Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
9ded14fa
Commit
9ded14fa
authored
Jan 11, 2021
by
weishengyu
Browse files
Merge
https://github.com/PaddlePaddle/PaddleOCR
into dygraph
parents
1f9d6d7f
ccfc7544
Changes
59
Show whitespace changes
Inline
Side-by-side
Showing
19 changed files
with
174 additions
and
82 deletions
+174
-82
doc/doc_en/quickstart_en.md
doc/doc_en/quickstart_en.md
+2
-2
doc/joinus.PNG
doc/joinus.PNG
+0
-0
ppocr/data/imaug/operators.py
ppocr/data/imaug/operators.py
+2
-2
ppocr/losses/det_basic_loss.py
ppocr/losses/det_basic_loss.py
+0
-1
ppocr/losses/det_sast_loss.py
ppocr/losses/det_sast_loss.py
+22
-22
ppocr/metrics/rec_metric.py
ppocr/metrics/rec_metric.py
+2
-0
ppocr/modeling/transforms/tps.py
ppocr/modeling/transforms/tps.py
+5
-1
ppocr/optimizer/learning_rate.py
ppocr/optimizer/learning_rate.py
+47
-4
ppocr/optimizer/lr_scheduler.py
ppocr/optimizer/lr_scheduler.py
+49
-0
ppocr/utils/utility.py
ppocr/utils/utility.py
+1
-1
tools/infer/predict_cls.py
tools/infer/predict_cls.py
+7
-10
tools/infer/predict_det.py
tools/infer/predict_det.py
+7
-9
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+6
-10
tools/infer/predict_system.py
tools/infer/predict_system.py
+2
-0
tools/infer/utility.py
tools/infer/utility.py
+13
-17
tools/infer_cls.py
tools/infer_cls.py
+2
-0
tools/infer_det.py
tools/infer_det.py
+2
-0
tools/infer_rec.py
tools/infer_rec.py
+2
-0
tools/program.py
tools/program.py
+3
-3
No files found.
doc/doc_en/quickstart_en.md
View file @
9ded14fa
...
@@ -99,5 +99,5 @@ For more text detection and recognition tandem reasoning, please refer to the do
...
@@ -99,5 +99,5 @@ For more text detection and recognition tandem reasoning, please refer to the do
In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
-
[
Server-side C++ inference
](
../../deploy/cpp_infer/readme_en.md
)
-
[
Server-side C++ inference
](
../../deploy/cpp_infer/readme_en.md
)
-
[
Service deployment
](
../../deploy/
pd
serving
/readme_en.md
)
-
[
Service deployment
](
../../deploy/
hub
serving
)
-
[
End-to-end deployment
](
../../deploy/lite/readme_en.md
)
-
[
End-to-end deployment
](
https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite
)
doc/joinus.PNG
View replaced file @
1f9d6d7f
View file @
9ded14fa
212 KB
|
W:
|
H:
237 KB
|
W:
|
H:
2-up
Swipe
Onion skin
ppocr/data/imaug/operators.py
View file @
9ded14fa
...
@@ -119,10 +119,10 @@ class DetResizeForTest(object):
...
@@ -119,10 +119,10 @@ class DetResizeForTest(object):
if
'image_shape'
in
kwargs
:
if
'image_shape'
in
kwargs
:
self
.
image_shape
=
kwargs
[
'image_shape'
]
self
.
image_shape
=
kwargs
[
'image_shape'
]
self
.
resize_type
=
1
self
.
resize_type
=
1
if
'limit_side_len'
in
kwargs
:
el
if
'limit_side_len'
in
kwargs
:
self
.
limit_side_len
=
kwargs
[
'limit_side_len'
]
self
.
limit_side_len
=
kwargs
[
'limit_side_len'
]
self
.
limit_type
=
kwargs
.
get
(
'limit_type'
,
'min'
)
self
.
limit_type
=
kwargs
.
get
(
'limit_type'
,
'min'
)
if
'resize_long'
in
kwargs
:
el
if
'resize_long'
in
kwargs
:
self
.
resize_type
=
2
self
.
resize_type
=
2
self
.
resize_long
=
kwargs
.
get
(
'resize_long'
,
960
)
self
.
resize_long
=
kwargs
.
get
(
'resize_long'
,
960
)
else
:
else
:
...
...
ppocr/losses/det_basic_loss.py
View file @
9ded14fa
...
@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer):
...
@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer):
self
.
balance_loss
=
balance_loss
self
.
balance_loss
=
balance_loss
self
.
main_loss_type
=
main_loss_type
self
.
main_loss_type
=
main_loss_type
self
.
negative_ratio
=
negative_ratio
self
.
negative_ratio
=
negative_ratio
self
.
main_loss_type
=
main_loss_type
self
.
return_origin
=
return_origin
self
.
return_origin
=
return_origin
self
.
eps
=
eps
self
.
eps
=
eps
...
...
ppocr/losses/det_sast_loss.py
View file @
9ded14fa
...
@@ -19,7 +19,6 @@ from __future__ import print_function
...
@@ -19,7 +19,6 @@ from __future__ import print_function
import
paddle
import
paddle
from
paddle
import
nn
from
paddle
import
nn
from
.det_basic_loss
import
DiceLoss
from
.det_basic_loss
import
DiceLoss
import
paddle.fluid
as
fluid
import
numpy
as
np
import
numpy
as
np
...
@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
...
@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
"""
"""
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
eps
=
1e-6
,
**
kwargs
):
eps
=
1e-6
,
**
kwargs
):
super
(
SASTLoss
,
self
).
__init__
()
super
(
SASTLoss
,
self
).
__init__
()
self
.
dice_loss
=
DiceLoss
(
eps
=
eps
)
self
.
dice_loss
=
DiceLoss
(
eps
=
eps
)
...
@@ -53,10 +50,12 @@ class SASTLoss(nn.Layer):
...
@@ -53,10 +50,12 @@ class SASTLoss(nn.Layer):
score_loss
=
1.0
-
2
*
intersection
/
(
union
+
1e-5
)
score_loss
=
1.0
-
2
*
intersection
/
(
union
+
1e-5
)
#border loss
#border loss
l_border_split
,
l_border_norm
=
paddle
.
split
(
l_border
,
num_or_sections
=
[
4
,
1
],
axis
=
1
)
l_border_split
,
l_border_norm
=
paddle
.
split
(
l_border
,
num_or_sections
=
[
4
,
1
],
axis
=
1
)
f_border_split
=
f_border
f_border_split
=
f_border
border_ex_shape
=
l_border_norm
.
shape
*
np
.
array
([
1
,
4
,
1
,
1
])
border_ex_shape
=
l_border_norm
.
shape
*
np
.
array
([
1
,
4
,
1
,
1
])
l_border_norm_split
=
paddle
.
expand
(
x
=
l_border_norm
,
shape
=
border_ex_shape
)
l_border_norm_split
=
paddle
.
expand
(
x
=
l_border_norm
,
shape
=
border_ex_shape
)
l_border_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
border_ex_shape
)
l_border_score
=
paddle
.
expand
(
x
=
l_score
,
shape
=
border_ex_shape
)
l_border_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
border_ex_shape
)
l_border_mask
=
paddle
.
expand
(
x
=
l_mask
,
shape
=
border_ex_shape
)
...
@@ -72,7 +71,8 @@ class SASTLoss(nn.Layer):
...
@@ -72,7 +71,8 @@ class SASTLoss(nn.Layer):
(
paddle
.
sum
(
l_border_score
*
l_border_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_border_score
*
l_border_mask
)
+
1e-5
)
#tvo_loss
#tvo_loss
l_tvo_split
,
l_tvo_norm
=
paddle
.
split
(
l_tvo
,
num_or_sections
=
[
8
,
1
],
axis
=
1
)
l_tvo_split
,
l_tvo_norm
=
paddle
.
split
(
l_tvo
,
num_or_sections
=
[
8
,
1
],
axis
=
1
)
f_tvo_split
=
f_tvo
f_tvo_split
=
f_tvo
tvo_ex_shape
=
l_tvo_norm
.
shape
*
np
.
array
([
1
,
8
,
1
,
1
])
tvo_ex_shape
=
l_tvo_norm
.
shape
*
np
.
array
([
1
,
8
,
1
,
1
])
l_tvo_norm_split
=
paddle
.
expand
(
x
=
l_tvo_norm
,
shape
=
tvo_ex_shape
)
l_tvo_norm_split
=
paddle
.
expand
(
x
=
l_tvo_norm
,
shape
=
tvo_ex_shape
)
...
@@ -91,7 +91,8 @@ class SASTLoss(nn.Layer):
...
@@ -91,7 +91,8 @@ class SASTLoss(nn.Layer):
(
paddle
.
sum
(
l_tvo_score
*
l_tvo_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_tvo_score
*
l_tvo_mask
)
+
1e-5
)
#tco_loss
#tco_loss
l_tco_split
,
l_tco_norm
=
paddle
.
split
(
l_tco
,
num_or_sections
=
[
2
,
1
],
axis
=
1
)
l_tco_split
,
l_tco_norm
=
paddle
.
split
(
l_tco
,
num_or_sections
=
[
2
,
1
],
axis
=
1
)
f_tco_split
=
f_tco
f_tco_split
=
f_tco
tco_ex_shape
=
l_tco_norm
.
shape
*
np
.
array
([
1
,
2
,
1
,
1
])
tco_ex_shape
=
l_tco_norm
.
shape
*
np
.
array
([
1
,
2
,
1
,
1
])
l_tco_norm_split
=
paddle
.
expand
(
x
=
l_tco_norm
,
shape
=
tco_ex_shape
)
l_tco_norm_split
=
paddle
.
expand
(
x
=
l_tco_norm
,
shape
=
tco_ex_shape
)
...
@@ -109,7 +110,6 @@ class SASTLoss(nn.Layer):
...
@@ -109,7 +110,6 @@ class SASTLoss(nn.Layer):
tco_loss
=
paddle
.
sum
(
tco_out_loss
*
l_tco_score
*
l_tco_mask
)
/
\
tco_loss
=
paddle
.
sum
(
tco_out_loss
*
l_tco_score
*
l_tco_mask
)
/
\
(
paddle
.
sum
(
l_tco_score
*
l_tco_mask
)
+
1e-5
)
(
paddle
.
sum
(
l_tco_score
*
l_tco_mask
)
+
1e-5
)
# total loss
# total loss
tvo_lw
,
tco_lw
=
1.5
,
1.5
tvo_lw
,
tco_lw
=
1.5
,
1.5
score_lw
,
border_lw
=
1.0
,
1.0
score_lw
,
border_lw
=
1.0
,
1.0
...
...
ppocr/metrics/rec_metric.py
View file @
9ded14fa
...
@@ -26,6 +26,8 @@ class RecMetric(object):
...
@@ -26,6 +26,8 @@ class RecMetric(object):
all_num
=
0
all_num
=
0
norm_edit_dis
=
0.0
norm_edit_dis
=
0.0
for
(
pred
,
pred_conf
),
(
target
,
_
)
in
zip
(
preds
,
labels
):
for
(
pred
,
pred_conf
),
(
target
,
_
)
in
zip
(
preds
,
labels
):
pred
=
pred
.
replace
(
" "
,
""
)
target
=
target
.
replace
(
" "
,
""
)
norm_edit_dis
+=
Levenshtein
.
distance
(
pred
,
target
)
/
max
(
norm_edit_dis
+=
Levenshtein
.
distance
(
pred
,
target
)
/
max
(
len
(
pred
),
len
(
target
))
len
(
pred
),
len
(
target
))
if
pred
==
target
:
if
pred
==
target
:
...
...
ppocr/modeling/transforms/tps.py
View file @
9ded14fa
...
@@ -16,6 +16,7 @@ from __future__ import absolute_import
...
@@ -16,6 +16,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
import
math
import
paddle
import
paddle
from
paddle
import
nn
,
ParamAttr
from
paddle
import
nn
,
ParamAttr
from
paddle.nn
import
functional
as
F
from
paddle.nn
import
functional
as
F
...
@@ -88,11 +89,14 @@ class LocalizationNetwork(nn.Layer):
...
@@ -88,11 +89,14 @@ class LocalizationNetwork(nn.Layer):
in_channels
=
num_filters
in_channels
=
num_filters
self
.
block_list
.
append
(
pool
)
self
.
block_list
.
append
(
pool
)
name
=
"loc_fc1"
name
=
"loc_fc1"
stdv
=
1.0
/
math
.
sqrt
(
num_filters_list
[
-
1
]
*
1.0
)
self
.
fc1
=
nn
.
Linear
(
self
.
fc1
=
nn
.
Linear
(
in_channels
,
in_channels
,
fc_dim
,
fc_dim
,
weight_attr
=
ParamAttr
(
weight_attr
=
ParamAttr
(
learning_rate
=
loc_lr
,
name
=
name
+
"_w"
),
learning_rate
=
loc_lr
,
name
=
name
+
"_w"
,
initializer
=
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
name
=
name
+
'.b_0'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'.b_0'
),
name
=
name
)
name
=
name
)
...
...
ppocr/optimizer/learning_rate.py
View file @
9ded14fa
...
@@ -18,6 +18,7 @@ from __future__ import print_function
...
@@ -18,6 +18,7 @@ from __future__ import print_function
from
__future__
import
unicode_literals
from
__future__
import
unicode_literals
from
paddle.optimizer
import
lr
from
paddle.optimizer
import
lr
from
.lr_scheduler
import
CyclicalCosineDecay
class
Linear
(
object
):
class
Linear
(
object
):
...
@@ -46,7 +47,7 @@ class Linear(object):
...
@@ -46,7 +47,7 @@ class Linear(object):
self
.
end_lr
=
end_lr
self
.
end_lr
=
end_lr
self
.
power
=
power
self
.
power
=
power
self
.
last_epoch
=
last_epoch
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
self
.
warmup_epoch
=
round
(
warmup_epoch
*
step_each_epoch
)
def
__call__
(
self
):
def
__call__
(
self
):
learning_rate
=
lr
.
PolynomialDecay
(
learning_rate
=
lr
.
PolynomialDecay
(
...
@@ -87,7 +88,7 @@ class Cosine(object):
...
@@ -87,7 +88,7 @@ class Cosine(object):
self
.
learning_rate
=
learning_rate
self
.
learning_rate
=
learning_rate
self
.
T_max
=
step_each_epoch
*
epochs
self
.
T_max
=
step_each_epoch
*
epochs
self
.
last_epoch
=
last_epoch
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
self
.
warmup_epoch
=
round
(
warmup_epoch
*
step_each_epoch
)
def
__call__
(
self
):
def
__call__
(
self
):
learning_rate
=
lr
.
CosineAnnealingDecay
(
learning_rate
=
lr
.
CosineAnnealingDecay
(
...
@@ -129,7 +130,7 @@ class Step(object):
...
@@ -129,7 +130,7 @@ class Step(object):
self
.
learning_rate
=
learning_rate
self
.
learning_rate
=
learning_rate
self
.
gamma
=
gamma
self
.
gamma
=
gamma
self
.
last_epoch
=
last_epoch
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
self
.
warmup_epoch
=
round
(
warmup_epoch
*
step_each_epoch
)
def
__call__
(
self
):
def
__call__
(
self
):
learning_rate
=
lr
.
StepDecay
(
learning_rate
=
lr
.
StepDecay
(
...
@@ -168,7 +169,7 @@ class Piecewise(object):
...
@@ -168,7 +169,7 @@ class Piecewise(object):
self
.
boundaries
=
[
step_each_epoch
*
e
for
e
in
decay_epochs
]
self
.
boundaries
=
[
step_each_epoch
*
e
for
e
in
decay_epochs
]
self
.
values
=
values
self
.
values
=
values
self
.
last_epoch
=
last_epoch
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
self
.
warmup_epoch
=
round
(
warmup_epoch
*
step_each_epoch
)
def
__call__
(
self
):
def
__call__
(
self
):
learning_rate
=
lr
.
PiecewiseDecay
(
learning_rate
=
lr
.
PiecewiseDecay
(
...
@@ -183,3 +184,45 @@ class Piecewise(object):
...
@@ -183,3 +184,45 @@ class Piecewise(object):
end_lr
=
self
.
values
[
0
],
end_lr
=
self
.
values
[
0
],
last_epoch
=
self
.
last_epoch
)
last_epoch
=
self
.
last_epoch
)
return
learning_rate
return
learning_rate
class
CyclicalCosine
(
object
):
"""
Cyclical cosine learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
cycle(int): period of the cosine learning rate
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def
__init__
(
self
,
learning_rate
,
step_each_epoch
,
epochs
,
cycle
,
warmup_epoch
=
0
,
last_epoch
=-
1
,
**
kwargs
):
super
(
CyclicalCosine
,
self
).
__init__
()
self
.
learning_rate
=
learning_rate
self
.
T_max
=
step_each_epoch
*
epochs
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
round
(
warmup_epoch
*
step_each_epoch
)
self
.
cycle
=
round
(
cycle
*
step_each_epoch
)
def
__call__
(
self
):
learning_rate
=
CyclicalCosineDecay
(
learning_rate
=
self
.
learning_rate
,
T_max
=
self
.
T_max
,
cycle
=
self
.
cycle
,
last_epoch
=
self
.
last_epoch
)
if
self
.
warmup_epoch
>
0
:
learning_rate
=
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
learning_rate
,
last_epoch
=
self
.
last_epoch
)
return
learning_rate
ppocr/optimizer/lr_scheduler.py
0 → 100644
View file @
9ded14fa
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
from
paddle.optimizer.lr
import
LRScheduler
class
CyclicalCosineDecay
(
LRScheduler
):
def
__init__
(
self
,
learning_rate
,
T_max
,
cycle
=
1
,
last_epoch
=-
1
,
eta_min
=
0.0
,
verbose
=
False
):
"""
Cyclical cosine learning rate decay
A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
Args:
learning rate(float): learning rate
T_max(int): maximum epoch num
cycle(int): period of the cosine decay
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
eta_min(float): minimum learning rate during training
verbose(bool): whether to print learning rate for each epoch
"""
super
(
CyclicalCosineDecay
,
self
).
__init__
(
learning_rate
,
last_epoch
,
verbose
)
self
.
cycle
=
cycle
self
.
eta_min
=
eta_min
def
get_lr
(
self
):
if
self
.
last_epoch
==
0
:
return
self
.
base_lr
reletive_epoch
=
self
.
last_epoch
%
self
.
cycle
lr
=
self
.
eta_min
+
0.5
*
(
self
.
base_lr
-
self
.
eta_min
)
*
\
(
1
+
math
.
cos
(
math
.
pi
*
reletive_epoch
/
self
.
cycle
))
return
lr
ppocr/utils/utility.py
View file @
9ded14fa
...
@@ -57,7 +57,7 @@ def get_image_file_list(img_file):
...
@@ -57,7 +57,7 @@ def get_image_file_list(img_file):
elif
os
.
path
.
isdir
(
img_file
):
elif
os
.
path
.
isdir
(
img_file
):
for
single_file
in
os
.
listdir
(
img_file
):
for
single_file
in
os
.
listdir
(
img_file
):
file_path
=
os
.
path
.
join
(
img_file
,
single_file
)
file_path
=
os
.
path
.
join
(
img_file
,
single_file
)
if
imghdr
.
what
(
file_path
)
in
img_end
:
if
os
.
path
.
isfile
(
file_path
)
and
imghdr
.
what
(
file_path
)
in
img_end
:
imgs_lists
.
append
(
file_path
)
imgs_lists
.
append
(
file_path
)
if
len
(
imgs_lists
)
==
0
:
if
len
(
imgs_lists
)
==
0
:
raise
Exception
(
"not found any img file in {}"
.
format
(
img_file
))
raise
Exception
(
"not found any img file in {}"
.
format
(
img_file
))
...
...
tools/infer/predict_cls.py
View file @
9ded14fa
...
@@ -18,13 +18,14 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -18,13 +18,14 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
cv2
import
copy
import
copy
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
time
import
time
import
traceback
import
traceback
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
...
@@ -39,7 +40,6 @@ class TextClassifier(object):
...
@@ -39,7 +40,6 @@ class TextClassifier(object):
self
.
cls_image_shape
=
[
int
(
v
)
for
v
in
args
.
cls_image_shape
.
split
(
","
)]
self
.
cls_image_shape
=
[
int
(
v
)
for
v
in
args
.
cls_image_shape
.
split
(
","
)]
self
.
cls_batch_num
=
args
.
cls_batch_num
self
.
cls_batch_num
=
args
.
cls_batch_num
self
.
cls_thresh
=
args
.
cls_thresh
self
.
cls_thresh
=
args
.
cls_thresh
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
postprocess_params
=
{
postprocess_params
=
{
'name'
:
'ClsPostProcess'
,
'name'
:
'ClsPostProcess'
,
"label_list"
:
args
.
label_list
,
"label_list"
:
args
.
label_list
,
...
@@ -99,12 +99,8 @@ class TextClassifier(object):
...
@@ -99,12 +99,8 @@ class TextClassifier(object):
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
zero_copy_run
()
self
.
predictor
.
run
()
else
:
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
cls_result
=
self
.
postprocess_op
(
prob_out
)
cls_result
=
self
.
postprocess_op
(
prob_out
)
elapse
+=
time
.
time
()
-
starttime
elapse
+=
time
.
time
()
-
starttime
...
@@ -143,10 +139,11 @@ def main(args):
...
@@ -143,10 +139,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
cls_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
ino
]))
cls_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
main
(
utility
.
parse_args
())
tools/infer/predict_det.py
View file @
9ded14fa
...
@@ -18,11 +18,12 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -18,11 +18,12 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
import
time
import
time
import
sys
import
sys
import
paddle
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.logging
import
get_logger
...
@@ -37,7 +38,6 @@ class TextDetector(object):
...
@@ -37,7 +38,6 @@ class TextDetector(object):
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
args
=
args
self
.
det_algorithm
=
args
.
det_algorithm
self
.
det_algorithm
=
args
.
det_algorithm
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
pre_process_list
=
[{
pre_process_list
=
[{
'DetResizeForTest'
:
{
'DetResizeForTest'
:
{
'limit_side_len'
:
args
.
det_limit_side_len
,
'limit_side_len'
:
args
.
det_limit_side_len
,
...
@@ -72,7 +72,9 @@ class TextDetector(object):
...
@@ -72,7 +72,9 @@ class TextDetector(object):
postprocess_params
[
"nms_thresh"
]
=
args
.
det_east_nms_thresh
postprocess_params
[
"nms_thresh"
]
=
args
.
det_east_nms_thresh
elif
self
.
det_algorithm
==
"SAST"
:
elif
self
.
det_algorithm
==
"SAST"
:
pre_process_list
[
0
]
=
{
pre_process_list
[
0
]
=
{
'DetResizeForTest'
:
{
'resize_long'
:
args
.
det_limit_side_len
}
'DetResizeForTest'
:
{
'resize_long'
:
args
.
det_limit_side_len
}
}
}
postprocess_params
[
'name'
]
=
'SASTPostProcess'
postprocess_params
[
'name'
]
=
'SASTPostProcess'
postprocess_params
[
"score_thresh"
]
=
args
.
det_sast_score_thresh
postprocess_params
[
"score_thresh"
]
=
args
.
det_sast_score_thresh
...
@@ -161,12 +163,8 @@ class TextDetector(object):
...
@@ -161,12 +163,8 @@ class TextDetector(object):
img
=
img
.
copy
()
img
=
img
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
input_tensor
.
copy_from_cpu
(
img
)
self
.
predictor
.
zero_copy_run
()
self
.
predictor
.
run
()
else
:
im
=
paddle
.
fluid
.
core
.
PaddleTensor
(
img
)
self
.
predictor
.
run
([
im
])
outputs
=
[]
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
...
...
tools/infer/predict_rec.py
View file @
9ded14fa
...
@@ -18,12 +18,13 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -18,12 +18,13 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
time
import
time
import
traceback
import
traceback
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
...
@@ -39,7 +40,6 @@ class TextRecognizer(object):
...
@@ -39,7 +40,6 @@ class TextRecognizer(object):
self
.
character_type
=
args
.
rec_char_type
self
.
character_type
=
args
.
rec_char_type
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
postprocess_params
=
{
postprocess_params
=
{
'name'
:
'CTCLabelDecode'
,
'name'
:
'CTCLabelDecode'
,
"character_type"
:
args
.
rec_char_type
,
"character_type"
:
args
.
rec_char_type
,
...
@@ -101,12 +101,8 @@ class TextRecognizer(object):
...
@@ -101,12 +101,8 @@ class TextRecognizer(object):
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
starttime
=
time
.
time
()
if
self
.
use_zero_copy_run
:
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
zero_copy_run
()
self
.
predictor
.
run
()
else
:
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
outputs
=
[]
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
...
@@ -145,8 +141,8 @@ def main(args):
...
@@ -145,8 +141,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
ino
]))
rec_res
[
ino
]))
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
...
...
tools/infer/predict_system.py
View file @
9ded14fa
...
@@ -18,6 +18,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -18,6 +18,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
cv2
import
copy
import
copy
import
numpy
as
np
import
numpy
as
np
...
...
tools/infer/utility.py
View file @
9ded14fa
...
@@ -20,8 +20,7 @@ import numpy as np
...
@@ -20,8 +20,7 @@ import numpy as np
import
json
import
json
from
PIL
import
Image
,
ImageDraw
,
ImageFont
from
PIL
import
Image
,
ImageDraw
,
ImageFont
import
math
import
math
from
paddle.fluid.core
import
AnalysisConfig
from
paddle
import
inference
from
paddle.fluid.core
import
create_paddle_predictor
def
parse_args
():
def
parse_args
():
...
@@ -34,7 +33,7 @@ def parse_args():
...
@@ -34,7 +33,7 @@ def parse_args():
parser
.
add_argument
(
"--ir_optim"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--ir_optim"
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
"--use_tensorrt"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_tensorrt"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_fp16"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_fp16"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--gpu_mem"
,
type
=
int
,
default
=
80
00
)
parser
.
add_argument
(
"--gpu_mem"
,
type
=
int
,
default
=
5
00
)
# params for text detector
# params for text detector
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
...
@@ -63,7 +62,7 @@ def parse_args():
...
@@ -63,7 +62,7 @@ def parse_args():
parser
.
add_argument
(
"--rec_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--rec_model_dir"
,
type
=
str
)
parser
.
add_argument
(
"--rec_image_shape"
,
type
=
str
,
default
=
"3, 32, 320"
)
parser
.
add_argument
(
"--rec_image_shape"
,
type
=
str
,
default
=
"3, 32, 320"
)
parser
.
add_argument
(
"--rec_char_type"
,
type
=
str
,
default
=
'ch'
)
parser
.
add_argument
(
"--rec_char_type"
,
type
=
str
,
default
=
'ch'
)
parser
.
add_argument
(
"--rec_batch_num"
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
"--rec_batch_num"
,
type
=
int
,
default
=
6
)
parser
.
add_argument
(
"--max_text_length"
,
type
=
int
,
default
=
25
)
parser
.
add_argument
(
"--max_text_length"
,
type
=
int
,
default
=
25
)
parser
.
add_argument
(
parser
.
add_argument
(
"--rec_char_dict_path"
,
"--rec_char_dict_path"
,
...
@@ -83,8 +82,6 @@ def parse_args():
...
@@ -83,8 +82,6 @@ def parse_args():
parser
.
add_argument
(
"--cls_thresh"
,
type
=
float
,
default
=
0.9
)
parser
.
add_argument
(
"--cls_thresh"
,
type
=
float
,
default
=
0.9
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_zero_copy_run"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_pdserving"
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
"--use_pdserving"
,
type
=
str2bool
,
default
=
False
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
...
@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
...
@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
logger
.
info
(
"not find params file path {}"
.
format
(
params_file_path
))
logger
.
info
(
"not find params file path {}"
.
format
(
params_file_path
))
sys
.
exit
(
0
)
sys
.
exit
(
0
)
config
=
Analysis
Config
(
model_file_path
,
params_file_path
)
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
if
args
.
use_gpu
:
if
args
.
use_gpu
:
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
config
.
enable_use_gpu
(
args
.
gpu_mem
,
0
)
if
args
.
use_tensorrt
:
if
args
.
use_tensorrt
:
config
.
enable_tensorrt_engine
(
config
.
enable_tensorrt_engine
(
precision_mode
=
AnalysisConfig
.
Precision
.
Half
precision_mode
=
inference
.
Precision
Type
.
Half
if
args
.
use_fp16
else
AnalysisConfig
.
Precision
.
Float32
,
if
args
.
use_fp16
else
inference
.
Precision
Type
.
Float32
,
max_batch_size
=
args
.
max_batch_size
)
max_batch_size
=
args
.
max_batch_size
)
else
:
else
:
config
.
disable_gpu
()
config
.
disable_gpu
()
...
@@ -126,24 +123,23 @@ def create_predictor(args, mode, logger):
...
@@ -126,24 +123,23 @@ def create_predictor(args, mode, logger):
# cache 10 different shapes for mkldnn to avoid memory leak
# cache 10 different shapes for mkldnn to avoid memory leak
config
.
set_mkldnn_cache_capacity
(
10
)
config
.
set_mkldnn_cache_capacity
(
10
)
config
.
enable_mkldnn
()
config
.
enable_mkldnn
()
args
.
rec_batch_num
=
1
# config.enable_memory_optim()
# config.enable_memory_optim()
config
.
disable_glog_info
()
config
.
disable_glog_info
()
if
args
.
use_zero_copy_run
:
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
switch_use_feed_fetch_ops
(
False
)
config
.
switch_use_feed_fetch_ops
(
False
)
else
:
config
.
switch_use_feed_fetch_ops
(
True
)
predictor
=
create_paddle_predictor
(
config
)
# create predictor
predictor
=
inference
.
create_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
input_names
=
predictor
.
get_input_names
()
for
name
in
input_names
:
for
name
in
input_names
:
input_tensor
=
predictor
.
get_input_
tensor
(
name
)
input_tensor
=
predictor
.
get_input_
handle
(
name
)
output_names
=
predictor
.
get_output_names
()
output_names
=
predictor
.
get_output_names
()
output_tensors
=
[]
output_tensors
=
[]
for
output_name
in
output_names
:
for
output_name
in
output_names
:
output_tensor
=
predictor
.
get_output_
tensor
(
output_name
)
output_tensor
=
predictor
.
get_output_
handle
(
output_name
)
output_tensors
.
append
(
output_tensor
)
output_tensors
.
append
(
output_tensor
)
return
predictor
,
input_tensor
,
output_tensors
return
predictor
,
input_tensor
,
output_tensors
...
...
tools/infer_cls.py
View file @
9ded14fa
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
paddle
import
paddle
from
ppocr.data
import
create_operators
,
transform
from
ppocr.data
import
create_operators
,
transform
...
...
tools/infer_det.py
View file @
9ded14fa
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
cv2
import
cv2
import
json
import
json
import
paddle
import
paddle
...
...
tools/infer_rec.py
View file @
9ded14fa
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
...
@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
paddle
import
paddle
from
ppocr.data
import
create_operators
,
transform
from
ppocr.data
import
create_operators
,
transform
...
...
tools/program.py
View file @
9ded14fa
...
@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
...
@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
"model on CPU"
"model on CPU"
try
:
try
:
if
use_gpu
and
not
paddle
.
fluid
.
is_compiled_with_cuda
():
if
use_gpu
and
not
paddle
.
is_compiled_with_cuda
():
print
(
err
)
print
(
err
)
sys
.
exit
(
1
)
sys
.
exit
(
1
)
except
Exception
as
e
:
except
Exception
as
e
:
...
@@ -179,9 +179,9 @@ def train(config,
...
@@ -179,9 +179,9 @@ def train(config,
if
'start_epoch'
in
best_model_dict
:
if
'start_epoch'
in
best_model_dict
:
start_epoch
=
best_model_dict
[
'start_epoch'
]
start_epoch
=
best_model_dict
[
'start_epoch'
]
else
:
else
:
start_epoch
=
0
start_epoch
=
1
for
epoch
in
range
(
start_epoch
,
epoch_num
):
for
epoch
in
range
(
start_epoch
,
epoch_num
+
1
):
if
epoch
>
0
:
if
epoch
>
0
:
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
,
logger
)
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
,
logger
)
train_batch_cost
=
0.0
train_batch_cost
=
0.0
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment