Commit 9ded14fa authored by weishengyu's avatar weishengyu
Browse files
parents 1f9d6d7f ccfc7544
...@@ -99,5 +99,5 @@ For more text detection and recognition tandem reasoning, please refer to the do ...@@ -99,5 +99,5 @@ For more text detection and recognition tandem reasoning, please refer to the do
In addition, the tutorial also provides other deployment methods for the Chinese OCR model: In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
- [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md) - [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md)
- [Service deployment](../../deploy/pdserving/readme_en.md) - [Service deployment](../../deploy/hubserving)
- [End-to-end deployment](../../deploy/lite/readme_en.md) - [End-to-end deployment](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)
doc/joinus.PNG

212 KB | W: | H:

doc/joinus.PNG

237 KB | W: | H:

doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
doc/joinus.PNG
  • 2-up
  • Swipe
  • Onion skin
...@@ -119,10 +119,10 @@ class DetResizeForTest(object): ...@@ -119,10 +119,10 @@ class DetResizeForTest(object):
if 'image_shape' in kwargs: if 'image_shape' in kwargs:
self.image_shape = kwargs['image_shape'] self.image_shape = kwargs['image_shape']
self.resize_type = 1 self.resize_type = 1
if 'limit_side_len' in kwargs: elif 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len'] self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min') self.limit_type = kwargs.get('limit_type', 'min')
if 'resize_long' in kwargs: elif 'resize_long' in kwargs:
self.resize_type = 2 self.resize_type = 2
self.resize_long = kwargs.get('resize_long', 960) self.resize_long = kwargs.get('resize_long', 960)
else: else:
......
...@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer): ...@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer):
self.balance_loss = balance_loss self.balance_loss = balance_loss
self.main_loss_type = main_loss_type self.main_loss_type = main_loss_type
self.negative_ratio = negative_ratio self.negative_ratio = negative_ratio
self.main_loss_type = main_loss_type
self.return_origin = return_origin self.return_origin = return_origin
self.eps = eps self.eps = eps
......
...@@ -19,7 +19,6 @@ from __future__ import print_function ...@@ -19,7 +19,6 @@ from __future__ import print_function
import paddle import paddle
from paddle import nn from paddle import nn
from .det_basic_loss import DiceLoss from .det_basic_loss import DiceLoss
import paddle.fluid as fluid
import numpy as np import numpy as np
...@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer): ...@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
""" """
""" """
def __init__(self, def __init__(self, eps=1e-6, **kwargs):
eps=1e-6,
**kwargs):
super(SASTLoss, self).__init__() super(SASTLoss, self).__init__()
self.dice_loss = DiceLoss(eps=eps) self.dice_loss = DiceLoss(eps=eps)
...@@ -53,10 +50,12 @@ class SASTLoss(nn.Layer): ...@@ -53,10 +50,12 @@ class SASTLoss(nn.Layer):
score_loss = 1.0 - 2 * intersection / (union + 1e-5) score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss #border loss
l_border_split, l_border_norm = paddle.split(l_border, num_or_sections=[4, 1], axis=1) l_border_split, l_border_norm = paddle.split(
l_border, num_or_sections=[4, 1], axis=1)
f_border_split = f_border f_border_split = f_border
border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1]) border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
l_border_norm_split = paddle.expand(x=l_border_norm, shape=border_ex_shape) l_border_norm_split = paddle.expand(
x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape) l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape) l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
...@@ -72,7 +71,8 @@ class SASTLoss(nn.Layer): ...@@ -72,7 +71,8 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_border_score * l_border_mask) + 1e-5) (paddle.sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss #tvo_loss
l_tvo_split, l_tvo_norm = paddle.split(l_tvo, num_or_sections=[8, 1], axis=1) l_tvo_split, l_tvo_norm = paddle.split(
l_tvo, num_or_sections=[8, 1], axis=1)
f_tvo_split = f_tvo f_tvo_split = f_tvo
tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1]) tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape) l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
...@@ -91,7 +91,8 @@ class SASTLoss(nn.Layer): ...@@ -91,7 +91,8 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5) (paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss #tco_loss
l_tco_split, l_tco_norm = paddle.split(l_tco, num_or_sections=[2, 1], axis=1) l_tco_split, l_tco_norm = paddle.split(
l_tco, num_or_sections=[2, 1], axis=1)
f_tco_split = f_tco f_tco_split = f_tco
tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1]) tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape) l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
...@@ -109,7 +110,6 @@ class SASTLoss(nn.Layer): ...@@ -109,7 +110,6 @@ class SASTLoss(nn.Layer):
tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \ tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(paddle.sum(l_tco_score * l_tco_mask) + 1e-5) (paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss # total loss
tvo_lw, tco_lw = 1.5, 1.5 tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0 score_lw, border_lw = 1.0, 1.0
......
...@@ -26,6 +26,8 @@ class RecMetric(object): ...@@ -26,6 +26,8 @@ class RecMetric(object):
all_num = 0 all_num = 0
norm_edit_dis = 0.0 norm_edit_dis = 0.0
for (pred, pred_conf), (target, _) in zip(preds, labels): for (pred, pred_conf), (target, _) in zip(preds, labels):
pred = pred.replace(" ", "")
target = target.replace(" ", "")
norm_edit_dis += Levenshtein.distance(pred, target) / max( norm_edit_dis += Levenshtein.distance(pred, target) / max(
len(pred), len(target)) len(pred), len(target))
if pred == target: if pred == target:
......
...@@ -16,6 +16,7 @@ from __future__ import absolute_import ...@@ -16,6 +16,7 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import math
import paddle import paddle
from paddle import nn, ParamAttr from paddle import nn, ParamAttr
from paddle.nn import functional as F from paddle.nn import functional as F
...@@ -88,11 +89,14 @@ class LocalizationNetwork(nn.Layer): ...@@ -88,11 +89,14 @@ class LocalizationNetwork(nn.Layer):
in_channels = num_filters in_channels = num_filters
self.block_list.append(pool) self.block_list.append(pool)
name = "loc_fc1" name = "loc_fc1"
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
self.fc1 = nn.Linear( self.fc1 = nn.Linear(
in_channels, in_channels,
fc_dim, fc_dim,
weight_attr=ParamAttr( weight_attr=ParamAttr(
learning_rate=loc_lr, name=name + "_w"), learning_rate=loc_lr,
name=name + "_w",
initializer=nn.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name=name + '.b_0'), bias_attr=ParamAttr(name=name + '.b_0'),
name=name) name=name)
......
...@@ -18,6 +18,7 @@ from __future__ import print_function ...@@ -18,6 +18,7 @@ from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
from paddle.optimizer import lr from paddle.optimizer import lr
from .lr_scheduler import CyclicalCosineDecay
class Linear(object): class Linear(object):
...@@ -46,7 +47,7 @@ class Linear(object): ...@@ -46,7 +47,7 @@ class Linear(object):
self.end_lr = end_lr self.end_lr = end_lr
self.power = power self.power = power
self.last_epoch = last_epoch self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self): def __call__(self):
learning_rate = lr.PolynomialDecay( learning_rate = lr.PolynomialDecay(
...@@ -87,7 +88,7 @@ class Cosine(object): ...@@ -87,7 +88,7 @@ class Cosine(object):
self.learning_rate = learning_rate self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self): def __call__(self):
learning_rate = lr.CosineAnnealingDecay( learning_rate = lr.CosineAnnealingDecay(
...@@ -129,7 +130,7 @@ class Step(object): ...@@ -129,7 +130,7 @@ class Step(object):
self.learning_rate = learning_rate self.learning_rate = learning_rate
self.gamma = gamma self.gamma = gamma
self.last_epoch = last_epoch self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self): def __call__(self):
learning_rate = lr.StepDecay( learning_rate = lr.StepDecay(
...@@ -168,7 +169,7 @@ class Piecewise(object): ...@@ -168,7 +169,7 @@ class Piecewise(object):
self.boundaries = [step_each_epoch * e for e in decay_epochs] self.boundaries = [step_each_epoch * e for e in decay_epochs]
self.values = values self.values = values
self.last_epoch = last_epoch self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self): def __call__(self):
learning_rate = lr.PiecewiseDecay( learning_rate = lr.PiecewiseDecay(
...@@ -183,3 +184,45 @@ class Piecewise(object): ...@@ -183,3 +184,45 @@ class Piecewise(object):
end_lr=self.values[0], end_lr=self.values[0],
last_epoch=self.last_epoch) last_epoch=self.last_epoch)
return learning_rate return learning_rate
class CyclicalCosine(object):
"""
Cyclical cosine learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
cycle(int): period of the cosine learning rate
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
cycle,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(CyclicalCosine, self).__init__()
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
self.cycle = round(cycle * step_each_epoch)
def __call__(self):
learning_rate = CyclicalCosineDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
cycle=self.cycle,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from paddle.optimizer.lr import LRScheduler
class CyclicalCosineDecay(LRScheduler):
def __init__(self,
learning_rate,
T_max,
cycle=1,
last_epoch=-1,
eta_min=0.0,
verbose=False):
"""
Cyclical cosine learning rate decay
A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
Args:
learning rate(float): learning rate
T_max(int): maximum epoch num
cycle(int): period of the cosine decay
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
eta_min(float): minimum learning rate during training
verbose(bool): whether to print learning rate for each epoch
"""
super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
verbose)
self.cycle = cycle
self.eta_min = eta_min
def get_lr(self):
if self.last_epoch == 0:
return self.base_lr
reletive_epoch = self.last_epoch % self.cycle
lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
(1 + math.cos(math.pi * reletive_epoch / self.cycle))
return lr
...@@ -57,7 +57,7 @@ def get_image_file_list(img_file): ...@@ -57,7 +57,7 @@ def get_image_file_list(img_file):
elif os.path.isdir(img_file): elif os.path.isdir(img_file):
for single_file in os.listdir(img_file): for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file) file_path = os.path.join(img_file, single_file)
if imghdr.what(file_path) in img_end: if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
imgs_lists.append(file_path) imgs_lists.append(file_path)
if len(imgs_lists) == 0: if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file)) raise Exception("not found any img file in {}".format(img_file))
......
...@@ -18,13 +18,14 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -18,13 +18,14 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2 import cv2
import copy import copy
import numpy as np import numpy as np
import math import math
import time import time
import traceback import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
...@@ -39,7 +40,6 @@ class TextClassifier(object): ...@@ -39,7 +40,6 @@ class TextClassifier(object):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")] self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num self.cls_batch_num = args.cls_batch_num
self.cls_thresh = args.cls_thresh self.cls_thresh = args.cls_thresh
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = { postprocess_params = {
'name': 'ClsPostProcess', 'name': 'ClsPostProcess',
"label_list": args.label_list, "label_list": args.label_list,
...@@ -99,12 +99,8 @@ class TextClassifier(object): ...@@ -99,12 +99,8 @@ class TextClassifier(object):
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
starttime = time.time() starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run() self.predictor.run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
prob_out = self.output_tensors[0].copy_to_cpu() prob_out = self.output_tensors[0].copy_to_cpu()
cls_result = self.postprocess_op(prob_out) cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime elapse += time.time() - starttime
...@@ -143,10 +139,11 @@ def main(args): ...@@ -143,10 +139,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit() exit()
for ino in range(len(img_list)): for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[ logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
ino])) cls_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format( logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time)) len(img_list), predict_time))
if __name__ == "__main__": if __name__ == "__main__":
main(utility.parse_args()) main(utility.parse_args())
...@@ -18,11 +18,12 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -18,11 +18,12 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2 import cv2
import numpy as np import numpy as np
import time import time
import sys import sys
import paddle
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
...@@ -37,7 +38,6 @@ class TextDetector(object): ...@@ -37,7 +38,6 @@ class TextDetector(object):
def __init__(self, args): def __init__(self, args):
self.args = args self.args = args
self.det_algorithm = args.det_algorithm self.det_algorithm = args.det_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
pre_process_list = [{ pre_process_list = [{
'DetResizeForTest': { 'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len, 'limit_side_len': args.det_limit_side_len,
...@@ -72,7 +72,9 @@ class TextDetector(object): ...@@ -72,7 +72,9 @@ class TextDetector(object):
postprocess_params["nms_thresh"] = args.det_east_nms_thresh postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST": elif self.det_algorithm == "SAST":
pre_process_list[0] = { pre_process_list[0] = {
'DetResizeForTest': {'resize_long': args.det_limit_side_len} 'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
} }
postprocess_params['name'] = 'SASTPostProcess' postprocess_params['name'] = 'SASTPostProcess'
postprocess_params["score_thresh"] = args.det_sast_score_thresh postprocess_params["score_thresh"] = args.det_sast_score_thresh
...@@ -161,12 +163,8 @@ class TextDetector(object): ...@@ -161,12 +163,8 @@ class TextDetector(object):
img = img.copy() img = img.copy()
starttime = time.time() starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(img) self.input_tensor.copy_from_cpu(img)
self.predictor.zero_copy_run() self.predictor.run()
else:
im = paddle.fluid.core.PaddleTensor(img)
self.predictor.run([im])
outputs = [] outputs = []
for output_tensor in self.output_tensors: for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu() output = output_tensor.copy_to_cpu()
......
...@@ -18,12 +18,13 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -18,12 +18,13 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2 import cv2
import numpy as np import numpy as np
import math import math
import time import time
import traceback import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
...@@ -39,7 +40,6 @@ class TextRecognizer(object): ...@@ -39,7 +40,6 @@ class TextRecognizer(object):
self.character_type = args.rec_char_type self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm self.rec_algorithm = args.rec_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = { postprocess_params = {
'name': 'CTCLabelDecode', 'name': 'CTCLabelDecode',
"character_type": args.rec_char_type, "character_type": args.rec_char_type,
...@@ -101,12 +101,8 @@ class TextRecognizer(object): ...@@ -101,12 +101,8 @@ class TextRecognizer(object):
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
starttime = time.time() starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run() self.predictor.run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
outputs = [] outputs = []
for output_tensor in self.output_tensors: for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu() output = output_tensor.copy_to_cpu()
...@@ -145,8 +141,8 @@ def main(args): ...@@ -145,8 +141,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit() exit()
for ino in range(len(img_list)): for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
ino])) rec_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format( logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time)) len(img_list), predict_time))
......
...@@ -18,6 +18,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -18,6 +18,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2 import cv2
import copy import copy
import numpy as np import numpy as np
......
...@@ -20,8 +20,7 @@ import numpy as np ...@@ -20,8 +20,7 @@ import numpy as np
import json import json
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
import math import math
from paddle.fluid.core import AnalysisConfig from paddle import inference
from paddle.fluid.core import create_paddle_predictor
def parse_args(): def parse_args():
...@@ -34,7 +33,7 @@ def parse_args(): ...@@ -34,7 +33,7 @@ def parse_args():
parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000) parser.add_argument("--gpu_mem", type=int, default=500)
# params for text detector # params for text detector
parser.add_argument("--image_dir", type=str) parser.add_argument("--image_dir", type=str)
...@@ -63,7 +62,7 @@ def parse_args(): ...@@ -63,7 +62,7 @@ def parse_args():
parser.add_argument("--rec_model_dir", type=str) parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=1) parser.add_argument("--rec_batch_num", type=int, default=6)
parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument("--max_text_length", type=int, default=25)
parser.add_argument( parser.add_argument(
"--rec_char_dict_path", "--rec_char_dict_path",
...@@ -83,8 +82,6 @@ def parse_args(): ...@@ -83,8 +82,6 @@ def parse_args():
parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False) parser.add_argument("--use_pdserving", type=str2bool, default=False)
return parser.parse_args() return parser.parse_args()
...@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger): ...@@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
logger.info("not find params file path {}".format(params_file_path)) logger.info("not find params file path {}".format(params_file_path))
sys.exit(0) sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path) config = inference.Config(model_file_path, params_file_path)
if args.use_gpu: if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0) config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt: if args.use_tensorrt:
config.enable_tensorrt_engine( config.enable_tensorrt_engine(
precision_mode=AnalysisConfig.Precision.Half precision_mode=inference.PrecisionType.Half
if args.use_fp16 else AnalysisConfig.Precision.Float32, if args.use_fp16 else inference.PrecisionType.Float32,
max_batch_size=args.max_batch_size) max_batch_size=args.max_batch_size)
else: else:
config.disable_gpu() config.disable_gpu()
...@@ -126,24 +123,23 @@ def create_predictor(args, mode, logger): ...@@ -126,24 +123,23 @@ def create_predictor(args, mode, logger):
# cache 10 different shapes for mkldnn to avoid memory leak # cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10) config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn() config.enable_mkldnn()
args.rec_batch_num = 1
# config.enable_memory_optim() # config.enable_memory_optim()
config.disable_glog_info() config.disable_glog_info()
if args.use_zero_copy_run:
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False) config.switch_use_feed_fetch_ops(False)
else:
config.switch_use_feed_fetch_ops(True)
predictor = create_paddle_predictor(config) # create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names() input_names = predictor.get_input_names()
for name in input_names: for name in input_names:
input_tensor = predictor.get_input_tensor(name) input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names() output_names = predictor.get_output_names()
output_tensors = [] output_tensors = []
for output_name in output_names: for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name) output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor) output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors return predictor, input_tensor, output_tensors
......
...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle import paddle
from ppocr.data import create_operators, transform from ppocr.data import create_operators, transform
......
...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2 import cv2
import json import json
import paddle import paddle
......
...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) ...@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle import paddle
from ppocr.data import create_operators, transform from ppocr.data import create_operators, transform
......
...@@ -131,7 +131,7 @@ def check_gpu(use_gpu): ...@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
"model on CPU" "model on CPU"
try: try:
if use_gpu and not paddle.fluid.is_compiled_with_cuda(): if use_gpu and not paddle.is_compiled_with_cuda():
print(err) print(err)
sys.exit(1) sys.exit(1)
except Exception as e: except Exception as e:
...@@ -179,9 +179,9 @@ def train(config, ...@@ -179,9 +179,9 @@ def train(config,
if 'start_epoch' in best_model_dict: if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch'] start_epoch = best_model_dict['start_epoch']
else: else:
start_epoch = 0 start_epoch = 1
for epoch in range(start_epoch, epoch_num): for epoch in range(start_epoch, epoch_num + 1):
if epoch > 0: if epoch > 0:
train_dataloader = build_dataloader(config, 'Train', device, logger) train_dataloader = build_dataloader(config, 'Train', device, logger)
train_batch_cost = 0.0 train_batch_cost = 0.0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment