Commit 89eb5e4b authored by wangsen's avatar wangsen
Browse files

init commit

parents
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from arch.spectral_norm import spectral_norm
class CBN(nn.Layer):
def __init__(self,
name,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
use_bias=False,
norm_layer=None,
act=None,
act_attr=None):
super(CBN, self).__init__()
if use_bias:
bias_attr = paddle.ParamAttr(name=name + "_bias")
else:
bias_attr = None
self._conv = paddle.nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
weight_attr=paddle.ParamAttr(name=name + "_weights"),
bias_attr=bias_attr)
if norm_layer:
self._norm_layer = getattr(paddle.nn, norm_layer)(
num_features=out_channels, name=name + "_bn")
else:
self._norm_layer = None
if act:
if act_attr:
self._act = getattr(paddle.nn, act)(**act_attr,
name=name + "_" + act)
else:
self._act = getattr(paddle.nn, act)(name=name + "_" + act)
else:
self._act = None
def forward(self, x):
out = self._conv(x)
if self._norm_layer:
out = self._norm_layer(out)
if self._act:
out = self._act(out)
return out
class SNConv(nn.Layer):
def __init__(self,
name,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
use_bias=False,
norm_layer=None,
act=None,
act_attr=None):
super(SNConv, self).__init__()
if use_bias:
bias_attr = paddle.ParamAttr(name=name + "_bias")
else:
bias_attr = None
self._sn_conv = spectral_norm(
paddle.nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
weight_attr=paddle.ParamAttr(name=name + "_weights"),
bias_attr=bias_attr))
if norm_layer:
self._norm_layer = getattr(paddle.nn, norm_layer)(
num_features=out_channels, name=name + "_bn")
else:
self._norm_layer = None
if act:
if act_attr:
self._act = getattr(paddle.nn, act)(**act_attr,
name=name + "_" + act)
else:
self._act = getattr(paddle.nn, act)(name=name + "_" + act)
else:
self._act = None
def forward(self, x):
out = self._sn_conv(x)
if self._norm_layer:
out = self._norm_layer(out)
if self._act:
out = self._act(out)
return out
class SNConvTranspose(nn.Layer):
def __init__(self,
name,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
output_padding=0,
dilation=1,
groups=1,
use_bias=False,
norm_layer=None,
act=None,
act_attr=None):
super(SNConvTranspose, self).__init__()
if use_bias:
bias_attr = paddle.ParamAttr(name=name + "_bias")
else:
bias_attr = None
self._sn_conv_transpose = spectral_norm(
paddle.nn.Conv2DTranspose(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
dilation=dilation,
groups=groups,
weight_attr=paddle.ParamAttr(name=name + "_weights"),
bias_attr=bias_attr))
if norm_layer:
self._norm_layer = getattr(paddle.nn, norm_layer)(
num_features=out_channels, name=name + "_bn")
else:
self._norm_layer = None
if act:
if act_attr:
self._act = getattr(paddle.nn, act)(**act_attr,
name=name + "_" + act)
else:
self._act = getattr(paddle.nn, act)(name=name + "_" + act)
else:
self._act = None
def forward(self, x):
out = self._sn_conv_transpose(x)
if self._norm_layer:
out = self._norm_layer(out)
if self._act:
out = self._act(out)
return out
class MiddleNet(nn.Layer):
def __init__(self, name, in_channels, mid_channels, out_channels,
use_bias):
super(MiddleNet, self).__init__()
self._sn_conv1 = SNConv(
name=name + "_sn_conv1",
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
use_bias=use_bias,
norm_layer=None,
act=None)
self._pad2d = nn.Pad2D(padding=[1, 1, 1, 1], mode="replicate")
self._sn_conv2 = SNConv(
name=name + "_sn_conv2",
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=3,
use_bias=use_bias)
self._sn_conv3 = SNConv(
name=name + "_sn_conv3",
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
use_bias=use_bias)
def forward(self, x):
sn_conv1 = self._sn_conv1.forward(x)
pad_2d = self._pad2d.forward(sn_conv1)
sn_conv2 = self._sn_conv2.forward(pad_2d)
sn_conv3 = self._sn_conv3.forward(sn_conv2)
return sn_conv3
class ResBlock(nn.Layer):
def __init__(self, name, channels, norm_layer, use_dropout, use_dilation,
use_bias):
super(ResBlock, self).__init__()
if use_dilation:
padding_mat = [1, 1, 1, 1]
else:
padding_mat = [0, 0, 0, 0]
self._pad1 = nn.Pad2D(padding_mat, mode="replicate")
self._sn_conv1 = SNConv(
name=name + "_sn_conv1",
in_channels=channels,
out_channels=channels,
kernel_size=3,
padding=0,
norm_layer=norm_layer,
use_bias=use_bias,
act="ReLU",
act_attr=None)
if use_dropout:
self._dropout = nn.Dropout(0.5)
else:
self._dropout = None
self._pad2 = nn.Pad2D([1, 1, 1, 1], mode="replicate")
self._sn_conv2 = SNConv(
name=name + "_sn_conv2",
in_channels=channels,
out_channels=channels,
kernel_size=3,
norm_layer=norm_layer,
use_bias=use_bias,
act="ReLU",
act_attr=None)
def forward(self, x):
pad1 = self._pad1.forward(x)
sn_conv1 = self._sn_conv1.forward(pad1)
pad2 = self._pad2.forward(sn_conv1)
sn_conv2 = self._sn_conv2.forward(pad2)
return sn_conv2 + x
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from arch.base_module import SNConv, SNConvTranspose, ResBlock
class Decoder(nn.Layer):
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer,
act, act_attr, conv_block_dropout, conv_block_num,
conv_block_dilation, out_conv_act, out_conv_act_attr):
super(Decoder, self).__init__()
conv_blocks = []
for i in range(conv_block_num):
conv_blocks.append(
ResBlock(
name="{}_conv_block_{}".format(name, i),
channels=encode_dim * 8,
norm_layer=norm_layer,
use_dropout=conv_block_dropout,
use_dilation=conv_block_dilation,
use_bias=use_bias))
self.conv_blocks = nn.Sequential(*conv_blocks)
self._up1 = SNConvTranspose(
name=name + "_up1",
in_channels=encode_dim * 8,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up2 = SNConvTranspose(
name=name + "_up2",
in_channels=encode_dim * 4,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up3 = SNConvTranspose(
name=name + "_up3",
in_channels=encode_dim * 2,
out_channels=encode_dim,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate")
self._out_conv = SNConv(
name=name + "_out_conv",
in_channels=encode_dim,
out_channels=out_channels,
kernel_size=3,
use_bias=use_bias,
norm_layer=None,
act=out_conv_act,
act_attr=out_conv_act_attr)
def forward(self, x):
if isinstance(x, (list, tuple)):
x = paddle.concat(x, axis=1)
output_dict = dict()
output_dict["conv_blocks"] = self.conv_blocks.forward(x)
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"])
output_dict["up2"] = self._up2.forward(output_dict["up1"])
output_dict["up3"] = self._up3.forward(output_dict["up2"])
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"])
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"])
return output_dict
class DecoderUnet(nn.Layer):
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer,
act, act_attr, conv_block_dropout, conv_block_num,
conv_block_dilation, out_conv_act, out_conv_act_attr):
super(DecoderUnet, self).__init__()
conv_blocks = []
for i in range(conv_block_num):
conv_blocks.append(
ResBlock(
name="{}_conv_block_{}".format(name, i),
channels=encode_dim * 8,
norm_layer=norm_layer,
use_dropout=conv_block_dropout,
use_dilation=conv_block_dilation,
use_bias=use_bias))
self._conv_blocks = nn.Sequential(*conv_blocks)
self._up1 = SNConvTranspose(
name=name + "_up1",
in_channels=encode_dim * 8,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up2 = SNConvTranspose(
name=name + "_up2",
in_channels=encode_dim * 8,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up3 = SNConvTranspose(
name=name + "_up3",
in_channels=encode_dim * 4,
out_channels=encode_dim,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate")
self._out_conv = SNConv(
name=name + "_out_conv",
in_channels=encode_dim,
out_channels=out_channels,
kernel_size=3,
use_bias=use_bias,
norm_layer=None,
act=out_conv_act,
act_attr=out_conv_act_attr)
def forward(self, x, y, feature2, feature1):
output_dict = dict()
output_dict["conv_blocks"] = self._conv_blocks(
paddle.concat(
(x, y), axis=1))
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"])
output_dict["up2"] = self._up2.forward(
paddle.concat(
(output_dict["up1"], feature2), axis=1))
output_dict["up3"] = self._up3.forward(
paddle.concat(
(output_dict["up2"], feature1), axis=1))
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"])
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"])
return output_dict
class SingleDecoder(nn.Layer):
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer,
act, act_attr, conv_block_dropout, conv_block_num,
conv_block_dilation, out_conv_act, out_conv_act_attr):
super(SingleDecoder, self).__init__()
conv_blocks = []
for i in range(conv_block_num):
conv_blocks.append(
ResBlock(
name="{}_conv_block_{}".format(name, i),
channels=encode_dim * 4,
norm_layer=norm_layer,
use_dropout=conv_block_dropout,
use_dilation=conv_block_dilation,
use_bias=use_bias))
self._conv_blocks = nn.Sequential(*conv_blocks)
self._up1 = SNConvTranspose(
name=name + "_up1",
in_channels=encode_dim * 4,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up2 = SNConvTranspose(
name=name + "_up2",
in_channels=encode_dim * 8,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up3 = SNConvTranspose(
name=name + "_up3",
in_channels=encode_dim * 4,
out_channels=encode_dim,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate")
self._out_conv = SNConv(
name=name + "_out_conv",
in_channels=encode_dim,
out_channels=out_channels,
kernel_size=3,
use_bias=use_bias,
norm_layer=None,
act=out_conv_act,
act_attr=out_conv_act_attr)
def forward(self, x, feature2, feature1):
output_dict = dict()
output_dict["conv_blocks"] = self._conv_blocks.forward(x)
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"])
output_dict["up2"] = self._up2.forward(
paddle.concat(
(output_dict["up1"], feature2), axis=1))
output_dict["up3"] = self._up3.forward(
paddle.concat(
(output_dict["up2"], feature1), axis=1))
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"])
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"])
return output_dict
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from arch.base_module import SNConv, SNConvTranspose, ResBlock
class Encoder(nn.Layer):
def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
act, act_attr, conv_block_dropout, conv_block_num,
conv_block_dilation):
super(Encoder, self).__init__()
self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
self._in_conv = SNConv(
name=name + "_in_conv",
in_channels=in_channels,
out_channels=encode_dim,
kernel_size=7,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down1 = SNConv(
name=name + "_down1",
in_channels=encode_dim,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down2 = SNConv(
name=name + "_down2",
in_channels=encode_dim * 2,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down3 = SNConv(
name=name + "_down3",
in_channels=encode_dim * 4,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
conv_blocks = []
for i in range(conv_block_num):
conv_blocks.append(
ResBlock(
name="{}_conv_block_{}".format(name, i),
channels=encode_dim * 4,
norm_layer=norm_layer,
use_dropout=conv_block_dropout,
use_dilation=conv_block_dilation,
use_bias=use_bias))
self._conv_blocks = nn.Sequential(*conv_blocks)
def forward(self, x):
out_dict = dict()
x = self._pad2d(x)
out_dict["in_conv"] = self._in_conv.forward(x)
out_dict["down1"] = self._down1.forward(out_dict["in_conv"])
out_dict["down2"] = self._down2.forward(out_dict["down1"])
out_dict["down3"] = self._down3.forward(out_dict["down2"])
out_dict["res_blocks"] = self._conv_blocks.forward(out_dict["down3"])
return out_dict
class EncoderUnet(nn.Layer):
def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
act, act_attr):
super(EncoderUnet, self).__init__()
self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
self._in_conv = SNConv(
name=name + "_in_conv",
in_channels=in_channels,
out_channels=encode_dim,
kernel_size=7,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down1 = SNConv(
name=name + "_down1",
in_channels=encode_dim,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down2 = SNConv(
name=name + "_down2",
in_channels=encode_dim * 2,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down3 = SNConv(
name=name + "_down3",
in_channels=encode_dim * 2,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._down4 = SNConv(
name=name + "_down4",
in_channels=encode_dim * 2,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up1 = SNConvTranspose(
name=name + "_up1",
in_channels=encode_dim * 2,
out_channels=encode_dim * 2,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
self._up2 = SNConvTranspose(
name=name + "_up2",
in_channels=encode_dim * 4,
out_channels=encode_dim * 4,
kernel_size=3,
stride=2,
padding=1,
use_bias=use_bias,
norm_layer=norm_layer,
act=act,
act_attr=act_attr)
def forward(self, x):
output_dict = dict()
x = self._pad2d(x)
output_dict['in_conv'] = self._in_conv.forward(x)
output_dict['down1'] = self._down1.forward(output_dict['in_conv'])
output_dict['down2'] = self._down2.forward(output_dict['down1'])
output_dict['down3'] = self._down3.forward(output_dict['down2'])
output_dict['down4'] = self._down4.forward(output_dict['down3'])
output_dict['up1'] = self._up1.forward(output_dict['down4'])
output_dict['up2'] = self._up2.forward(
paddle.concat(
(output_dict['down3'], output_dict['up1']), axis=1))
output_dict['concat'] = paddle.concat(
(output_dict['down2'], output_dict['up2']), axis=1)
return output_dict
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def normal_(x, mean=0., std=1.):
temp_value = paddle.normal(mean, std, shape=x.shape)
x.set_value(temp_value)
return x
class SpectralNorm(object):
def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12):
self.name = name
self.dim = dim
if n_power_iterations <= 0:
raise ValueError('Expected n_power_iterations to be positive, but '
'got n_power_iterations={}'.format(
n_power_iterations))
self.n_power_iterations = n_power_iterations
self.eps = eps
def reshape_weight_to_matrix(self, weight):
weight_mat = weight
if self.dim != 0:
# transpose dim to front
weight_mat = weight_mat.transpose([
self.dim,
* [d for d in range(weight_mat.dim()) if d != self.dim]
])
height = weight_mat.shape[0]
return weight_mat.reshape([height, -1])
def compute_weight(self, module, do_power_iteration):
weight = getattr(module, self.name + '_orig')
u = getattr(module, self.name + '_u')
v = getattr(module, self.name + '_v')
weight_mat = self.reshape_weight_to_matrix(weight)
if do_power_iteration:
with paddle.no_grad():
for _ in range(self.n_power_iterations):
v.set_value(
F.normalize(
paddle.matmul(
weight_mat,
u,
transpose_x=True,
transpose_y=False),
axis=0,
epsilon=self.eps, ))
u.set_value(
F.normalize(
paddle.matmul(weight_mat, v),
axis=0,
epsilon=self.eps, ))
if self.n_power_iterations > 0:
u = u.clone()
v = v.clone()
sigma = paddle.dot(u, paddle.mv(weight_mat, v))
weight = weight / sigma
return weight
def remove(self, module):
with paddle.no_grad():
weight = self.compute_weight(module, do_power_iteration=False)
delattr(module, self.name)
delattr(module, self.name + '_u')
delattr(module, self.name + '_v')
delattr(module, self.name + '_orig')
module.add_parameter(self.name, weight.detach())
def __call__(self, module, inputs):
setattr(
module,
self.name,
self.compute_weight(
module, do_power_iteration=module.training))
@staticmethod
def apply(module, name, n_power_iterations, dim, eps):
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, SpectralNorm) and hook.name == name:
raise RuntimeError(
"Cannot register two spectral_norm hooks on "
"the same parameter {}".format(name))
fn = SpectralNorm(name, n_power_iterations, dim, eps)
weight = module._parameters[name]
with paddle.no_grad():
weight_mat = fn.reshape_weight_to_matrix(weight)
h, w = weight_mat.shape
# randomly initialize u and v
u = module.create_parameter([h])
u = normal_(u, 0., 1.)
v = module.create_parameter([w])
v = normal_(v, 0., 1.)
u = F.normalize(u, axis=0, epsilon=fn.eps)
v = F.normalize(v, axis=0, epsilon=fn.eps)
# delete fn.name form parameters, otherwise you can not set attribute
del module._parameters[fn.name]
module.add_parameter(fn.name + "_orig", weight)
# still need to assign weight back as fn.name because all sorts of
# things may assume that it exists, e.g., when initializing weights.
# However, we can't directly assign as it could be an Parameter and
# gets added as a parameter. Instead, we register weight * 1.0 as a plain
# attribute.
setattr(module, fn.name, weight * 1.0)
module.register_buffer(fn.name + "_u", u)
module.register_buffer(fn.name + "_v", v)
module.register_forward_pre_hook(fn)
return fn
def spectral_norm(module,
name='weight',
n_power_iterations=1,
eps=1e-12,
dim=None):
if dim is None:
if isinstance(module, (nn.Conv1DTranspose, nn.Conv2DTranspose,
nn.Conv3DTranspose, nn.Linear)):
dim = 1
else:
dim = 0
SpectralNorm.apply(module, name, n_power_iterations, dim, eps)
return module
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from arch.base_module import MiddleNet, ResBlock
from arch.encoder import Encoder
from arch.decoder import Decoder, DecoderUnet, SingleDecoder
from utils.load_params import load_dygraph_pretrain
from utils.logging import get_logger
class StyleTextRec(nn.Layer):
def __init__(self, config):
super(StyleTextRec, self).__init__()
self.logger = get_logger()
self.text_generator = TextGenerator(config["Predictor"][
"text_generator"])
self.bg_generator = BgGeneratorWithMask(config["Predictor"][
"bg_generator"])
self.fusion_generator = FusionGeneratorSimple(config["Predictor"][
"fusion_generator"])
bg_generator_pretrain = config["Predictor"]["bg_generator"]["pretrain"]
text_generator_pretrain = config["Predictor"]["text_generator"][
"pretrain"]
fusion_generator_pretrain = config["Predictor"]["fusion_generator"][
"pretrain"]
load_dygraph_pretrain(
self.bg_generator,
self.logger,
path=bg_generator_pretrain,
load_static_weights=False)
load_dygraph_pretrain(
self.text_generator,
self.logger,
path=text_generator_pretrain,
load_static_weights=False)
load_dygraph_pretrain(
self.fusion_generator,
self.logger,
path=fusion_generator_pretrain,
load_static_weights=False)
def forward(self, style_input, text_input):
text_gen_output = self.text_generator.forward(style_input, text_input)
fake_text = text_gen_output["fake_text"]
fake_sk = text_gen_output["fake_sk"]
bg_gen_output = self.bg_generator.forward(style_input)
bg_encode_feature = bg_gen_output["bg_encode_feature"]
bg_decode_feature1 = bg_gen_output["bg_decode_feature1"]
bg_decode_feature2 = bg_gen_output["bg_decode_feature2"]
fake_bg = bg_gen_output["fake_bg"]
fusion_gen_output = self.fusion_generator.forward(fake_text, fake_bg)
fake_fusion = fusion_gen_output["fake_fusion"]
return {
"fake_fusion": fake_fusion,
"fake_text": fake_text,
"fake_sk": fake_sk,
"fake_bg": fake_bg,
}
class TextGenerator(nn.Layer):
def __init__(self, config):
super(TextGenerator, self).__init__()
name = config["module_name"]
encode_dim = config["encode_dim"]
norm_layer = config["norm_layer"]
conv_block_dropout = config["conv_block_dropout"]
conv_block_num = config["conv_block_num"]
conv_block_dilation = config["conv_block_dilation"]
if norm_layer == "InstanceNorm2D":
use_bias = True
else:
use_bias = False
self.encoder_text = Encoder(
name=name + "_encoder_text",
in_channels=3,
encode_dim=encode_dim,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation)
self.encoder_style = Encoder(
name=name + "_encoder_style",
in_channels=3,
encode_dim=encode_dim,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation)
self.decoder_text = Decoder(
name=name + "_decoder_text",
encode_dim=encode_dim,
out_channels=int(encode_dim / 2),
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation,
out_conv_act="Tanh",
out_conv_act_attr=None)
self.decoder_sk = Decoder(
name=name + "_decoder_sk",
encode_dim=encode_dim,
out_channels=1,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation,
out_conv_act="Sigmoid",
out_conv_act_attr=None)
self.middle = MiddleNet(
name=name + "_middle_net",
in_channels=int(encode_dim / 2) + 1,
mid_channels=encode_dim,
out_channels=3,
use_bias=use_bias)
def forward(self, style_input, text_input):
style_feature = self.encoder_style.forward(style_input)["res_blocks"]
text_feature = self.encoder_text.forward(text_input)["res_blocks"]
fake_c_temp = self.decoder_text.forward([text_feature,
style_feature])["out_conv"]
fake_sk = self.decoder_sk.forward([text_feature,
style_feature])["out_conv"]
fake_text = self.middle(paddle.concat((fake_c_temp, fake_sk), axis=1))
return {"fake_sk": fake_sk, "fake_text": fake_text}
class BgGeneratorWithMask(nn.Layer):
def __init__(self, config):
super(BgGeneratorWithMask, self).__init__()
name = config["module_name"]
encode_dim = config["encode_dim"]
norm_layer = config["norm_layer"]
conv_block_dropout = config["conv_block_dropout"]
conv_block_num = config["conv_block_num"]
conv_block_dilation = config["conv_block_dilation"]
self.output_factor = config.get("output_factor", 1.0)
if norm_layer == "InstanceNorm2D":
use_bias = True
else:
use_bias = False
self.encoder_bg = Encoder(
name=name + "_encoder_bg",
in_channels=3,
encode_dim=encode_dim,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation)
self.decoder_bg = SingleDecoder(
name=name + "_decoder_bg",
encode_dim=encode_dim,
out_channels=3,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation,
out_conv_act="Tanh",
out_conv_act_attr=None)
self.decoder_mask = Decoder(
name=name + "_decoder_mask",
encode_dim=encode_dim // 2,
out_channels=1,
use_bias=use_bias,
norm_layer=norm_layer,
act="ReLU",
act_attr=None,
conv_block_dropout=conv_block_dropout,
conv_block_num=conv_block_num,
conv_block_dilation=conv_block_dilation,
out_conv_act="Sigmoid",
out_conv_act_attr=None)
self.middle = MiddleNet(
name=name + "_middle_net",
in_channels=3 + 1,
mid_channels=encode_dim,
out_channels=3,
use_bias=use_bias)
def forward(self, style_input):
encode_bg_output = self.encoder_bg(style_input)
decode_bg_output = self.decoder_bg(encode_bg_output["res_blocks"],
encode_bg_output["down2"],
encode_bg_output["down1"])
fake_c_temp = decode_bg_output["out_conv"]
fake_bg_mask = self.decoder_mask.forward(encode_bg_output[
"res_blocks"])["out_conv"]
fake_bg = self.middle(
paddle.concat(
(fake_c_temp, fake_bg_mask), axis=1))
return {
"bg_encode_feature": encode_bg_output["res_blocks"],
"bg_decode_feature1": decode_bg_output["up1"],
"bg_decode_feature2": decode_bg_output["up2"],
"fake_bg": fake_bg,
"fake_bg_mask": fake_bg_mask,
}
class FusionGeneratorSimple(nn.Layer):
def __init__(self, config):
super(FusionGeneratorSimple, self).__init__()
name = config["module_name"]
encode_dim = config["encode_dim"]
norm_layer = config["norm_layer"]
conv_block_dropout = config["conv_block_dropout"]
conv_block_dilation = config["conv_block_dilation"]
if norm_layer == "InstanceNorm2D":
use_bias = True
else:
use_bias = False
self._conv = nn.Conv2D(
in_channels=6,
out_channels=encode_dim,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=paddle.ParamAttr(name=name + "_conv_weights"),
bias_attr=False)
self._res_block = ResBlock(
name="{}_conv_block".format(name),
channels=encode_dim,
norm_layer=norm_layer,
use_dropout=conv_block_dropout,
use_dilation=conv_block_dilation,
use_bias=use_bias)
self._reduce_conv = nn.Conv2D(
in_channels=encode_dim,
out_channels=3,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=paddle.ParamAttr(name=name + "_reduce_conv_weights"),
bias_attr=False)
def forward(self, fake_text, fake_bg):
fake_concat = paddle.concat((fake_text, fake_bg), axis=1)
fake_concat_tmp = self._conv(fake_concat)
output_res = self._res_block(fake_concat_tmp)
fake_fusion = self._reduce_conv(output_res)
return {"fake_fusion": fake_fusion}
Global:
output_num: 10
output_dir: output_data
use_gpu: false
image_height: 32
image_width: 320
TextDrawer:
fonts:
en: fonts/en_standard.ttf
ch: fonts/ch_standard.ttf
ko: fonts/ko_standard.ttf
Predictor:
method: StyleTextRecPredictor
algorithm: StyleTextRec
scale: 0.00392156862745098
mean:
- 0.5
- 0.5
- 0.5
std:
- 0.5
- 0.5
- 0.5
expand_result: false
bg_generator:
pretrain: style_text_models/bg_generator
module_name: bg_generator
generator_type: BgGeneratorWithMask
encode_dim: 64
norm_layer: null
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
output_factor: 1.05
text_generator:
pretrain: style_text_models/text_generator
module_name: text_generator
generator_type: TextGenerator
encode_dim: 64
norm_layer: InstanceNorm2D
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
fusion_generator:
pretrain: style_text_models/fusion_generator
module_name: fusion_generator
generator_type: FusionGeneratorSimple
encode_dim: 64
norm_layer: null
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
Writer:
method: SimpleWriter
Global:
output_num: 10
output_dir: output_data
use_gpu: false
image_height: 32
image_width: 320
standard_font: fonts/en_standard.ttf
TextDrawer:
fonts:
en: fonts/en_standard.ttf
ch: fonts/ch_standard.ttf
ko: fonts/ko_standard.ttf
StyleSampler:
method: DatasetSampler
image_home: examples
label_file: examples/image_list.txt
with_label: true
CorpusGenerator:
method: FileCorpus
language: ch
corpus_file: examples/corpus/example.txt
Predictor:
method: StyleTextRecPredictor
algorithm: StyleTextRec
scale: 0.00392156862745098
mean:
- 0.5
- 0.5
- 0.5
std:
- 0.5
- 0.5
- 0.5
expand_result: false
bg_generator:
pretrain: style_text_models/bg_generator
module_name: bg_generator
generator_type: BgGeneratorWithMask
encode_dim: 64
norm_layer: null
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
output_factor: 1.05
text_generator:
pretrain: style_text_models/text_generator
module_name: text_generator
generator_type: TextGenerator
encode_dim: 64
norm_layer: InstanceNorm2D
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
fusion_generator:
pretrain: style_text_models/fusion_generator
module_name: fusion_generator
generator_type: FusionGeneratorSimple
encode_dim: 64
norm_layer: null
conv_block_num: 4
conv_block_dropout: false
conv_block_dilation: true
Writer:
method: SimpleWriter
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment