Commit a739abab authored by WenmuZhou's avatar WenmuZhou
Browse files

merge dygraph

parents 982926db 75aa6f2f
...@@ -154,12 +154,12 @@ Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest si ...@@ -154,12 +154,12 @@ Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest si
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216: If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
``` ```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216 python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
``` ```
If you want to use the CPU for prediction, execute the command as follows If you want to use the CPU for prediction, execute the command as follows
``` ```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
``` ```
<a name="DB_DETECTION"></a> <a name="DB_DETECTION"></a>
...@@ -230,7 +230,7 @@ First, convert the model saved in the SAST text detection training process into ...@@ -230,7 +230,7 @@ First, convert the model saved in the SAST text detection training process into
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_tt python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_tt
``` ```
**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command: For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`, run the following command:
``` ```
python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_sast_tt/" --det_sast_polygon=True
......
...@@ -329,6 +329,7 @@ There are two ways to create the required configuration file:: ...@@ -329,6 +329,7 @@ There are two ways to create the required configuration file::
... ...
``` ```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.
2. Manually modify the configuration file 2. Manually modify the configuration file
...@@ -375,7 +376,9 @@ Currently, the multi-language algorithms supported by PaddleOCR are: ...@@ -375,7 +376,9 @@ Currently, the multi-language algorithms supported by PaddleOCR are:
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations) For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded on [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi. The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file: If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:
......
...@@ -15,8 +15,6 @@ ...@@ -15,8 +15,6 @@
- 2020.6.8 Add [datasets](./datasets_en.md) and keep updating - 2020.6.8 Add [datasets](./datasets_en.md) and keep updating
- 2020.6.5 Support exporting `attention` model to `inference_model` - 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score - 2020.6.5 Support separate prediction and recognition, output result score
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.5.30 Provide Lightweight Chinese OCR online experience - 2020.5.30 Provide Lightweight Chinese OCR online experience
- 2020.5.30 Model prediction and training support on Windows system - 2020.5.30 Model prediction and training support on Windows system
- 2020.5.30 Open source general Chinese OCR model - 2020.5.30 Open source general Chinese OCR model
......
doc/joinus.PNG

205 KB | W: | H:

doc/joinus.PNG

189 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
import numpy as np import numpy as np
import os import os
import random import random
import traceback
from paddle.io import Dataset from paddle.io import Dataset
from .imaug import transform, create_operators from .imaug import transform, create_operators
...@@ -46,7 +45,6 @@ class SimpleDataSet(Dataset): ...@@ -46,7 +45,6 @@ class SimpleDataSet(Dataset):
self.seed = seed self.seed = seed
logger.info("Initialize indexs of datasets:%s" % label_file_list) logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list) self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.check_data()
self.data_idx_order_list = list(range(len(self.data_lines))) self.data_idx_order_list = list(range(len(self.data_lines)))
if self.mode == "train" and self.do_shuffle: if self.mode == "train" and self.do_shuffle:
self.shuffle_data_random() self.shuffle_data_random()
...@@ -103,18 +101,25 @@ class SimpleDataSet(Dataset): ...@@ -103,18 +101,25 @@ class SimpleDataSet(Dataset):
def __getitem__(self, idx): def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx] file_idx = self.data_idx_order_list[idx]
data = self.data_lines[file_idx] data_line = self.data_lines[file_idx]
try: try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f: with open(data['img_path'], 'rb') as f:
img = f.read() img = f.read()
data['image'] = img data['image'] = img
data['ext_data'] = self.get_ext_data() data['ext_data'] = self.get_ext_data()
outs = transform(data, self.ops) outs = transform(data, self.ops)
except: except Exception as e:
error_meg = traceback.format_exc()
self.logger.error( self.logger.error(
"When parsing file {} and label {}, error happened with msg: {}".format( "When parsing line {}, error happened with msg: {}".format(
data['img_path'],data['label'], error_meg)) data_line, e))
outs = None outs = None
if outs is None: if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation. # during evaluation, we should fix the idx to get same results for many times of evaluation.
...@@ -125,17 +130,3 @@ class SimpleDataSet(Dataset): ...@@ -125,17 +130,3 @@ class SimpleDataSet(Dataset):
def __len__(self): def __len__(self):
return len(self.data_idx_order_list) return len(self.data_idx_order_list)
def check_data(self):
new_data_lines = []
for data_line in self.data_lines:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").strip("\r").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
if os.path.exists(img_path):
new_data_lines.append({'img_path': img_path, 'label': label})
else:
self.logger.info("{} does not exist!".format(img_path))
self.data_lines = new_data_lines
\ No newline at end of file
...@@ -54,6 +54,27 @@ class CELoss(nn.Layer): ...@@ -54,6 +54,27 @@ class CELoss(nn.Layer):
return loss return loss
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log( (p2+1e-5)/(p1+1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(p1, paddle.log((p1+1e-5)/(p2+1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss, axis=[1,2])
elif reduction=="none" or reduction is None:
return loss
else:
loss = paddle.sum(loss, axis=[1,2])
return loss
class DMLLoss(nn.Layer): class DMLLoss(nn.Layer):
""" """
DMLLoss DMLLoss
...@@ -69,17 +90,21 @@ class DMLLoss(nn.Layer): ...@@ -69,17 +90,21 @@ class DMLLoss(nn.Layer):
self.act = nn.Sigmoid() self.act = nn.Sigmoid()
else: else:
self.act = None self.act = None
self.jskl_loss = KLJSLoss(mode="js")
def forward(self, out1, out2): def forward(self, out1, out2):
if self.act is not None: if self.act is not None:
out1 = self.act(out1) out1 = self.act(out1)
out2 = self.act(out2) out2 = self.act(out2)
if len(out1.shape) < 2:
log_out1 = paddle.log(out1) log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2) log_out2 = paddle.log(out2)
loss = (F.kl_div( loss = (F.kl_div(
log_out1, out2, reduction='batchmean') + F.kl_div( log_out1, out2, reduction='batchmean') + F.kl_div(
log_out2, out1, reduction='batchmean')) / 2.0 log_out2, out1, reduction='batchmean')) / 2.0
else:
loss = self.jskl_loss(out1, out2)
return loss return loss
......
...@@ -17,7 +17,7 @@ import paddle.nn as nn ...@@ -17,7 +17,7 @@ import paddle.nn as nn
from .distillation_loss import DistillationCTCLoss from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss from .distillation_loss import DistillationDMLLoss
from .distillation_loss import DistillationDistanceLoss from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
class CombinedLoss(nn.Layer): class CombinedLoss(nn.Layer):
...@@ -44,15 +44,16 @@ class CombinedLoss(nn.Layer): ...@@ -44,15 +44,16 @@ class CombinedLoss(nn.Layer):
def forward(self, input, batch, **kargs): def forward(self, input, batch, **kargs):
loss_dict = {} loss_dict = {}
loss_all = 0.
for idx, loss_func in enumerate(self.loss_func): for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch, **kargs) loss = loss_func(input, batch, **kargs)
if isinstance(loss, paddle.Tensor): if isinstance(loss, paddle.Tensor):
loss = {"loss_{}_{}".format(str(loss), idx): loss} loss = {"loss_{}_{}".format(str(loss), idx): loss}
weight = self.loss_weight[idx] weight = self.loss_weight[idx]
loss = { for key in loss.keys():
"{}_{}".format(key, idx): loss[key] * weight if key == "loss":
for key in loss loss_all += loss[key] * weight
} else:
loss_dict.update(loss) loss_dict["{}_{}".format(key, idx)] = loss[key]
loss_dict["loss"] = paddle.add_n(list(loss_dict.values())) loss_dict["loss"] = loss_all
return loss_dict return loss_dict
...@@ -14,23 +14,76 @@ ...@@ -14,23 +14,76 @@
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
import numpy as np
import cv2
from .rec_ctc_loss import CTCLoss from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss from .basic_loss import DMLLoss
from .basic_loss import DistanceLoss from .basic_loss import DistanceLoss
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
def _sum_loss(loss_dict):
if "loss" in loss_dict.keys():
return loss_dict
else:
loss_dict["loss"] = 0.
for k, value in loss_dict.items():
if k == "loss":
continue
else:
loss_dict["loss"] += value
return loss_dict
class DistillationDMLLoss(DMLLoss): class DistillationDMLLoss(DMLLoss):
""" """
""" """
def __init__(self, model_name_pairs=[], act=None, key=None, def __init__(self,
name="loss_dml"): model_name_pairs=[],
act=None,
key=None,
maps_name=None,
name="dml"):
super().__init__(act=act) super().__init__(act=act)
assert isinstance(model_name_pairs, list) assert isinstance(model_name_pairs, list)
self.key = key self.key = key
self.model_name_pairs = model_name_pairs self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
self.name = name self.name = name
self.maps_name = self._check_maps_name(maps_name)
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
def _check_maps_name(self, maps_name):
if maps_name is None:
return None
elif type(maps_name) == str:
return [maps_name]
elif type(maps_name) == list:
return [maps_name]
else:
return None
def _slice_out(self, outs):
new_outs = {}
for k in self.maps_name:
if k == "thrink_maps":
new_outs[k] = outs[:, 0, :, :]
elif k == "threshold_maps":
new_outs[k] = outs[:, 1, :, :]
elif k == "binary_maps":
new_outs[k] = outs[:, 2, :, :]
else:
continue
return new_outs
def forward(self, predicts, batch): def forward(self, predicts, batch):
loss_dict = dict() loss_dict = dict()
...@@ -40,13 +93,30 @@ class DistillationDMLLoss(DMLLoss): ...@@ -40,13 +93,30 @@ class DistillationDMLLoss(DMLLoss):
if self.key is not None: if self.key is not None:
out1 = out1[self.key] out1 = out1[self.key]
out2 = out2[self.key] out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict): if self.maps_name is None:
for key in loss: loss = super().forward(out1, out2)
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], if isinstance(loss, dict):
idx)] = loss[key] for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
else: else:
loss_dict["{}_{}".format(self.name, idx)] = loss outs1 = self._slice_out(out1)
outs2 = self._slice_out(out2)
for _c, k in enumerate(outs1.keys()):
loss = super().forward(outs1[k], outs2[k])
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}_{}".format(key, pair[
0], pair[1], map_name, idx)] = loss[key]
else:
loss_dict["{}_{}_{}".format(self.name, self.maps_name[_c],
idx)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict return loss_dict
...@@ -73,6 +143,98 @@ class DistillationCTCLoss(CTCLoss): ...@@ -73,6 +143,98 @@ class DistillationCTCLoss(CTCLoss):
return loss_dict return loss_dict
class DistillationDBLoss(DBLoss):
def __init__(self,
model_name_list=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="db",
**kwargs):
super().__init__()
self.model_name_list = model_name_list
self.name = name
self.key = None
def forward(self, predicts, batch):
loss_dict = {}
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss.keys():
if key == "loss":
continue
name = "{}_{}_{}".format(self.name, model_name, key)
loss_dict[name] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDilaDBLoss(DBLoss):
def __init__(self,
model_name_pairs=[],
key=None,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="dila_dbloss"):
super().__init__()
self.model_name_pairs = model_name_pairs
self.name = name
self.key = key
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
stu_outs = predicts[pair[0]]
tch_outs = predicts[pair[1]]
if self.key is not None:
stu_preds = stu_outs[self.key]
tch_preds = tch_outs[self.key]
stu_shrink_maps = stu_preds[:, 0, :, :]
stu_binary_maps = stu_preds[:, 2, :, :]
# dilation to teacher prediction
dilation_w = np.array([[1, 1], [1, 1]])
th_shrink_maps = tch_preds[:, 0, :, :]
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
for i in range(th_shrink_maps.shape[0]):
dilate_maps[i] = cv2.dilate(
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
th_shrink_maps = paddle.to_tensor(dilate_maps)
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
1:]
# calculate the shrink map loss
bce_loss = self.alpha * self.bce_loss(
stu_shrink_maps, th_shrink_maps, label_shrink_mask)
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
label_shrink_mask)
# k = f"{self.name}_{pair[0]}_{pair[1]}"
k = "{}_{}_{}".format(self.name, pair[0], pair[1])
loss_dict[k] = bce_loss + loss_binary_maps
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDistanceLoss(DistanceLoss): class DistillationDistanceLoss(DistanceLoss):
""" """
""" """
......
...@@ -55,6 +55,7 @@ class DetMetric(object): ...@@ -55,6 +55,7 @@ class DetMetric(object):
result = self.evaluator.evaluate_image(gt_info_list, det_info_list) result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
self.results.append(result) self.results.append(result)
def get_metric(self): def get_metric(self):
""" """
return metrics { return metrics {
......
...@@ -24,8 +24,8 @@ from .cls_metric import ClsMetric ...@@ -24,8 +24,8 @@ from .cls_metric import ClsMetric
class DistillationMetric(object): class DistillationMetric(object):
def __init__(self, def __init__(self,
key=None, key=None,
base_metric_name="RecMetric", base_metric_name=None,
main_indicator='acc', main_indicator=None,
**kwargs): **kwargs):
self.main_indicator = main_indicator self.main_indicator = main_indicator
self.key = key self.key = key
...@@ -42,16 +42,13 @@ class DistillationMetric(object): ...@@ -42,16 +42,13 @@ class DistillationMetric(object):
main_indicator=self.main_indicator, **self.kwargs) main_indicator=self.main_indicator, **self.kwargs)
self.metrics[key].reset() self.metrics[key].reset()
def __call__(self, preds, *args, **kwargs): def __call__(self, preds, batch, **kwargs):
assert isinstance(preds, dict) assert isinstance(preds, dict)
if self.metrics is None: if self.metrics is None:
self._init_metrcis(preds) self._init_metrcis(preds)
output = dict() output = dict()
for key in preds: for key in preds:
metric = self.metrics[key].__call__(preds[key], *args, **kwargs) self.metrics[key].__call__(preds[key], batch, **kwargs)
for sub_key in metric:
output["{}_{}".format(key, sub_key)] = metric[sub_key]
return output
def get_metric(self): def get_metric(self):
""" """
......
...@@ -79,7 +79,10 @@ class BaseModel(nn.Layer): ...@@ -79,7 +79,10 @@ class BaseModel(nn.Layer):
x = self.neck(x) x = self.neck(x)
y["neck_out"] = x y["neck_out"] = x
x = self.head(x, targets=data) x = self.head(x, targets=data)
y["head_out"] = x if isinstance(x, dict):
y.update(x)
else:
y["head_out"] = x
if self.return_all_feats: if self.return_all_feats:
return y return y
else: else:
......
...@@ -21,7 +21,7 @@ from ppocr.modeling.backbones import build_backbone ...@@ -21,7 +21,7 @@ from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head from ppocr.modeling.heads import build_head
from .base_model import BaseModel from .base_model import BaseModel
from ppocr.utils.save_load import init_model from ppocr.utils.save_load import init_model, load_pretrained_params
__all__ = ['DistillationModel'] __all__ = ['DistillationModel']
...@@ -46,7 +46,7 @@ class DistillationModel(nn.Layer): ...@@ -46,7 +46,7 @@ class DistillationModel(nn.Layer):
pretrained = model_config.pop("pretrained") pretrained = model_config.pop("pretrained")
model = BaseModel(model_config) model = BaseModel(model_config)
if pretrained is not None: if pretrained is not None:
init_model(model, path=pretrained) load_pretrained_params(model, pretrained)
if freeze_params: if freeze_params:
for param in model.parameters(): for param in model.parameters():
param.trainable = False param.trainable = False
......
...@@ -21,7 +21,7 @@ import copy ...@@ -21,7 +21,7 @@ import copy
__all__ = ['build_post_process'] __all__ = ['build_post_process']
from .db_postprocess import DBPostProcess from .db_postprocess import DBPostProcess, DistillationDBPostProcess
from .east_postprocess import EASTPostProcess from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \ from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
...@@ -33,9 +33,10 @@ from .pse_postprocess import PSEPostProcess ...@@ -33,9 +33,10 @@ from .pse_postprocess import PSEPostProcess
def build_post_process(config, global_config=None): def build_post_process(config, global_config=None):
support_dict = [ support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'DBPostProcess','PSEPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess', 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
'DistillationCTCLabelDecode', 'TableLabelDecode', 'PSEPostProcess' 'DistillationCTCLabelDecode', 'TableLabelDecode',
'DistillationDBPostProcess'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
......
...@@ -187,3 +187,29 @@ class DBPostProcess(object): ...@@ -187,3 +187,29 @@ class DBPostProcess(object):
boxes_batch.append({'points': boxes}) boxes_batch.append({'points': boxes})
return boxes_batch return boxes_batch
class DistillationDBPostProcess(object):
def __init__(self, model_name=["student"],
key=None,
thresh=0.3,
box_thresh=0.6,
max_candidates=1000,
unclip_ratio=1.5,
use_dilation=False,
score_mode="fast",
**kwargs):
self.model_name = model_name
self.key = key
self.post_process = DBPostProcess(thresh=thresh,
box_thresh=box_thresh,
max_candidates=max_candidates,
unclip_ratio=unclip_ratio,
use_dilation=use_dilation,
score_mode=score_mode)
def __call__(self, predicts, shape_list):
results = {}
for k in self.model_name:
results[k] = self.post_process(predicts[k], shape_list=shape_list)
return results
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
import os import os
import argparse import argparse
import json import json
...@@ -31,7 +31,9 @@ def gen_det_label(root_path, input_dir, out_label): ...@@ -31,7 +31,9 @@ def gen_det_label(root_path, input_dir, out_label):
for label_file in os.listdir(input_dir): for label_file in os.listdir(input_dir):
img_path = root_path + label_file[3:-4] + ".jpg" img_path = root_path + label_file[3:-4] + ".jpg"
label = [] label = []
with open(os.path.join(input_dir, label_file), 'r') as f: with open(
os.path.join(input_dir, label_file), 'r',
encoding='utf-8-sig') as f:
for line in f.readlines(): for line in f.readlines():
tmp = line.strip("\n\r").replace("\xef\xbb\xbf", tmp = line.strip("\n\r").replace("\xef\xbb\xbf",
"").split(',') "").split(',')
......
...@@ -116,6 +116,27 @@ def load_dygraph_params(config, model, logger, optimizer): ...@@ -116,6 +116,27 @@ def load_dygraph_params(config, model, logger, optimizer):
logger.info(f"loaded pretrained_model successful from {pm}") logger.info(f"loaded pretrained_model successful from {pm}")
return {} return {}
def load_pretrained_params(model, path):
if path is None:
return False
if not os.path.exists(path) and not os.path.exists(path + ".pdparams"):
print(f"The pretrained_model {path} does not exists!")
return False
path = path if path.endswith('.pdparams') else path + '.pdparams'
params = paddle.load(path)
state_dict = model.state_dict()
new_state_dict = {}
for k1, k2 in zip(state_dict.keys(), params.keys()):
if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2]
else:
print(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !"
)
model.set_state_dict(new_state_dict)
print(f"load pretrain successful from {path}")
return model
def save_model(model, def save_model(model,
optimizer, optimizer,
......
model_name:ocr_det model_name:ocr_det
python:python3.7 python:python3.7
gpu_list:0|0,1 gpu_list:0|0,1
Global.auto_cast:False Global.auto_cast:null
Global.epoch_num:10 Global.epoch_num:10
Global.save_model_dir:./output/ Global.save_model_dir:./output/
Global.save_inference_dir:./output/
Train.loader.batch_size_per_card: Train.loader.batch_size_per_card:
Global.use_gpu Global.use_gpu:
Global.pretrained_model Global.pretrained_model:null
trainer:norm|pact trainer:norm|pact
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
...@@ -17,6 +16,8 @@ distill_train:null ...@@ -17,6 +16,8 @@ distill_train:null
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
fpgm_export:deploy/slim/prune/export_prune_model.py fpgm_export:deploy/slim/prune/export_prune_model.py
...@@ -29,7 +30,6 @@ inference:tools/infer/predict_det.py ...@@ -29,7 +30,6 @@ inference:tools/infer/predict_det.py
--rec_batch_num:1 --rec_batch_num:1
--use_tensorrt:True|False --use_tensorrt:True|False
--precision:fp32|fp16|int8 --precision:fp32|fp16|int8
--det_model_dir --det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/
--image_dir --image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path --save_log_path:./test/output/
model_name:ocr_rec
python:python
gpu_list:0|0,1
Global.auto_cast:null
Global.epoch_num:10
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:
Global.use_gpu:
Global.pretrained_model:null
trainer:norm|pact
norm_train:tools/train.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml
quant_train:deploy/slim/quantization/quant.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml
fpgm_train:null
distill_train:null
eval:tools/eval.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
quant_export:deploy/slim/quantization/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
fpgm_export:null
distill_export:null
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
\ No newline at end of file
...@@ -26,20 +26,24 @@ IFS=$'\n' ...@@ -26,20 +26,24 @@ IFS=$'\n'
# The training params # The training params
model_name=$(func_parser_value "${lines[0]}") model_name=$(func_parser_value "${lines[0]}")
train_model_list=$(func_parser_value "${lines[0]}") train_model_list=$(func_parser_value "${lines[0]}")
trainer_list=$(func_parser_value "${lines[10]}") trainer_list=$(func_parser_value "${lines[10]}")
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2 MODE=$2
# prepare pretrained weights and dataset # prepare pretrained weights and dataset
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams if [ ${train_model_list[*]} = "ocr_det" ]; then
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../
fi
if [ ${MODE} = "lite_train_infer" ];then if [ ${MODE} = "lite_train_infer" ];then
# pretrain lite train data # pretrain lite train data
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
cd ./train_data/ && tar xf icdar2015_lite.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos
cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
ln -s ./icdar2015_lite ./icdar2015 ln -s ./icdar2015_lite ./icdar2015
cd ../ cd ../
epoch=10 epoch=10
...@@ -47,13 +51,15 @@ if [ ${MODE} = "lite_train_infer" ];then ...@@ -47,13 +51,15 @@ if [ ${MODE} = "lite_train_infer" ];then
elif [ ${MODE} = "whole_train_infer" ];then elif [ ${MODE} = "whole_train_infer" ];then
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
cd ./train_data/ && tar xf icdar2015.tar && cd ../ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../
epoch=500 epoch=500
eval_batch_step=200 eval_batch_step=200
elif [ ${MODE} = "whole_infer" ];then elif [ ${MODE} = "whole_infer" ];then
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
cd ./train_data/ && tar xf icdar2015_infer.tar wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
ln -s ./icdar2015_infer ./icdar2015 ln -s ./icdar2015_infer ./icdar2015
cd ../ cd ../
epoch=10 epoch=10
...@@ -62,8 +68,8 @@ else ...@@ -62,8 +68,8 @@ else
rm -rf ./train_data/icdar2015 rm -rf ./train_data/icdar2015
wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "ocr_det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_train" eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
else else
eval_model_name="ch_ppocr_mobile_v2.0_rec_train" eval_model_name="ch_ppocr_mobile_v2.0_rec_train"
...@@ -86,15 +92,17 @@ for train_model in ${train_model_list[*]}; do ...@@ -86,15 +92,17 @@ for train_model in ${train_model_list[*]}; do
elif [ ${train_model} = "ocr_rec" ];then elif [ ${train_model} = "ocr_rec" ];then
model_name="ocr_rec" model_name="ocr_rec"
yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml" yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_rec_data_200.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
cd ./inference && tar xf ch_rec_data_200.tar && cd ../ cd ./inference && tar xf rec_inference.tar && cd ../
img_dir="./inference/ch_rec_data_200/" img_dir="./inference/rec_inference/"
data_dir=./inference/rec_inference
data_label_file=[./inference/rec_inference/rec_gt_test.txt]
fi fi
# eval # eval
for slim_trainer in ${trainer_list[*]}; do for slim_trainer in ${trainer_list[*]}; do
if [ ${slim_trainer} = "norm" ]; then if [ ${slim_trainer} = "norm" ]; then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_train" eval_model_name="ch_ppocr_mobile_v2.0_det_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
...@@ -104,7 +112,7 @@ for train_model in ${train_model_list[*]}; do ...@@ -104,7 +112,7 @@ for train_model in ${train_model_list[*]}; do
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
fi fi
elif [ ${slim_trainer} = "pact" ]; then elif [ ${slim_trainer} = "pact" ]; then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train" eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
...@@ -114,7 +122,7 @@ for train_model in ${train_model_list[*]}; do ...@@ -114,7 +122,7 @@ for train_model in ${train_model_list[*]}; do
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
fi fi
elif [ ${slim_trainer} = "distill" ]; then elif [ ${slim_trainer} = "distill" ]; then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train" eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
...@@ -124,7 +132,7 @@ for train_model in ${train_model_list[*]}; do ...@@ -124,7 +132,7 @@ for train_model in ${train_model_list[*]}; do
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
fi fi
elif [ ${slim_trainer} = "fpgm" ]; then elif [ ${slim_trainer} = "fpgm" ]; then
if [ ${model_name} = "ocr_det" ]; then if [ ${model_name} = "det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train" eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar
cd ./inference && tar xf ${eval_model_name}.tar && cd ../ cd ./inference && tar xf ${eval_model_name}.tar && cd ../
......
...@@ -41,59 +41,51 @@ gpu_list=$(func_parser_value "${lines[2]}") ...@@ -41,59 +41,51 @@ gpu_list=$(func_parser_value "${lines[2]}")
autocast_list=$(func_parser_value "${lines[3]}") autocast_list=$(func_parser_value "${lines[3]}")
autocast_key=$(func_parser_key "${lines[3]}") autocast_key=$(func_parser_key "${lines[3]}")
epoch_key=$(func_parser_key "${lines[4]}") epoch_key=$(func_parser_key "${lines[4]}")
epoch_num=$(func_parser_value "${lines[4]}")
save_model_key=$(func_parser_key "${lines[5]}") save_model_key=$(func_parser_key "${lines[5]}")
save_infer_key=$(func_parser_key "${lines[6]}") train_batch_key=$(func_parser_key "${lines[6]}")
train_batch_key=$(func_parser_key "${lines[7]}") train_use_gpu_key=$(func_parser_key "${lines[7]}")
train_use_gpu_key=$(func_parser_key "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[8]}")
trainer_list=$(func_parser_value "${lines[10]}") trainer_list=$(func_parser_value "${lines[9]}")
norm_trainer=$(func_parser_value "${lines[11]}") norm_trainer=$(func_parser_value "${lines[10]}")
pact_trainer=$(func_parser_value "${lines[12]}") pact_trainer=$(func_parser_value "${lines[11]}")
fpgm_trainer=$(func_parser_value "${lines[13]}") fpgm_trainer=$(func_parser_value "${lines[12]}")
distill_trainer=$(func_parser_value "${lines[14]}") distill_trainer=$(func_parser_value "${lines[13]}")
eval_py=$(func_parser_value "${lines[15]}") eval_py=$(func_parser_value "${lines[14]}")
norm_export=$(func_parser_value "${lines[16]}")
pact_export=$(func_parser_value "${lines[17]}") save_infer_key=$(func_parser_key "${lines[15]}")
fpgm_export=$(func_parser_value "${lines[18]}") export_weight=$(func_parser_key "${lines[16]}")
distill_export=$(func_parser_value "${lines[19]}") norm_export=$(func_parser_value "${lines[17]}")
pact_export=$(func_parser_value "${lines[18]}")
inference_py=$(func_parser_value "${lines[20]}") fpgm_export=$(func_parser_value "${lines[19]}")
use_gpu_key=$(func_parser_key "${lines[21]}") distill_export=$(func_parser_value "${lines[20]}")
use_gpu_list=$(func_parser_value "${lines[21]}")
use_mkldnn_key=$(func_parser_key "${lines[22]}") inference_py=$(func_parser_value "${lines[21]}")
use_mkldnn_list=$(func_parser_value "${lines[22]}") use_gpu_key=$(func_parser_key "${lines[22]}")
cpu_threads_key=$(func_parser_key "${lines[23]}") use_gpu_list=$(func_parser_value "${lines[22]}")
cpu_threads_list=$(func_parser_value "${lines[23]}") use_mkldnn_key=$(func_parser_key "${lines[23]}")
batch_size_key=$(func_parser_key "${lines[24]}") use_mkldnn_list=$(func_parser_value "${lines[23]}")
batch_size_list=$(func_parser_value "${lines[24]}") cpu_threads_key=$(func_parser_key "${lines[24]}")
use_trt_key=$(func_parser_key "${lines[25]}") cpu_threads_list=$(func_parser_value "${lines[24]}")
use_trt_list=$(func_parser_value "${lines[25]}") batch_size_key=$(func_parser_key "${lines[25]}")
precision_key=$(func_parser_key "${lines[26]}") batch_size_list=$(func_parser_value "${lines[25]}")
precision_list=$(func_parser_value "${lines[26]}") use_trt_key=$(func_parser_key "${lines[26]}")
model_dir_key=$(func_parser_key "${lines[27]}") use_trt_list=$(func_parser_value "${lines[26]}")
image_dir_key=$(func_parser_key "${lines[28]}") precision_key=$(func_parser_key "${lines[27]}")
save_log_key=$(func_parser_key "${lines[29]}") precision_list=$(func_parser_value "${lines[27]}")
infer_model_key=$(func_parser_key "${lines[28]}")
infer_model=$(func_parser_value "${lines[28]}")
image_dir_key=$(func_parser_key "${lines[29]}")
infer_img_dir=$(func_parser_value "${lines[29]}")
save_log_key=$(func_parser_key "${lines[30]}")
LOG_PATH="./test/output" LOG_PATH="./test/output"
mkdir -p ${LOG_PATH} mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log" status_log="${LOG_PATH}/results.log"
if [ ${MODE} = "lite_train_infer" ]; then
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
export epoch_num=10
elif [ ${MODE} = "whole_infer" ]; then
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
export epoch_num=10
elif [ ${MODE} = "whole_train_infer" ]; then
export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
export epoch_num=300
else
export infer_img_dir="./inference/ch_det_data_50/all-sum-510"
export infer_model_dir="./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy"
fi
function func_inference(){ function func_inference(){
IFS='|' IFS='|'
...@@ -109,8 +101,8 @@ function func_inference(){ ...@@ -109,8 +101,8 @@ function func_inference(){
for use_mkldnn in ${use_mkldnn_list[*]}; do for use_mkldnn in ${use_mkldnn_list[*]}; do
for threads in ${cpu_threads_list[*]}; do for threads in ${cpu_threads_list[*]}; do
for batch_size in ${batch_size_list[*]}; do for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}" _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command eval $command
status_check $? "${command}" "${status_log}" status_check $? "${command}" "${status_log}"
done done
...@@ -123,8 +115,8 @@ function func_inference(){ ...@@ -123,8 +115,8 @@ function func_inference(){
continue continue
fi fi
for batch_size in ${batch_size_list[*]}; do for batch_size in ${batch_size_list[*]}; do
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}" _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path} --benchmark=True"
eval $command eval $command
status_check $? "${command}" "${status_log}" status_check $? "${command}" "${status_log}"
done done
...@@ -138,12 +130,13 @@ if [ ${MODE} != "infer" ]; then ...@@ -138,12 +130,13 @@ if [ ${MODE} != "infer" ]; then
IFS="|" IFS="|"
for gpu in ${gpu_list[*]}; do for gpu in ${gpu_list[*]}; do
train_use_gpu=True use_gpu=True
if [ ${gpu} = "-1" ];then if [ ${gpu} = "-1" ];then
train_use_gpu=False use_gpu=False
env="" env=""
elif [ ${#gpu} -le 1 ];then elif [ ${#gpu} -le 1 ];then
env="export CUDA_VISIBLE_DEVICES=${gpu}" env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then elif [ ${#gpu} -le 15 ];then
IFS="," IFS=","
array=(${gpu}) array=(${gpu})
...@@ -155,6 +148,7 @@ for gpu in ${gpu_list[*]}; do ...@@ -155,6 +148,7 @@ for gpu in ${gpu_list[*]}; do
ips=${array[0]} ips=${array[0]}
gpu=${array[1]} gpu=${array[1]}
IFS="|" IFS="|"
env=" "
fi fi
for autocast in ${autocast_list[*]}; do for autocast in ${autocast_list[*]}; do
for trainer in ${trainer_list[*]}; do for trainer in ${trainer_list[*]}; do
...@@ -179,13 +173,32 @@ for gpu in ${gpu_list[*]}; do ...@@ -179,13 +173,32 @@ for gpu in ${gpu_list[*]}; do
continue continue
fi fi
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" # not set autocast when autocast is null
if [ ${#gpu} -le 2 ];then # epoch_num #TODO if [ ${autocast} = "null" ]; then
cmd="${python} ${run_train} ${train_use_gpu_key}=${train_use_gpu} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log} " set_autocast=" "
elif [ ${#gpu} -le 15 ];then else
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" set_autocast="${autocast_key}=${autocast}"
fi
# not set epoch when whole_train_infer
if [ ${MODE} != "whole_train_infer" ]; then
set_epoch="${epoch_key}=${epoch_num}"
else
set_epoch=" "
fi
# set pretrain
if [ ${pretrain_model_value} != "null" ]; then
set_pretrain="${pretrain_model_key}=${pretrain_model_value}"
else else
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" set_pretrain=" "
fi
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast}"
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast}"
fi fi
# run train # run train
eval $cmd eval $cmd
...@@ -198,24 +211,27 @@ for gpu in ${gpu_list[*]}; do ...@@ -198,24 +211,27 @@ for gpu in ${gpu_list[*]}; do
# run export model # run export model
save_infer_path="${save_log}" save_infer_path="${save_log}"
export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest ${save_infer_key}=${save_infer_path}" export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
eval $export_cmd eval $export_cmd
status_check $? "${export_cmd}" "${status_log}" status_check $? "${export_cmd}" "${status_log}"
#run inference #run inference
eval $env
save_infer_path="${save_log}" save_infer_path="${save_log}"
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
eval "unset CUDA_VISIBLE_DEVICES"
done done
done done
done done
else else
save_infer_path="${LOG_PATH}/${MODE}" GPUID=$3
run_export=${norm_export} if [ ${#GPUID} -le 0 ];then
export_cmd="${python} ${run_export} ${save_model_key}=${save_infer_path} ${pretrain_model_key}=${infer_model_dir} ${save_infer_key}=${save_infer_path}" env=" "
eval $export_cmd else
status_check $? "${export_cmd}" "${status_log}" env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
echo $env
#run inference #run inference
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}"
fi fi
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment