Unverified Commit a8a9b2e5 authored by xiaoting's avatar xiaoting Committed by GitHub
Browse files

Merge branch 'dygraph' into fix_prepare

parents 49e42a16 0f5a5d96
......@@ -35,7 +35,7 @@ def init_args():
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--min_subgraph_size", type=int, default=10)
parser.add_argument("--min_subgraph_size", type=int, default=15)
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--gpu_mem", type=int, default=500)
......@@ -159,6 +159,11 @@ def create_predictor(args, mode, logger):
precision = inference.PrecisionType.Float32
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
raise ValueError(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
......@@ -280,6 +285,20 @@ def create_predictor(args, mode, logger):
return predictor, input_tensor, output_tensors, config
def get_infer_gpuid():
cmd = "nvidia-smi"
res = os.popen(cmd).readlines()
if len(res) == 0:
return None
cmd = "env | grep CUDA_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
return 0
else:
gpu_id = env_cuda[0].strip().split("=")[1]
return int(gpu_id[0])
def draw_e2e_res(dt_boxes, strs, img_path):
src_im = cv2.imread(img_path)
for box, str in zip(dt_boxes, strs):
......
......@@ -34,23 +34,21 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.utility import get_image_file_list
import tools.program as program
def draw_det_res(dt_boxes, config, img, img_name):
def draw_det_res(dt_boxes, config, img, img_name, save_path):
if len(dt_boxes) > 0:
import cv2
src_im = img
for box in dt_boxes:
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
if not os.path.exists(save_det_path):
os.makedirs(save_det_path)
save_path = os.path.join(save_det_path, os.path.basename(img_name))
if not os.path.exists(save_path):
os.makedirs(save_path)
save_path = os.path.join(save_path, os.path.basename(img_name))
cv2.imwrite(save_path, src_im)
logger.info("The detected Image saved in {}".format(save_path))
......@@ -61,8 +59,7 @@ def main():
# build model
model = build_model(config['Architecture'])
init_model(config, model)
_ = load_dygraph_params(config, model, logger, None)
# build post process
post_process_class = build_post_process(config['PostProcess'])
......@@ -96,17 +93,41 @@ def main():
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds, shape_list)
boxes = post_result[0]['points']
# write result
src_img = cv2.imread(file)
dt_boxes_json = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_json.append(tmp_json)
# parser boxes if post_result is dict
if isinstance(post_result, dict):
det_box_json = {}
for k in post_result.keys():
boxes = post_result[k][0]['points']
dt_boxes_list = []
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_list.append(tmp_json)
det_box_json[k] = dt_boxes_list
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results_{}/".format(k)
draw_det_res(boxes, config, src_img, file, save_det_path)
else:
boxes = post_result[0]['points']
dt_boxes_json = []
# write result
for box in boxes:
tmp_json = {"transcription": ""}
tmp_json['points'] = box.tolist()
dt_boxes_json.append(tmp_json)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
fout.write(otstr.encode())
src_img = cv2.imread(file)
draw_det_res(boxes, config, src_img, file)
save_det_path = os.path.dirname(config['Global'][
'save_res_path']) + "/det_results/"
draw_det_res(boxes, config, src_img, file, save_det_path)
logger.info("success!")
......
......@@ -121,7 +121,7 @@ def main():
if len(post_result[key][0]) >= 2:
rec_info[key] = {
"label": post_result[key][0][0],
"score": post_result[key][0][1],
"score": float(post_result[key][0][1]),
}
info = json.dumps(rec_info)
else:
......
......@@ -186,9 +186,11 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
try:
use_nrtr = config['Architecture']['algorithm'] == "NRTR"
try:
model_type = config['Architecture']['model_type']
except:
except:
model_type = None
if 'start_epoch' in best_model_dict:
......@@ -213,7 +215,7 @@ def train(config,
images = batch[0]
if use_srn:
model_average = True
if use_srn or model_type == 'table':
if use_srn or model_type == 'table' or use_nrtr:
preds = model(images, data=batch[1:])
else:
preds = model(images)
......@@ -398,7 +400,7 @@ def preprocess(is_train=False):
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation', 'TableAttn'
'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn'
]
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment