict_character[char] = i
self.dict_elem = {}
for i, elem in enumerate(list_elem):
self.dict_elem[elem] = i
self.span_weight = span_weight
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1+character_num):
character = lines[cno].decode('utf-8').strip("\n")
list_character.append(character)
for eno in range(1+character_num, 1+character_num+elem_num):
elem = lines[eno].decode('utf-8').strip("\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_span_idx_list(self):
span_idx_list = []
for elem in self.dict_elem:
if 'span' in elem:
span_idx_list.append(self.dict_elem[elem])
return span_idx_list
def __call__(self, data):
cells = data['cells']
structure = data['structure']['tokens']
structure = self.encode(structure, 'elem')
if structure is None:
return None
elem_num = len(structure)
structure = [0] + structure + [len(self.dict_elem) - 1]
structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
structure = np.array(structure)
data['structure'] = structure
elem_char_idx1 = self.dict_elem['<td>']
elem_char_idx2 = self.dict_elem['<td']
span_idx_list = self.get_span_idx_list()
td_idx_list = np.logical_or(structure == elem_char_idx1, structure == elem_char_idx2)
td_idx_list = np.where(td_idx_list)[0]
structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
img_height, img_width, img_ch = data['image'].shape
if len(span_idx_list) > 0:
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
span_weight = min(max(span_weight, 1.0), self.span_weight)
for cno in range(len(cells)):
if 'bbox' in cells[cno]:
bbox = cells[cno]['bbox'].copy()
bbox[0] = bbox[0] * 1.0 / img_width
bbox[1] = bbox[1] * 1.0 / img_height
bbox[2] = bbox[2] * 1.0 / img_width
bbox[3] = bbox[3] * 1.0 / img_height
td_idx = td_idx_list[cno]
bbox_list[td_idx] = bbox
bbox_list_mask[td_idx] = 1.0
cand_span_idx = td_idx + 1
if cand_span_idx < (self.max_elem_length + 2):
if structure[cand_span_idx] in span_idx_list:
structure_mask[cand_span_idx] = span_weight
data['bbox_list'] = bbox_list
data['bbox_list_mask'] = bbox_list_mask
data['structure_mask'] = structure_mask
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
data['sp_tokens'] = np.array([char_beg_idx, char_end_idx, elem_beg_idx,
elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length,
self.max_elem_length, self.max_cell_num, elem_num])
return data
def encode(self, text, char_or_elem):
"""convert text-label into text-index.
"""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_character
else:
max_len = self.max_elem_length
current_dict = self.dict_elem
if len(text) > max_len:
return None
if len(text) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
text_list = []
for char in text:
if char not in current_dict:
return None
text_list.append(current_dict[char])
if len(text_list) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
return text_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = np.array(self.dict_character[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_character[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
% beg_or_end
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = np.array(self.dict_elem[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_elem[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
% beg_or_end
else:
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx
\ No newline at end of file
......@@ -163,7 +163,7 @@ class DetResizeForTest(object):
img, (ratio_h, ratio_w)
"""
limit_side_len = self.limit_side_len
h, w, _ = img.shape
h, w, c = img.shape
# limit the max side
if self.limit_type == 'max':
......@@ -174,7 +174,7 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w
else:
ratio = 1.
else:
elif self.limit_type == 'min':
if min(h, w) < limit_side_len:
if h < w:
ratio = float(limit_side_len) / h
......@@ -182,6 +182,10 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w
else:
ratio = 1.
elif self.limit_type == 'resize_long':
ratio = float(limit_side_len) / max(h,w)
else:
raise Exception('not support limit type, image ')
resize_h = int(h * ratio)
resize_w = int(w * ratio)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment