Commit 89eb5e4b authored by wangsen's avatar wangsen
Browse files

init commit

parents
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
width="48pt"
height="48pt"
viewBox="0 0 48 48"
style="overflow:visible;enable-background:new 0 0 48 48"
xml:space="preserve"
id="svg589"
sodipodi:version="0.32"
sodipodi:docname="/home/david/Desktop/action/filesaveas.svg"
sodipodi:docbase="/home/david/Desktop/action"
xmlns="http://www.w3.org/2000/svg"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:xlink="http://www.w3.org/1999/xlink">
<defs
id="defs677">
<defs
id="defs796" />
<sodipodi:namedview
id="namedview726" />
<metadata
id="metadata711">
<sfw>
<slices>
<slice
x="0"
y="0"
width="256"
height="256"
sliceID="124333141" />
</slices>
<sliceSourceBounds
x="0"
y="0"
width="256"
height="256"
bottomLeftOrigin="true" />
<optimizationSettings>
<targetSettings
fileFormat="PNG24Format"
targetSettingsID="0">
<PNG24Format
transparency="true"
includeCaption="false"
interlaced="false"
noMatteColor="false"
matteColor="#FFFFFF"
filtered="false" />
</targetSettings>
</optimizationSettings>
</sfw>
<xpacket>
begin='' id='W5M0MpCehiHzreSzNTczkc9d'</xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c" />
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xap:CreateDate>
2004-01-26T11:58:28+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-28T20:41:40Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-16T23:58:32+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYqlvmDzFo
3l7TJdT1e5W1tItuTbszHoiKN2Y+AxV4j5g/5ydvTcMnl/SYlgU0Se/LOzDxMcTIF/4M4qk//QzP
nv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8
sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5F
XH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/so
xV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hm
fPf/ACwaX/yKuP8AsoxV3/QzPnv/AJYNL/5FXH/ZRirv+hmfPf8AywaX/wAirj/soxV3/QzPnv8A
5YNL/wCRVx/2UYq7/oZnz3/ywaX/AMirj/soxV3/AEMz57/5YNL/AORVx/2UYq7/AKGZ89/8sGl/
8irj/soxV3/QzPnv/lg0v/kVcf8AZRirv+hmfPf/ACwaX/yKuP8AsoxVFad/zk75oS4B1HSbG4t+
6W/qwP8A8E7zj/hcVeyeRfzJ8tec7Vn0yUx3kQBuLCaizJ25AAkMlf2l+mmKsqxV2KuxV2KuxV2K
vm/XDqf5ufmk+j287Q+XtJLqJF3VIY2CSzAHYvM9AvtTwOKvePLfk/y35bs0tdHsYrZVFGlCgyuf
GSQ/Ex+ZxVOK4q6oxVrkMVdyGKu5jFWvUGKu9RffFWvVX3xV3rL74q71l8DirXrp4HFXfWE8DirX
1hPA4q76yngcVd9Zj8D+GKtfWo/A/hirvrcfgfw/rirvrcfgfw/rirX1yLwb8P64q765F4N+H9cV
d9di8G/D+uKtfXovBvw/riqVa/5X8r+abR7TV7GO55CiyMoWZP8AKjkHxKR7HFXzB5n0XXfys8/R
NZXBJgIudOujsJYGJUpIB8ijj+oxV9VeWtfs/MGhWWsWf9xexLKErUoxHxI3up2OKplirsVdirsV
Q+oMy2Fyy/aWJyvzCnFXhP8AziwqvL5nmYcpQLIBz1oxuC2/uVGKvficVaxVrFWicVaJxVrFWsVa
JxVonFWsVaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVdCSJkp/MP14q8V/5ypRBJ5ZkCjm
wvVZu5CmAgfRyOKsn/5x3vJX8lwWzElQZmSvbjMR/wAbYq9XxV2KuxV2KofUv+Oddf8AGGT/AIic
VeE/84pn/lKP+jD/ALGcVe+nFWsVaJxVonFWsVaxVonFWicVaxVrFWsVaJxVrFWsVaJxVonFWsVa
xVonFWicVaxVrFWicVXQ/wB9H/rD9eKvFv8AnKw/8ov/ANH/AP2LYqn/APzjn/yisHyuP+T4xV6/
irsVdirsVQ+pf8c66/4wyf8AETirwf8A5xRNf8U/9GH/AGM4q9+PXFWicVaJxVrFWsVaJxVonFWs
VaxVrFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVaxVonFWicVXQ/30f8ArD9eKvFf+crjT/C3/R//
ANi2Ksg/5xy/5RS3+Vx/yfGKvYMVdirsVdiqH1L/AI511/xhk/4icVeDf84nmv8Ain/ow/7GcVe/
HrirROKtYq1irROKtE4q1irWKtYq0TirWKtYq0TirROKtYq1irROKtE4q1irWKtE4q0TirWKroP7
+P8A1h+vFXiv/OWBp/hb/o//AOxbFWQf844f8onb/K4/5PjFXsOKuxV2KuxVD6l/xzrr/jDJ/wAR
OKvBP+cTD/ylX/Rh/wBjOKvf2O5xVrFWsVaJxVonFXln5ofnxoPk9pNM05V1XX1qrwK1IYD/AMXO
v7X+Qu/iRmNm1IhsNy7vs7sWef1S9MPtPu/W+fdS81/mp5+uWaS6urm3ZivoQH6vZoaV4mhSKtP5
zXNXn1dbzlT1uDQ6fAPTEX8z+tX8r+Z/Pf5Xa5azXMUo0+evrac8oe3njGz8GQugkWoNRuNq7GhO
m1Q5xNhhrNHh1cDH+Ideo/Y+q/KfnXRfM+nw3umyVinXkgPXbZlPgynqM3UJiQsPAajTzwzMJiiE
+yTS1irROKtE4q1irWKtE4q0TirWKtYq0TirROKtYq1iq6A/v4/9Zf14q8U/5yzP/KK/9H//AGLY
qyH/AJxv/wCUSt/lcf8AJ/FXsWKuxV2KuxVD6l/xzrr/AIwyf8ROKvAv+cSj/wApV/0Yf9jOKvoB
upxVrFWicVaJxV4h+fH50yaCJPK/l2amsSLTUL1DvbI4qET/AItYGtf2R79MPU6jh9I5vSdi9keL
+9yD0dB3/s+95B5J/L5tQC6rrQZ4JgJLe2JPKXlv6krdeJ6qK1br0+1zGu7S8P0w3l937Xryeg5P
W7GwRESONFSNAFjjQBVVR0CqKAD2GaCUpTNyNlxpzA5Jlr3ky01XQTYapDytrj4gw2kikH2HQkfC
wH8QdiRncdk9ncOmqW0pG/c8jqe1JQ1PHjO0dvIvF/L+u6/+Vvm19PvuUmnyMryqlaPGTRLiCtPi
FKHxoVPTaeHMcciO40XoNTpsfaGATjtLp+o/jzfVXlnzJY67psN3bSrKJUEiOvR1P7Q/iOxzbRkC
LDw2XHKEjGQqQTgnCwaJxVrFWsVaJxVonFWsVaxVonFWicVaxVrFWicVXwf38f8ArL+vFXiX/OWp
/wCUV/6P/wDsWxVkX/ONv/KI23yuf+T+KvY8VdirsVdiqH1L/jnXX/GGT/iJxV4D/wA4kGv+K/8A
t3/9jOKvoFvtH54qtJxVonFWMfmT5vXyj5M1LWwA1xDGEs4z0aeUhI6juAzcm9gcryz4YkuZ2fpf
HzRh0PP3PkvyBob+ZPMFzqWpt9aS3YT3Pq0czTzMSvME7glWZutaUPXOY7R1RxQ2+qX4t9GkBECI
2H6HtlraEmp3J3JOcsBbjZMjItDtrU3a+oQWT4lQ9GI7Z1HY/YxmRlyD0dB3/s+/3PM9p9p1cIHf
qe5mUsMV5CSAC1KMh751s5iIsvOAW87/ADA8gadr+mtY3i8WXk1hegVkglI/FTQc16MPAgEeXajX
ZtNq5ZpbwyHcfo946PXdn5/DiBHp073j/kXzlrX5ceZZNB1rktgJfiZakRM2wnjJA5RuPtDw361B
7fQ62MoiUTcJOX2n2fHVw8SH94Pt8i+qNH1i11SzS4gdW5KGPA8lIYVDKR1U9jm5BeHlEg0eaOxQ
1irROKtE4q1irWKtE4q0TirWKtYq0TirROKr4P7+P/XX9eKvEv8AnLc0/wAKf9vD/sWxVkf/ADjX
/wAofbfK5/5P4q9jxV2KuxV2KofUv+Oddf8AGGT/AIicVfP/APziMa/4r/7d/wD2M4q+gm+0fniq
0nFWsVedfn15Y1LzF+Xlzb6chlurOaO8WAbtIsQZWVffi5I+WUamBlDZ2vYupjh1AMuRFPn78qPM
lrYm40e4iIuJpDNCxNAxChWjpTZhxqPHfw35/P2fHUyAMuCvK/1PXdpZp4o+JEcUevf7/c9Xt9Qk
moFURr4Dc/fm30Xs/gwnil65efL5frt43Vdq5cuw9I8v1ptbB6rwryG4I7ZstXq8WngZ5JCMR3/j
d1+PHKZqIssu0fUGZQrn9+o+LwYZwp9pBq8hEPTGPIHr5/s6O1/I+HHfcpndWsN3CSBWv2l/z75b
qtNDUQJq+8fjqxx5DAvKfzN/LO08x2fAkQapbqTp98QeJHUxTUqSh+9TuO6tzej1U+z8vBPfDL8X
7+96HR6wjccuoed/lX+Y+p+TtZPlrzCWtoIpDHE02wt3O5R/GJ67GtB16bj0PSaoUN7ieRYdr9mD
PHxsX1df6X7Q+oLC/hvbdZoj7MvcHwzaPGognFWicVaxVrFWicVaJxVrFWsVaJxVonFWsVX2/wDv
RF/rr+vFXiP/ADlyaf4U/wC3h/2LYqyT/nGr/lDrb5XP/URir2TFXYq7FXYqh9S/4511/wAYZP8A
iJxV8+/84hn/AJSz/t3/APYzir6Dc/Efniq3FWsVWnf5Yq+d/wA+PydeGWTzf5ahKnl6mpWkIPIP
Wvrx07/zU+fXrg6nT/xB6rsTtblhynb+E/o/V8kF+VXnTStfC6bqf7rW0X4BXilyqipZAOjgCrL9
K7VC6HtjtPXYcXFhIqPPaz79/wBSdb2Ljxz4gPQfs8vd3fLuvqaRJGKIoUe2ebavX5tRLiyzMz5/
o7lx44wFRFLlLIwZTRhuCMx4TMSCNiGZF7FP9M1H1BXpIPtr4+4zs+yu0+Mf0hzH6XW6jBXuRd9Z
Q3UJIFVO5p1B8R75s9do4ajGSOR/FtGHKYF41+bP5W/p+3N3Yqkeu2y/umPwrcxiv7pmNArfyMfk
djVdJ2br5aLJ4OX+7PI937O/uei0WsEf6v3Md/Jr81b3S75PLGvM0c0bfV7V56q3JW4/VpeW6sDs
len2fDPQ9LqOh+Dhds9lgjxsXvIH3j9PzfSFtdQ3MCzRGqt94Pgcz3lVTFWsVaJxVonFWsVaxVon
FWicVaxVrFV9uf8ASIv9df14q8Q/5y8P/KJ/9vD/ALFsVZL/AM40f8oba/K5/wCojFXsuKuxV2Ku
xVD6l/xzrr/jDJ/xE4q+fP8AnEE/8pZ/27/+xnFX0G/2j8ziq3FWsVaJxVZIiOjI6hkYEMp3BB6g
4q+Yvzr/ACku/K+of4r8sq8enGQSzRw1DWsla81p+wT93yzXanT16hyex7H7UGWPg5dz0vr5Hz+9
l35Z/mFaeatMEM7LHrVqg+t2/Tmo29aPxUnr/Kdj1Unzbt3sbwScuMfuzzHd+z7vcy1OnOGVfwnk
f0Hz+/5s0IzmGm243eNw6GjL0OW4ssschKPMLIAiiyDTtQWReQ6/7sTw9xnb9l9piYsfEOrz4KVd
R0+K5hLDodwR2PjmV2l2fDPCxy+78dWGDMYF4X+cX5Wzamr61pMBOs261ubeMfFdRrQBkp1kQDYd
WGw3AB13ZHaUsE/y+fl/Cf0e7u7uT0mi1YGx+k/Yu/JL83pLgx6Hq8pa+ReMMjH/AHoRR3J/3ao/
4Ie+eg6fPfpPN0/bPZXhk5cY9HUd37Pue+xTRzRrLGwZGFVYZlvOricVaJxVrFWsVaJxVonFWsVa
xVonFV9v/vRF/rr+vFXiH/OXx/5RP/t4f9i2Ksl/5xn/AOUMtflc/wDURir2bFXYq7FXYqh9S/45
11/xhk/4icVfPX/OH5r/AIt/7d//AGNYq+hH+23zOKrcVaJxVrFWsVUbq2t7u3ktrmNZYJlKSxuK
qynqCMUgkGw+VPzW/LbV/wAvNfj8xeXnkj0ppfUt7iPrbSMT+6bqCjVoK7EfCffVarTAXtcS9r2X
2jHVQ8LL9f8AuvP3/wBoeofl/wCeLHzboy3KFY9QgAS/tQd0c9CK78XpVfu6g55j232OdNLjh/dH
7PL3d32+dObFLFPhPwPf+3vZORmga7XQyyQyB0NCPxHgcvwZ5YpCUeaJREhRZDYXySIGH2T9te4O
d32b2jGcbHLqO51ebCQWtT02OePkvzVvD+zB2r2ZHLGx8D3fsTp85iXz3+cn5aTQyzea9EjMN3A3
ranBF8P2fiN0lKUYUq9Ov2v5iYdi9rSEvy+baY+k9/l+rvek0epBHAd4nl+r8e5lP5L/AJuLrFuN
M1RwupQj96NgJVH+7Y18R+2o+Y8B3eDPxCjzed7W7MOCXHD+7P2fjo9oV1ZQykFWFQR0IOZLpXYq
1irROKtE4q1irWKtE4q1iq+2/wB6Iv8AXX9eKvD/APnMA0/wl/28P+xXFWTf84y/8oXafK5/6iMV
ez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+eP+cPTX/Fv/bu/wCxrFX0K/22+ZxVaTirWKtYq0TirROK
oPVdLsNV0+fT7+Fbi0uFKSxOAQQfngIvYsoTMSJRNEPlHzr5S8yflN5ui1TSJGbTJWItJ2+JHQ7t
bzgEV6fxBBFc0+r0kSDGQuEnuNFrIa3Fwz+sc/8Aih+PseyeTvOOneaNFi1K0+BvsXNsTVopQAWQ
mgqN9jTcfdnmHa/ZEtLOxvjPI/oP43+biZMRhLhlz+8d/wCOSfBlOaWmFK1vO8EgdOn7Q7EZk6XV
Swz4o/HzYTgJCiyGyvI5Iwa1jbqD2Pvne9n6+M4f0D9jq8uIg+ahqmmCQB02cfYb+BzF7W7L4xxR
+ocj+j9TZp9RWxfNv5qfl1deWb//ABb5YBtIYZBJd28VB9WlJp6kQ6ekxNCnRe3wmi5XYnbByfus
m2aP21+nv+b0mnzxyx8Oe4P2/j8bvTfyh/Naz8xaeLe6ZYb+EAXNvX7J6eqlf91sf+BP3ntsOYTH
m8r2n2dLTz23geR/Q9TrXfLnWNE4q0TirWKtYq0TirWKtYqvtv8AemL/AF1/Xirw7/nMI0/wl/28
f+xXFWUf84x/8oVafK5/6iMVez4q7FXYq7FUPqX/ABzrr/jDJ/xE4q+d/wDnDo/8pd/27v8AsaxV
9CyH42+ZxVbirWKtE4q0TirWKtYqlXmXy5pXmPR7jSdThE1rcLxNeqnsynsR45GURIUW3DmlimJx
NEPlbU9P80flB5zPEG4024+yGNI7q3B6EgfDInZqbHxBIOk1uijOJhMXEvb6fPj12K+U4/Yf1F7Z
5e8yabrulQ6np0hktph0YUdHH2o5F3oy9/vFQQc8x7T7MnpcnCd4nke/9rimBBMZfUPx8k2SfNWY
sTBF2d8YJOQ3U/aXxzK0erlgnY5dQ0ZcPEGSWl1HLGBXlG3Q+Htne6LWRyQA5wLqcuMg+aB1nSI5
43BRXDqVZGAKupFCrA7GozWdrdmSvxMe0xyP469zkabUVsXzJ598j6r+XutxeZfLbOulep9glmNs
7HeCWpq8T9FY7/stvRm2/YnbH5gVL05o8x3+f63ooThqIHHk3v7fP3vbPyu/MnT/ADPpMZDenMlE
mgY7xSU+yT3U/sN/mOwxZRMW8frtFLTz4Ty6HvegE5Y4TWKtYq0TirWKtYq1iq+2P+kxf66/rxV4
d/zmKf8AlEf+3j/2K4qyj/nGL/lCbT5XX/URir2jFXYq7FXYqh9S/wCOddf8YZP+InFXzr/zhwf+
Uv8A+3d/2NYq+hpPtt8ziq3FWicVaJxVrFWsVaJxVonFWP8AnbyZpHm7QptK1JNm+KCcfbikH2WU
5CcBIUXI0upngmJw5vmCxuvMX5T+b59M1SJptOmI+sInSWIfZnhJ25rXpX2PY5oNfoI5YnHMbfjc
PbRnDV4xOG0x9nkfL+17fp2q2V/Zw31jOtxZ3C84Jk6MvTvuCCKEHcHY755rrtDPT5DCXwPeGiO/
MURzCNSf3zBMUGCP0/U2t3od4m+0v8RmZodYcEv6B5/rcXNp+IebKbW6jmjCkhkYfA2d1pdRHJHh
O4PIumyYzE2lXmLQLW+tZ7e4hWaC4Ro54W6SIwoRt3pmk7T7PniyDNi2nHf3/j7XK02or8cnzF5l
8va/+VvmmPVtKLTaJcMVgkapVlO7W1xTo4pVT+0ByG4YL0fY3a8dRDiG0x9Q/HR38hDVYzCfP8bh
9C/l9580zzPpENxby8uXw0enNXHWOQfzD8RvnUwmJCw8ZqtLPBMwl/ay7JuM0TirWKtYq1irROKq
lt/vTF/rr+vFXhn/ADmOf+UQ/wC3j/2K4qyn/nGD/lB7P5XX/UTir2nFXYq7FXYqh9S/4511/wAY
ZP8AiJxV85/84bGv+L/+3d/2NYq+iJP7xvmcVWE4q0TirWKtYq0TirROKtYq1irEPzJ/LzS/Ouhv
Z3AEV9EC1jd03jkp38VPcZXlxiYouZodbPTz4o8uo73zh5W17Vvy68y3Pl7zDG8envJ/pCgEiNzR
VuYtqspAo1Oo9xTOd7R7OjngYT59D3PZkxzwGXFz+/8Aon8be57ZFco6JJG6yRSKHilQhkdGFVZW
GxBG4Oec6nSzwzMJjcMIESFhXSf3zFMUGCaaXqxt34SGsLf8KfHNhoNacJ4ZfQfscPUabiFjmy23
uUnjEbmtRVG8c7fDljljwy+BdJPGYmwx7zZ5asdU0+5sr2AT2lyvG4hP7QrUMpHRlIrUdDnPa3SZ
NNl8fD9Q5+Y/HP8AW52l1HL7HzS6+Yfym83ru1zpF38SOPhS4hU9uoWaLluO1f5WFet7K7TjngJw
+I7vx0dxqMENXjo7SH2fsL6X8n+btO8xaXBdWswlWVOSOOrAdQR2dejDOhjISFh4rNhlikYyFEMg
yTU1irWKtE4q1iqpa/70xf66/rxV4X/zmSaf4Q/7eP8A2K4qyr/nF/8A5Qaz+V1/1E4q9qxV2Kux
V2KofUv+Oddf8YZP+InFXzl/zhoa/wCMP+3d/wBjWKvoiT+8b5n9eKrCcVaxVrFWicVaJxVrFWsV
aJxVonFWAfm1+V1j510gtEFh1u1UmzuSOvcxvTs2U5sQmPN2PZ3aEtPO+cDzDwbyD5vv/K2qyeVv
MnK2s1kKIZtvqkxJJ3/31ITv2B+IftV5rtPs2OojR2mOR/HR6+dSAy4975+Y/WP2e7sPqMjFW2Iz
gM2CWORjIVIMokSFjkqpP75QYoME40fWfQYQzN+6J+Fv5T/TNp2drvDPBL6fucDVaXi3HNmEMyXM
fpuaOPsnxzsYSGaPDLm6KUDA2OTCfzD8nWes6Df2VzErRtG8kZYf3M6IxjmSm/wnw6io6EjNHDSZ
NNqRPH9Mj6h5d7tdFqLIHX8bPA/yY8z3eh+Y59HuGeOK4LERmtY7mHqQOx4g8vGgzuNLOjXe2du6
cTxDIOcfuL6k0fU0v7USbeotA9Ohr0I+ebB5FHYq0TirWKtYqqWv+9UP+uv68VeF/wDOZZp/g/8A
7eP/AGK4qyr/AJxd/wCUFs/ldf8AUTir2vFXYq7FXYqh9S/4511/xhk/4icVfOH/ADhia/4w/wC3
b/2NYq+iZT+8b5n9eKrMVaxVonFWicVaxVrFWicVaJxVrFWsVeWfnR+Ulv5ssG1XTI1j1+1QlSBT
6wij+7b3/lOY+fDxCxzdt2X2kcEuGX92fs83kv5c+e7m1nTyr5hYxGFvQ0+5m2eJwaC2lr+xXZCf
s9Ps048x2p2YM8bG2SP2+RerkBH95DeJ5/8AFD9Pf7+fT+boxVgQymhB6gjOGnjMSQRRDkCpCxyK
qk+VmLEwT/Q9c9Nlt5noP91SE9D4H2zb9na4xIhI+4us1mkv1D4ppqdy+tXUGiwL3EmoTDokSmvH
5tnWwHjECveXCwQGnic0vdEd5/Y+b/zp0N/J/wCa0moWqFLW9dNTtlGwJdv3yV95Fb6DmzPplYc7
QZBqNNwy84l7d+Xmrxy8FR+UMyj02HQq45Ic2gNi3jJwMZGJ5hn5OFi1irWKtYqqWp/0qH/XX9Yx
V4V/zmcaf4P/AO3l/wBiuKsr/wCcXP8AlBLL5XX/AFE4q9sxV2KuxV2KofUv+Oddf8YZP+InFXzf
/wA4Xmv+Mf8At2/9jWKvomX+8f5n9eKrMVaJxVonFWsVaxVonFWicVaxVrFWicVaJxV4t+eP5PLr
UMnmPQYQNWiWt5bIAPrCj9r/AFwPvzFz4OLcc3edk9p+EfDmfQfs/Ywv8tvzA/SSxeXtaYrq0Q9O
xu3/AN3hf90yk9JV/ZY/a6H4qcuU7W7L8YccP7wfb+3u+Xc9IR4J4h/dnn/R8x5d/dz72frG7EhQ
aru3sPE+GcfHHKRoCy5RkEdpunXd7MI7YBiDR5m/uk+n9o/575vdB2OSbn8unxcXU6mGIXL5dT+p
6JoOmWmmWxiiq8kh5Tzt9uRvE/wzstPjjAUHkdZqp5pWeQ5DueX/APOT3lb9I+TbbXYUrcaNMPVY
Df6vcEI3Twk4H78syDZzexM/DkMDyl94Yb+TmvPLpFoC/wC9tHNsxP8Ak0eL8CBmVppXH3ON21g4
M5PSW76DhmWaFJV+y6hh9IzIdSuxVrFWicVVLX/eqH/XX9YxV4V/zmgaf4O/7eX/AGK4qyz/AJxa
/wCUDsvldf8AUScVe2Yq7FXYq7FUPqX/ABzrr/jDJ/xE4q+bf+cLTX/GP/bt/wCxrFX0VL/ev/rH
9eKrCcVaJxVrFWsVaJxVonFWsVaxVonFWicVaxVo74q8F/Or8k5by5fzF5ZhUTSVa/sRRQTSvqJ2
BP7Vdu+YmfT3vF6DsvtcYxwZPp6Hu/Y8z078w/O3lu9S31pJNQiiP+8uoF2ald/Tlrypttuy+2az
Jpo3uKL0UTHJD93Kr6int3kj85vJmuCO09UaTemgW0ueKKT4RyD4G9gaE+GARMXn9XoMsSZH1eb0
yC498thN1UosQ/OLz35a0DyZfWWrD61catby21rpyMBJJzUqXrvwVK15U69N8zcOM5Nujjz1XgET
/iB2fOf5VambLX7jTy443KcomFfikhPJSvzQscGnPDMxL0na4GbTxyx8j8JfgPqjytei50xd907e
zbj8a5nPLJvirROKtYqqWv8AvVD/AK6/rGKvCf8AnNI0/wAHf9vL/sVxVlv/ADix/wAoFY/K6/6i
Tir23FXYq7FXYqh9S/4511/xhk/4icVfNf8AzhWf+Uy/7dv/AGN4q+i5T+9f/WP68VWE4q1irWKt
E4q0TirWKtYq0TirROKtYq1irROKtHFWGeavy30fW0k9S3jkVqt6bAAhj3Unb78jKIPNtw554zcC
QXiHm38h720keTSXIpU/Vpq9P8k7n/iWYs9L/Nd/pe3jyyj4j9SRaL+Yv5leRD9RmZ3tACkdregy
xrtt6T1qvH+UNTxGYksfCdw7GeDBqomUCL7x+kMO1rVNX1/UpdS1C8e/vpz8bSbP2oqoPhCitFVP
uGbXBqMdUPS8V2j2JqcRMj+8j3j9I6fc1peoyWGoWGpLXnbSKJAD8TCMio9gYzx+/MbVR4MgkOrv
/Z/MM+klhPOO3wPL7bfV/wCX+pKzCIMGRxRSOhDfEp/XmWC6GUSDRZ2TihrFWsVVLT/euH/jIv6x
irwj/nNQ/wDKG/8Aby/7FMVZd/ziv/ygNj8rr/qKOKvbsVdirsVdiqH1L/jnXX/GGT/iJxV80/8A
OFBr/jL/ALdv/Y3ir6MmP71/9Y/rxVZirWKtE4q0TirWKtYq0TirROKtYq1irROKtYq1irWKqc0M
MyGOVA6HsRXFWMa/5B0jVIXR4kdXFDHKKinhy6/fXAQDzZwySgbiaLxjzh+QZiZ5tKZrdzUiB94y
dzsf6H6Mxp6UHk7vS9uTjtkHEO/q8r1vy75k0ovb39rII0IZpgvJaLVVJelQKdA2Y8xMCjydxpZ6
aczkx0Jy59D8R+l7H+T2vNNo9i3KsttW2fsAYqGP/hOOZmnlcXnO18PBnPdLf8fF73HIskayL9lw
GX5EVy51jeKtYqqWh/0uH/jIv6xirwf/AJzXNP8ABv8A28v+xTFWX/8AOKv/AJL+x+V3/wBRRxV7
firsVdirsVQ+pf8AHOuv+MMn/ETir5o/5wmNf8Z/9u3/ALG8VfRs396/+sf14qp4q0TirROKtYq1
irROKtE4q1irWKtE4q1irWKtYq0TirWKtYqskRJFKuoZT1UioxVI9V8o6ZfIQEUH+VxyX6O6/Rir
EW8gNpk0k1lEYjI4kbiOalhtUkfF274AAGc8kpVZJpnukpLHYRLIQSBVSO6ncdfnhYIvFWicVVbT
/euD/jIv/Ehirwb/AJzZNP8ABn/by/7FMVZf/wA4qf8AkvrD5Xf/AFFHFXuGKuxV2KuxVD6l/wAc
66/4wyf8ROKvmb/nCQ/8pn/27P8AsbxV9HTf3z/6x/XiqmTirROKtYq1irROKtE4q1irWKtE4q1i
rWKtYq0TirWKtYq1irROKtYq1irWKtE4q1iqrZ/71wf8ZF/4kMVeC/8AObZ/5Qz/ALef/YpirMP+
cUv/ACXth8rv/qKOKvccVdirsVdiqH1L/jnXX/GGT/iJxV8y/wDOER/5TT/t2f8AY3ir6OnP75/9
Y/rxVTJxVrFWsVaJxVonFWsVaxVonFWsVaxVrFWicVaxVrFWsVaJxVrFWsVaxVonFWsVaxVVs/8A
eyD/AIyL/wASGKvBf+c3T/yhf/bz/wCxTFWY/wDOKH/kvLD5Xf8A1FHFXuOKuxV2KuxVD6l/xzrr
/jDJ/wAROKvmP/nB81/xp/27P+xvFX0fOf30n+sf14qp4q1irROKtE4q1irWKtE4q1irWKtYq0Ti
rWKtYq1irROKtYq1irWKtE4q1irWKtYqq2Z/0yD/AIyJ/wASGKvBP+c4DT/Bf/bz/wCxTFWZf84n
/wDku9P+V3/1FHFXuWKuxV2KuxVD6l/xzrr/AIwyf8ROKvmD/nCCRUn86W7njORpzCM7NRDdBtvY
sK4q+kbiomkr/Mf14qp4q0TirROKtYq1irROKtYq1irWKtE4q1irWKtYq0TirWKtYq1irROKtYq1
irWKtE4qrWIJvIABU81P3GuKvAP+c4ZozL5MiDAyIupOydwrG1Cn6eJxVm3/ADieGH5dafUEHjdn
fwN0SMVe5Yq7FXYq7FVskayRtG32XBVvkRTFXxjrN7rf5Efnjca1FbNP5e1ZpDLAtFWW2mcPLGld
g8MlGT2p2JxV9U+U/PHknzvp8d/5f1SG8DrV4UcLcRnussJ+NCPcfLbFU8/R0X8zfhirv0bF/M34
Yq1+jIv52/DFXfoyL+dvwxV36Lh/nb8MVa/RUP8AO34Yq79FQ/zt+H9MVa/RMP8AO34Yq79Ew/zt
+GKu/REH87fh/TFWv0PB/O34f0xV36Hg/nb8P6Yq79DQfzt+H9MVa/QsH87fh/TFXfoWD/fj/h/T
FWv0Jb/78f8AD+mKu/Qdv/vx/wAP6Yq1+g7f/fj/AIf0xV36Ct/9+P8Ah/TFXfoK3/34/wCH9MVa
/QNv/vx/w/pirv0Bbf78f8P6Yqk3mfzh5E8iWEuoa9qcNpxUlIpHDXEngsUK/G5PsPntir4i/MXz
tr35wfmQtxa27Rxy8bTSbImvo2yEtykI2qas7n6OgGKvsf8AJ7y5HoWhW1jAP3NpbpEGIoWJp8R9
24VPzxV6FirsVdirsVdirE/zG/Lfy/560OTTNViUvSsE9KsjjoR3+7FXyP5v/wCcW/Nuk3rpYTLL
ASfTMwYrx9pIw1fpQYqx3/oXzz942v8AwU//AFSxV3/Qvnn7xtf+Cn/6pYq7/oXzz942v/BT/wDV
LFXf9C+efvG1/wCCn/6pYq7/AKF88/eNr/wU/wD1SxV3/Qvnn7xtf+Cn/wCqWKu/6F88/eNr/wAF
P/1SxV3/AEL55+8bX/gp/wDqlirv+hfPP3ja/wDBT/8AVLFXf9C+efvG1/4Kf/qlirv+hfPP3ja/
8FP/ANUsVd/0L55+8bX/AIKf/qlirv8AoXzz942v/BT/APVLFXf9C+efvG1/4Kf/AKpYq7/oXzz9
42v/AAU//VLFXf8AQvnn7xtf+Cn/AOqWKu/6F88/eNr/AMFP/wBUsVd/0L55+8bX/gp/+qWKu/6F
88/eNr/wU/8A1SxV3/Qvnn7xtf8Agp/+qWKu/wChfPP3ja/8FP8A9UsVd/0L55+8bX/gp/8Aqliq
L0z/AJxz85XFwEu54IIu7xiWRv8AgWWP9eKvevys/JPTPLg/0WEz3sgHr3UtC5HWjECiJ/kjr3xV
7vpthHY2qwpuert4se+KorFXYq7FXYq7FXYqtkijlUpIgdD1VgCPxxVCnRtLJ/3mT7sVd+htL/5Z
k/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/
AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+ht
L/5Zk/HFXfobS/8AlmT8cVd+htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXfobS/8AlmT8cVd+
htL/AOWZPxxV36G0v/lmT8cVd+htL/5Zk/HFXDRtLB/3mT7sVRUcUcShI0CIOiqAB+GKrsVdirsV
f//Z</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<xapMM:DocumentID>
uuid:4ee3f24b-6ed2-4a2e-8f7a-50b762c8da8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:cbee75c6-82d1-45ba-8274-b89c6084675c">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
mime.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>
end='w'</xpacket>
</metadata>
<linearGradient
id="XMLID_9_"
gradientUnits="userSpaceOnUse"
x1="128.9995"
y1="11"
x2="128.9995"
y2="245.0005">
<stop
offset="0"
style="stop-color:#494949"
id="stop717" />
<stop
offset="1"
style="stop-color:#000000"
id="stop718" />
<a:midPointStop
offset="0"
style="stop-color:#494949"
id="midPointStop719" />
<a:midPointStop
offset="0.5"
style="stop-color:#494949"
id="midPointStop720" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop721" />
</linearGradient>
<linearGradient
id="XMLID_10_"
gradientUnits="userSpaceOnUse"
x1="29.0532"
y1="29.0532"
x2="226.9471"
y2="226.9471">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop725" />
<stop
offset="1"
style="stop-color:#DADADA"
id="stop726" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop727" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop728" />
<a:midPointStop
offset="1"
style="stop-color:#DADADA"
id="midPointStop729" />
</linearGradient>
<linearGradient
id="XMLID_11_"
gradientUnits="userSpaceOnUse"
x1="-481.7007"
y1="-94.4194"
x2="-360.2456"
y2="-164.2214"
gradientTransform="matrix(0.1991 0.98 -0.98 0.1991 91.6944 573.5653)">
<stop
offset="0"
style="stop-color:#990000"
id="stop736" />
<stop
offset="1"
style="stop-color:#7C0000"
id="stop737" />
<a:midPointStop
offset="0"
style="stop-color:#990000"
id="midPointStop738" />
<a:midPointStop
offset="0.5"
style="stop-color:#990000"
id="midPointStop739" />
<a:midPointStop
offset="1"
style="stop-color:#7C0000"
id="midPointStop740" />
</linearGradient>
<linearGradient
id="XMLID_12_"
gradientUnits="userSpaceOnUse"
x1="-1375.9844"
y1="685.3809"
x2="-1355.0455"
y2="706.3217"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#F8F1DC"
id="stop743" />
<stop
offset="1"
style="stop-color:#D6A84A"
id="stop744" />
<a:midPointStop
offset="0"
style="stop-color:#F8F1DC"
id="midPointStop745" />
<a:midPointStop
offset="0.5"
style="stop-color:#F8F1DC"
id="midPointStop746" />
<a:midPointStop
offset="1"
style="stop-color:#D6A84A"
id="midPointStop747" />
</linearGradient>
<linearGradient
id="XMLID_13_"
gradientUnits="userSpaceOnUse"
x1="65.0947"
y1="-0.7954"
x2="137.6021"
y2="160.1823">
<stop
offset="0"
style="stop-color:#FFA700"
id="stop750" />
<stop
offset="0.7753"
style="stop-color:#FFD700"
id="stop751" />
<stop
offset="1"
style="stop-color:#FF794B"
id="stop752" />
<a:midPointStop
offset="0"
style="stop-color:#FFA700"
id="midPointStop753" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFA700"
id="midPointStop754" />
<a:midPointStop
offset="0.7753"
style="stop-color:#FFD700"
id="midPointStop755" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFD700"
id="midPointStop756" />
<a:midPointStop
offset="1"
style="stop-color:#FF794B"
id="midPointStop757" />
</linearGradient>
<linearGradient
id="XMLID_14_"
gradientUnits="userSpaceOnUse"
x1="-1336.4497"
y1="635.7949"
x2="-1325.3219"
y2="622.5333"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#FFC957"
id="stop763" />
<stop
offset="1"
style="stop-color:#FF6D00"
id="stop764" />
<a:midPointStop
offset="0"
style="stop-color:#FFC957"
id="midPointStop765" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFC957"
id="midPointStop766" />
<a:midPointStop
offset="1"
style="stop-color:#FF6D00"
id="midPointStop767" />
</linearGradient>
<linearGradient
id="XMLID_15_"
gradientUnits="userSpaceOnUse"
x1="-1401.459"
y1="595.6309"
x2="-1354.6851"
y2="699.4763"
gradientTransform="matrix(-0.999 0.0435 0.0435 0.999 -1277.0056 -496.5172)">
<stop
offset="0"
style="stop-color:#FFA700"
id="stop770" />
<stop
offset="0.7753"
style="stop-color:#FFD700"
id="stop771" />
<stop
offset="1"
style="stop-color:#FF9200"
id="stop772" />
<a:midPointStop
offset="0"
style="stop-color:#FFA700"
id="midPointStop773" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFA700"
id="midPointStop774" />
<a:midPointStop
offset="0.7753"
style="stop-color:#FFD700"
id="midPointStop775" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFD700"
id="midPointStop776" />
<a:midPointStop
offset="1"
style="stop-color:#FF9200"
id="midPointStop777" />
</linearGradient>
<linearGradient
id="XMLID_16_"
gradientUnits="userSpaceOnUse"
x1="67.8452"
y1="115.5361"
x2="144.5898"
y2="115.5361">
<stop
offset="0"
style="stop-color:#7D7D99"
id="stop780" />
<stop
offset="0.1798"
style="stop-color:#B1B1C5"
id="stop781" />
<stop
offset="0.3727"
style="stop-color:#BCBCC8"
id="stop782" />
<stop
offset="0.6825"
style="stop-color:#C8C8CB"
id="stop783" />
<stop
offset="1"
style="stop-color:#CCCCCC"
id="stop784" />
<a:midPointStop
offset="0"
style="stop-color:#7D7D99"
id="midPointStop785" />
<a:midPointStop
offset="0.5"
style="stop-color:#7D7D99"
id="midPointStop786" />
<a:midPointStop
offset="0.1798"
style="stop-color:#B1B1C5"
id="midPointStop787" />
<a:midPointStop
offset="0.2881"
style="stop-color:#B1B1C5"
id="midPointStop788" />
<a:midPointStop
offset="1"
style="stop-color:#CCCCCC"
id="midPointStop789" />
</linearGradient>
</defs>
<sodipodi:namedview
id="base" />
<metadata
id="metadata590">
<xpacket>
begin='' id='W5M0MpCehiHzreSzNTczkc9d'</xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xap:CreateDate>
2004-02-04T02:08:51+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-29T09:20:16Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-29T14:54:28+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXzd+b/wDzlWum3k+h+QxFc3EJMdzrkoEkKuNiLZPsyU/nb4fAEb50vZ/YXEBPLsP5v62meXue
A3v5mfmprl080vmLVriXdjHBcTIi17rFCVRfoXOghocEBQhH5NJmepUf8Tfmj/1dtb/6SLv/AJqy
f5fD/Nj8gjxPN3+JvzR/6u2t/wDSRd/81Y/l8P8ANj8gviebv8Tfmj/1dtb/AOki7/5qx/L4f5sf
kF8Tzd/ib80f+rtrf/SRd/8ANWP5fD/Nj8gviebv8Tfmj/1dtb/6SLv/AJqx/L4f5sfkF8Tzd/ib
80f+rtrf/SRd/wDNWP5fD/Nj8gviebv8Tfmj/wBXbW/+ki7/AOasfy+H+bH5BfE83f4m/NH/AKu2
t/8ASRd/81Y/l8P82PyC+J5u/wATfmj/ANXbW/8ApIu/+asfy+H+bH5BfE83f4m/NH/q7a3/ANJF
3/zVj+Xw/wA2PyC+J5u/xN+aP/V21v8A6SLv/mrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/wA1Y/l8
P82PyC+J5u/xN+aP/V21v/pIu/8AmrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/AM1Y/l8P82PyC+J5
u/xN+aP/AFdtb/6SLv8A5qx/L4f5sfkF8Tzd/ib80f8Aq7a3/wBJF3/zVj+Xw/zY/IL4nm7/ABN+
aP8A1dtb/wCki7/5qx/L4f5sfkF8Tzd/ib80f+rtrf8A0kXf/NWP5fD/ADY/IL4nm7/E35o/9XbW
/wDpIu/+asfy+H+bH5BfE82j5t/M+Aes2ta3EI/i9U3N2vGnfly2x/LYT/DH5BePzZ15C/5yh/Mb
y7cxRaxcHzDpQIEsF2f9IC9zHc058v8AX5D9ea/VdiYcg9I4JeXL5NkchD688jeefLvnby/DrmhT
+rayEpLE4CywygAtFKtTxYV+RG4qDnH6nTTwT4JjdyIytkGY6XYq7FXYq7FXYq7FXjX/ADlH+YV1
5W8hppunymHU/MMj2qSqaMltGoNwynxPNE/2WbrsPSDLl4pfTDf49GvJKg+VPy+8lP5ivecqM9rG
4jWFaqZpTvw57cVUULGvcfMdtYFk7Ac3Ua3VHGAI/XLk+jNK/LfSLS0SK4JYqDSGCkUCV3PBVAPX
vtXwzWT7TlfoAA+11f5Xi3mTIo608meV/wBL2lnLbSSLcc/92sB8Kk70IOU5+0s4xSmCPT5NuDRY
pZBEjmyu2/KnydcFgliF4ip5TT/wY5ov5f1f877B+p2/8kaf+b9pVv8AlT3lL/lkT/kdcf1w/wAv
az+d9kf1I/kjTfzftLR/J/yl/wAsif8AI65/rj/L2s/nfZH9S/yRpv5v2lafyg8p/wDLKn/I65/r
h/l3Wfzvsj+pf5J03837S0fyh8p/8sqf8jrn+uP8u6z+d9kf1L/JOm/m/aWj+UXlP/llj/5HXP8A
XH+XdZ/O+yP6l/knTfzftLX/ACqPyn/yzR/8jrn+uH+XNb/O+yP6l/knTd32lr/lUflX/lmj/wCR
1z/XB/Lmt/nfZH9S/wAk6bu+0u/5VD5W/wCWaP8A5HXP9cf5d1n877I/qX+SdN/N+0u/5VB5Y/5Z
ov8Akdc/1x/l3Wfzvsj+pf5J03837S7/AJU/5a/5Zov+R1z/AFx/l3Wfzvsj+pf5J03837S7/lT3
lv8A5Zov+R1z/XB/L2s/nfZH9S/yRpv5v2l3/KnfLv8AyzRf8jrn+uP8vaz+d9kf1L/JGm/m/aXf
8qc8v/8ALNF/yOuf64/y9rP532R/Uv8AJGm/m/aXf8qb0H/lmh/5HXP9cf5f1n877I/qX+SNN/N+
0u/5U1oP/LND/wAjrn+uD+X9Z/O+wfqT/JGn/m/aVk/5P6BDBJM1rEVjUswE1xWg8KnH/RBq/wCd
9g/Uv8kaf+b9pYp5i8oeXLOGBoLQo0j8SRJIe3+Uxza9ldq6jNKQnLkO4Ov1/Z2HGAYj7SkreXdK
IoEZD/Mrmo+Vaj8M3I1eR1fgRee/mD+W8NxE91ZIPrhq0UygL6rbt6ctNubfssevy6XwmJjbYjo5
ml1csUhGRuB+xJP+cfvzGvfJvny1T1T+iNXdLTUbcn4SWNIpPZkduvgTmq7Z0gy4Sf4obj9L0WOV
F93xSJLGsiGqOAyn2O+cK5K7FXYq7FXYq7FXYq+R/wDnM65lbzjoFsT+6i05pEG/2pJ2VvbpGM6/
2cH7uR/pfocfNzb/ACCs7caXZzBAJPQuJS3fn9ZMXL/gNs2uvkRirvl+h0GffUm+kfx972EnNKyU
LXfzNpZ/4y/8QOOo/wAWn8PvbdN/fRei6SPjl/1R+vOWDvyjyMsQsIwoWkYVWEYULSMKFhGSVrFV
wOBVwOBVwOBK4HFVwOBK4HAq4HAlcDgVQ1I/7jrn/jE36siUh5X5uH+j23tL/DN52F9U/c6vtX6Q
x0nOidEgNZodNmBAP2aE9jzG4+jL9P8AWGrL9JfNGuSmDzPqEsICGK9maNRsF4ykgCnhmRKArhel
08iccT5B+iHk+4afQbcsalBx+8Bv+Ns8wdknWKuxV2KuxV2KuxV8hf8AOZn/ACneif8AbLH/AFES
52Hs7/dS/rfoDj5uaO/IUf7gbI/8ulx/1GnNlr/7v/O/Q6DN/jEv6v6nqxOahksshXzJpv8Az0/4
gcjqf8Xn8PvbdL/exei6SPjk/wBUfrzlw9AmBGTYrSMKrCMKFpGFVhGFC0jChYRklaxVcDgVcDgV
cDgSuBxVcDgSuBwKuBwJUdRP+4+5/wCMTfqyJSHlvmwf6Lb+0n8M3XYX1S9zq+1fpDwzzXoX1nzD
eT8a82U1/wBgBm1y6fikS6qGfhFJt5T076lomoJSnOSM/dTMzQYuCTj6rJxh4h5k/wCUi1T/AJjJ
/wDk62bM83fab+6j/VH3P0N8jf8AHBj+Y/5NpnlztGQYq7FXYq7FXYq7FXyF/wA5mf8AKd6J/wBs
sf8AURLnYezv91L+t+gOPm5ph+Q4/wCddsj/AMutx/1Gtmx1/wBH+d+h0Gb/ABiX9X9T1InNUl2n
b+Y9P/56f8QOQ1X+Lz+H3t+l/vYvRtJH7yT/AFR+vOWDv0xIySFhGSQtIwqsIwoWkYVWEYULSMKF
hGSVrFVwOBVwOBVwOBK4HFVwOBK4HAqjf/8AHPuf+MTfqyEkh5j5rH+iQ/65/Uc3XYf1y9zre1Pp
DDpbGzkcu8QZ26k50weeMQoXVvDDZyrEgQNQkD5jLMX1BhMbPmrzN/ykmrf8xlx/ydbMp6XTf3cf
6o+5+hnkb/jgx/Mf8m0zy52bIMVdirsVdirsVdir5C/5zM/5TvRP+2WP+oiXOw9nf7qX9b9AcfNz
TL8iR/zrFif+Xa4/6jWzYa76f879Doc/9/L3fqenE5rEL9KFfMNh85P+IHK9X/cT+H3uRpP72L0f
SR+8k/1f45yzv0xIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4FXA4FXA4ErgcVXA4EqV
9/vBc/8AGJv1ZCXJIea+ah/ocfsx/wCInNx2H9cvcHW9qfQGIE507z6HvN7dx8v1jLMfNhPk+Z/N
H/KTav8A8xtx/wAnWzJek0/93H+qPufoX5G/44MfzH/JtM8vdmyDFXYq7FXYq7FXYq+Qv+czP+U7
0T/tlj/qIlzsPZ3+6l/W/QHHzc0z/Isf86nYH/l3uP8AqNbM/W8v879Doc/9/L3fqelk5rkK2j76
/ZfN/wDiBynWf3Evx1cjSf3oej6UP3r/AOr/ABzl3fpliq0jCq0jChYRkkLSMKrCMKFpGFVhGFC0
jChYRklaxVcDgVcDgVcDgSuBxVTvP94rn/jE36shPkyDzjzUP9BX5n/iJzbdifXL4Ou7U+gfFhhO
dS86pXG8TD5frycebGXJ8z+av+Un1j/mNuf+TrZkh6TT/wB3H+qPufoV5G/44MfzH/JtM8vdmyDF
XYq7FXYq7FXYq+Qv+czP+U70T/tlj/qIlzsPZ3+6l/W/QHHzc01/I0f86fp5/wCKLj/qNbM7W8v8
79Dos/8AfH3fqejE5gMEVoe+u2fzf/iByjW/3Evx1cnR/wB4Ho+l/wB4/wAv45y7v0xxV2KrSMKr
SMKFhGSQtIwqsIwoWkYVWEYULSMKFhGSVrFVwOBVwOBVwOBKy6P+h3H/ABib9WQnySHnnmkf6APY
t/xE5texPrPwdf2n9A+LByc6t5xTfcEZIIL5p82f8pTrP/Mdc/8AJ5syRyek0/8Adx9w+5+hPkb/
AI4MfzH/ACbTPL3ZsgxV2KuxV2KuxV2KvkL/AJzM/wCU70T/ALZY/wCoiXOw9nf7qX9b9AcfNzTf
8jx/zpWnH/im4/6jHzO1n6f0Oi1H98fd+p6ETmE1o3y/vrdr82/4gcxtd/cycrR/3gej6b/eP8v4
5y7v0wxV2KuxVaRhVaRhQsIySFpGFVhGFC0jCqwjChaRhQsIyStYquBwKuBwKtuT/olx/wAYm/Vk
J8mUXn/mkf7jj/sv+InNp2L/AHh+Dr+0/oHxYGTnWvONDdgMUPmnzb/yletf8x9z/wAnmzIjyelw
f3cfcH6EeRv+ODH8x/ybTPMHZMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0Bx8
3NOPyRH/ADo2mn/im4/6jHzN1fP4/odHqP70+5n5OYjUmHlzfWrb5t/xA5ia7+5k5Wi/vA9H07+8
f5fxzmHfo/FXYq7FXYqtIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4Fan/3luP8AjE36
shk5MosD80D/AHGt8m/4gc2XY394fg4Haf0fN56TnXvNLod5VHz/AFYJclD5p83/APKWa3/zH3X/
ACebMiPIPS4P7uPuD9CPI3/HBj+Y/wCTaZ5g7JkGKuxV2KuxV2KuxV8hf85mf8p3on/bLH/URLnY
ezv91L+t+gOPm5p1+SYp5B0w/wDFVx/1GPmZq/q+P6HR6n+9PuZ0TmM0pr5Y31iD5t/xA5h6/wDu
i5mi/vA9G0/7b/LOYd8jsVdirsVdirsVWkYVWkYULCMkhaRhVYRhQtIwqsIwoWkYULCMkrWKul/3
mn/4xt+rK8nJMebB/NA/3Fyf6r/8QObHsb+8Pw+9we0/o+bzgnOxeZVLXe4QfP8AUcjPkmPN81ec
f+Uu1z/toXX/ACebL4fSHpcH0R9wfoP5G/44MfzH/JtM8xdkyDFXYq7FXYq7FXYq+Qv+czP+U70T
/tlj/qIlzsPZ3+6l/W/QHHzc08/JUf8AIPNLP/Fdx/1GSZl6r6z7/wBDpNT/AHh9zNicocdOPKu+
rQ/M/wDEGzB7Q/ui5uh+sPRbEhXappt3zmXfI3mn8w+/FXeon8w+/FWvUj/mH3jFXepH/MPvGKu9
WP8AnH3jFXepF/Ov3jFVpeP+dfvGG1Wl4/51+8YbQtLJ/Mv3jDa0tJT+ZfvGHiCKWnj/ADL/AMEP
64eILS08f5l/4If1w8QRS0qP5l/4If1w8YWlpUfzL/wS/wBceMIorCn+Uv8AwS/1w8YXhKyai289
WXeNgPiB3I+eRnIEJiGFeZx/uKm/1H/4gc2PY/8AefL73B7S+j5vNCc7N5dWsN7uMfP/AIichl+k
so83zX5z/wCUw13/ALaF1/yffL8f0j3PS4foj7g/QbyN/wAcGP5j/k2meYuyZBirsVdirsVdirsV
fIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmnv5Lj/AJBxpZ/yLj/qMkzK1X1n3/odJqv7
w+5mZOVOOmvly5jtrwTyAlIzuFpXdSO9Mw9bjM4cI6uVpJiMrLK/8T2H++5fuX/mrNL/ACdk7x+P
g7b85DuLX+JbD/fcv3L/AM1Y/wAnZO8fj4L+ch3Fr/Elj/vuX7l/5qx/k7J3j8fBfzkO4tf4jsf9
9y/cv/NWP8nZO8fj4L+ch3Fo+YrH/fcv3L/zVj/J2TvH4+C/nIdxW/4hsv5JPuX/AJqx/k7J3j8f
BfzkO4tfp+y/kk+5f+asf5Oyd4/HwX85DuLX6es/5JPuX/mrH+TsnePx8F/OQ7i1+nbP+ST7l/5q
x/k7J3j8fBfzkO4tfpy0/kk+5f64/wAnZO8fj4L+ch3Fr9N2n8kn3L/XH+TsnePx8F/OQ7i0datf
5JPuX+uP8nZO8fj4L+ch3Fb+mLX+R/uH9cf5Oyd4/HwX85DuLX6Xtv5H+4f1x/k7J3j8fBfzkO4t
fpa2/lf7h/XH+TsnePx8F/OQ7i0dVt/5X+4f1x/k7J3j8fBfzkO4tHVLf+V/uH9cf5Oyd4/HwX85
DuKW6/dxz6XcKgYFY5DvT+Q++bDs7TSx5Bdbkfe4etzicNvN5sTnWPOojTN7+If63/ETleb6Cyhz
fNnnX/lMte/7aN3/AMn3y/H9I9z02H6B7g/QXyN/xwY/mP8Ak2meYuxZBirsVdirsVdirsVfIX/O
Zn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5uaf/kyP+QZ6Uf8m4/6jJMytT/eH8dHS6r6z7mXk5W4rSyy
JXgxWvWhIxMQVEiOTjdXH+/X/wCCOPAO5eM9603Vz/v1/wDgjh4I9y8Z71pu7n/fz/8ABHDwR7kc
Z71pu7r/AH8//BH+uHw49y8cu9aby6/39J/wR/rh8OPcEccu9ab27/3/ACf8E39cPhx7gjjl3rTe
3f8Av+T/AINv64fDj3BfEl3rTfXn+/5P+Db+uHw49wR4ku8rTfXv/LRJ/wAG39cPhR7gviS7ytN/
e/8ALRJ/wbf1w+FHuCPEl3ladQvv+WiX/g2/rh8KPcEeJLvK06hff8tMv/Bt/XD4Ue4L4ku8rTqN
/wD8tMv/AAbf1w+FDuCPEl3ladRv/wDlpl/4Nv64fBh3D5L4ku8rTqWof8tUv/Bt/XD4MO4fJHiy
7ytOp6h/y1Tf8jG/rh8GHcPkjxZd5aOp6j/y1Tf8jG/rh8GHcPkviy7ypvqN+6lWuZWVhRlLsQQe
xFcIwwHQfJByS7yhScta0Xo++pQj/W/4icq1H0Fnj+p82+d/+Uz1/wD7aN3/AMn3y7F9I9z02H6B
7g/QTyN/xwY/mP8Ak2meZOxZBirsVdirsVdirsVfIX/OZn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5ub
IfybH/ILtJPtcf8AUZLmTqP70/jo6XVfWWVE5FxFpOFVpOFDCLz82fLtrdz2slteGSCRonKpFQlC
VNKyDbbLRjLLgKgfzh8tf8s17/wEX/VXD4ZXwytP5weWv+Wa9/4CL/qrjwFHhlo/m95b/wCWa8/4
CL/qrh4Cvhlo/m75b/5Zrz/gIv8Aqrh4V8Mrf+Vt+XD/AMe15/wEX/VXCIFHhF3/ACtjy6f+Pa8/
4CL/AKqZMYijwy1/ytXy8f8Aj3u/+Ai/6qZYNPJHhl3/ACtPy+f+Pe7/AOAj/wCqmTGll5I8Mtf8
rQ0A/wDHvd/8BH/1UywaKfkjwy7/AJWboR/497r/AICP/qpkx2fPvCOAtf8AKytDP+6Lr/gI/wDq
pkx2bk7x+PgjgLY/MXRT0guf+Bj/AOa8P8nZO8fj4LwFseftIPSG4/4FP+a8f5Pn3j8fBHAUTY+b
dOvbqO2iimWSQkKXVQNhXejHwyGTSSiLNIMSE4JzGYLCcKFpOFCN0PfVYB/rf8QOU6n+7LZi+oPm
7zx/ymvmD/tpXn/J98uxfQPcHpsX0D3B+gfkb/jgx/Mf8m0zzJ2LIMVdirsVdirsVdir5C/5zM/5
TvRP+2WP+oiXOw9nf7qX9b9AcfNzZF+To/5BVpB9rj/qMlzI1H98fx0dNq/qLJycXDWk4ULScKEq
/IbT7OTVvMty0S/Wm1BoRPQcxHVmKqT0BPXNL25M3EdKd52bEUS9s/RNv/O/3j+maC3Zu/RNv/O/
3j+mNq79E2/87/eP6Y2rv0Tb/wA7/eP6Y2rv0Tb/AM7/AHj+mNq79E2/87/eP6Y2rv0Tb/zv94/p
jau/RNv/ADv94/pjau/RNv8Azv8AeP6Y2rv0Tb/zv94/pjau/RNv/O/3j+mNq80/PXTbMeUJmaMP
LbyQvBKwBZC8gRqEU6qc6L2YyyjqwAdpA38nA7RiDiJ7nzykeekEvOpz5cSmsWx9z/xE5jak+gsZ
cmeE5qWhaThQtJwqj/L2+sW4/wBf/iDZRq/7s/jq2YfqD5v89f8AKb+Yf+2nef8AUQ+W4foHuD02
L6R7n6BeRv8Ajgx/Mf8AJtM8zdiyDFXYq7FXYq7FXYq+Qv8AnMz/AJTvRP8Atlj/AKiJc7D2d/up
f1v0Bx83Nkn5Pj/kEujn/mI/6jJcvz/35/HR02r+osjJyThLScKFhOSQgvyCamo+YR46o3/G2aHt
z6o+533Zv0l7pmhdk7FXYq7FXYq7FXYq7FXYq7FXYq8w/PPfytdr7wf8nRm/9m/8bj7pfc4PaP8A
cn4PntI89IJebTXQUpqlufc/8ROY+c+gsZcmZk5rWhaThVaThQmPlrfW7Yf6/wDybbMfWf3R/HVt
wfWHzh58/wCU58xf9tO8/wCoh8twfRH3B6fH9I9z9AfI3/HBj+Y/5NpnmbsGQYq7FXYq7FXYq7FX
yF/zmZ/yneif9ssf9REudh7O/wB1L+t+gOPm5sm/KEf8gh0Y+9x/1GTZdm/vz+OgdPrOZT8nLHAW
E5JC0nCqX/kO9NT8wf8AbUb/AI2zQ9ufVH3O+7N+kvdPUzQ07Jg/5n+a7ny3o9zq0CGY20cREHMx
hvUnEfUA9OVemZmh03jZRC6u/utpz5eCBl3PIv8AoY3V/wDq1j/pKf8A5ozoR7NxP8f2ftdf/KR/
m/ay/wDLf81dQ826lcW0tsbQWypJyWZpOXJuNKELmu7U7JGliJCXFZ7nJ0ur8UkVVPZvUzR05rvU
xpXepjSu9TGld6mNK71MaV3qY0rzP8625eXrlf8AjB/ydGb32c/xuPul9zg9o/3J+DwdI89FJebT
PRkpqEJ9z+o5RmPpLCXJlJOYLStJwoWE4UJp5V31+1H/ABk/5NtmNrf7o/D727T/AFh84efv+U68
x/8AbUvf+oh8swf3cfcHp8f0j3P0B8jf8cGP5j/k2meaOwZBirsVdirsVdirsVfIX/OZn/Kd6J/2
yx/1ES52Hs7/AHUv636A4+bmyf8AKMf8gc0U/wCVcf8AUZNl2b/GD+OgdPrOZTsnLnXrScKrScKE
s/I1qanr3/bTb/jbND22PVH3O/7N+kvb/UzROyeYfny9fJmoj/iu2/6i0zbdiD/CofH/AHJcTW/3
R+H3vmQDPQ4wefep/kEeOuah/wAYov8Ak5nOe1Eaxw/rH7nZdmfUfc+l/UziXcu9TFXepirvUxV3
qYq71MVd6mKvOPzhblolwPaH/k5m79nv8aj7j9zgdo/3J+DxdI89BJebTDTEpeRH3P6jlOQ7MZck
/JzFaFhOFC0nCqbeUd/MVoP+Mn/Jpsxdf/cy+H3hu031h84/mB/ynnmT/tqXv/UQ+Waf+7j/AFR9
z0+P6R7n6AeRv+ODH8x/ybTPNHYMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0B
x83NlP5TD/kC+iH/AC7n/qMmy3L/AIzL8dA6jWcym5OZDrlpOFC0nChKfyUbjqmue+pN/wAbZpO3
h6of1Xf9m/SXtXqZz9Oyeafnm9fKOoD/AIrt/wDqKXNz2CP8Lh/nf7kuJrv7o/D73zaFz0mMHnre
nfkWeOt33/GKP/k5nMe1kaxQ/rH7nZ9l/Ufc+j/UzhKdy71MaV3qY0rvUxpXepjSu9TGld6mNK8/
/NduWlzL7Rf8nM3XYH+NR+P3OD2l/cn4PJEjzvSXmkbYpS4Q/wCfTKpnZjLkmpOUtC0nCq0nJITj
ybv5lsx/xk/5NPmH2h/cy+H3hv0394Hzl+YP/KfeZf8Atq3v/US+Waf+7j/VH3PTw+kPv/yN/wAc
GP5j/k2meaOwZBirsVdirsVdirsVfIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmyv8qB/
yBPRD/xZc/8AUZNlmT/GpfjoHUa1MycynWrScKFhOFUn/JxuOqa1/wBtJv8AjbNR7QD1Q/qu+7M+
kvZfUznKdm83/Ox+XlW/H/Fdv/1Erm69nh/hkP8AO/3JcTXf3J+H3vncLnp8YvOPSvyUHDWL0+Mc
f/E85P2u/uof1j9ztOy/qPufQ3qZwVO6d6mNK71MaV3qY0rvUxpXepjSu9TGlYJ+ZjcrGUe0X/E8
3HYX+Mx+P3OB2l/cn4PNEjzuSXmkVbpSRTlZLGXJFk5FpWk5JC0nChOvJG/miyH/ABl/5MvmF2l/
cS+H3hyNL/eD8dHzn+Yf/Kf+Zv8AtrX3/US+T0391H+qPueoh9Iff3kb/jgx/Mf8m0zzVz2QYq7F
XYq7FXYq7FXyF/zmZ/yneif9ssf9REudh7O/3Uv636A4+bmyz8qv/JHaGf8Aiy5/6jJ8nk/xuXu/
QHUa1MCczHWLCcKrScKEk/KN+Gqaz/20W/42zV+0Y3x/1Xfdl/SXr31gZzVO0Yv520E+YLSSwbms
EyIHkjKhgUk9Tbl8hmXodXLTZRliATG+fmKas2IZImJ6sFH5J2Q/3ddffF/TOh/0W5/5kPt/W4P8
lw7ynvlX8v18vXbz25mkMoVX9QpQBWrtxAzV9pdsZNXERkAOHutyNPpI4iSDzei/WBmnpy3fWBjS
u+sDGld9YGNK76wMaV31gY0rvrAxpWGfmA4kt5B/kx/8Tzbdi/4wPj9zgdpf3J+DAkjztCXmldEp
vkbYy5Licm0LScKFhOFU98ib+a7H/nr/AMmXzB7T/wAXl8PvDkaT+8H46PnT8xf/ACYPmf8A7a19
/wBRL5PTf3Uf6o+56iHIPv3yN/xwY/mP+TaZ5q57IMVdirsVdirsVdir5C/5zMB/x1oh7fosf9RE
udh7O/3Uv636A4+bmyz8qv8AyRuh07S3Ffb/AEyfJz/xuXu/QHUa3kjSczXWLScKFpOFDH/ywfhq
OsH/AJf2/W2a72lG+P8AqO+7L+kvT/rXvnMU7R31r3xpXfWvfGld9a98aV31r3xpXfWvfGld9a98
aV31r3xpXfWvfGld9a98aV31r3xpWM+bpPUiYeyf8Szadj/4wPj9zg9pf3J+DFUjzsCXmVVkpGTg
id2MuSHJy9oWE4VWk4UJ95CqfNljQbD1a/8AIl8wO1P8Xl8PvDkaP+8H46PnX8xf/Jg+Z/8AtrX3
/US+T0v91H+qPuephyD798jf8cGP5j/k2meaueyDFXYq7FXYq7FXYq+b/wDnMvyrcXGj6F5ngQtH
YSSWV6QK8VuOLxMfBQ8bLXxYZ0vs7nAlLGeu4+DTmHVif/OOXm+xvdGvfImoTiO5LvdaSXbZlIDS
RINt0ZfUp1ILeGbPtDGYTGUfF12pxcQZ/fafeWUhjuIytDQPT4W+Ry3FljMWC6acDHmhCcta1hOF
Uo/KW39fzBf2/X1dQYU/4LNf7UHfH/Ud92V9Je4/4U/yPwzkuN2tO/wp/kfhjxrTv8Kf5H4Y8a07
/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GP
GtO/wp/kfhjxrTz78wrH6lf/AFelKxI1Pmx/pm27GN5x8fucDtP+5PwYmkedcS8wuuEpbufb+OMD
6mMuSWE5ltK0nChyJJK4jjUu7bKqgkk+wGJIAsqBfJldi1p5F0G982+Yf3BjjMdlZsQsskjbqig/
tvxoB2FSds0Wu1H5iQxY9+8u20OlINl82eV7HUPNvny1WWs1zqF4bm8cDqC5lmb2rvT3zK1mUYMB
PdGh9wd/AWafoD5TtzBo6L2LEj5ABf8AjXPPHLTjFXYq7FXYq7FXYql/mDQdL8waLeaLqsIuNPv4
mhuIj3Vu4PZlO6nsd8sxZZY5CUeYQRb4V/NL8oPNv5a656pEs2kiX1NL1uDko+FqpzZf7qVdtvHd
Sc7vQ9o49TGuUusfxzDjTgQmOjf85K/mRp1klrMbLUymy3F5C5loBQAtDJCG+ZFfE4z7KxSN7j3O
OcUSj/8Aoaf8wf8Aq36T/wAibn/soyH8kYu+X2fqR4Ad/wBDT/mD/wBW/Sf+RNz/ANlGP8kYu+X2
fqXwAoN/zkl5puryK6v9OtRJACIHsXmtXUk9SzvcfgBlObsSEuUiPfv+puxejkjP+hnPMn++bz/u
JS/9U8xv9Dw/n/7H9rd4rv8AoZzzJ/vm8/7iUv8A1Tx/0PD+f/sf2r4rv+hnPMn++bz/ALiUv/VP
H/Q8P5/+x/aviu/6Gc8yf75vP+4lL/1Tx/0PD+f/ALH9q+K7/oZzzJ/vm8/7iUv/AFTx/wBDw/n/
AOx/aviu/wChnPMn++bz/uJS/wDVPH/Q8P5/+x/aviu/6Gc8yf75vP8AuJS/9U8f9Dw/n/7H9q+K
7/oZzzJ/vm8/7iUv/VPH/Q8P5/8Asf2r4rv+hnPMn++bz/uJS/8AVPH/AEPD+f8A7H9q+K7/AKGc
8yf75vP+4lL/ANU8f9Dw/n/7H9q+K7/oZzzJ/vm8/wC4lL/1Tx/0PD+f/sf2r4qEm/5yR8yi8jvr
awikvEBQyahNLdjgRSg4mBh1/mPyy7D2FCJ3kT7hX62vJLjFK3/Q0/5g/wDVv0n/AJE3P/ZRmT/J
GLvl9n6nH8AO/wChp/zB/wCrfpP/ACJuf+yjH+SMXfL7P1L4Ad/0NP8AmD/1b9J/5E3P/ZRj/JGL
vl9n6l8AO/6Gn/MH/q36T/yJuf8Asox/kjF3y+z9S+AGj/zlP+YJH/HP0ke/o3P/AGUY/wAkYu+X
2fqXwQwPXvM/nfz/AKxF9emm1O7qRa2cS0jiDHf040AVR0qx32+I5lxhi08L2iO9tjCtg+ifyJ/J
ubQF+u36q+tXajmRusEXXiD+vxNPAE8f2r2l+YlUfoH2+f6nKhCn0XBCkEKQxiiRgKv0ZqGxfirs
VdirsVdirsVdiqhfWFlf2slpewpcW0o4yQyKGVh7g4QSNwryzXP+cZ/yy1G4a4i0xIGY1McTyQrX
5RMo/wCFzYY+1tTAUJn40fvYHGEp/wChVPy+/wCWAf8ASXdf1yf8tar+f9kf1L4cXf8AQqn5ff8A
LAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/
rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n
/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF
3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff
8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r
+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+
f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4c
Xf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cW1/5xW/L
9WDCwWo33urkj7icT2zqv5/2R/UvhxZl5Z/KLy9oKcLG1t7RduRgT42p4sQN/c5g5tRkym5yMmQA
DNrOytrSL04E4j9o9ST7nKUq+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku
xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV//2Q==</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xapMM:DocumentID>
uuid:f3c53255-be8a-4b04-817b-695bf2c54c8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
filesave.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>
end='w'</xpacket>
</metadata>
<g
id="Layer_1">
<path
style="opacity:0.2;"
d="M9.416,5.208c-2.047,0-3.712,1.693-3.712,3.775V39.15c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.983c0-2.082-1.665-3.775-3.712-3.775H9.416z"
id="path592" />
<path
style="opacity:0.2;"
d="M9.041,4.833c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.608c0-2.082-1.665-3.775-3.712-3.775H9.041z"
id="path593" />
<path
style="fill:#00008D;"
d="M8.854,4.646c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.42c0-2.082-1.665-3.775-3.712-3.775H8.854z"
id="path594" />
<path
style="fill:#00008D;"
d="M8.854,5.021c-1.84,0-3.337,1.525-3.337,3.4v30.167c0,1.875,1.497,3.4,3.337,3.4h29.401 c1.84,0,3.337-1.525,3.337-3.4V8.42c0-1.875-1.497-3.4-3.337-3.4H8.854z"
id="path595" />
<path
id="path166_1_"
style="fill:#FFFFFF;"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<linearGradient
id="path166_2_"
gradientUnits="userSpaceOnUse"
x1="-149.0464"
y1="251.1436"
x2="-149.0464"
y2="436.303"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#B4E2FF"
id="stop598" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop599" />
<a:midPointStop
offset="0"
style="stop-color:#B4E2FF"
id="midPointStop600" />
<a:midPointStop
offset="0.5"
style="stop-color:#B4E2FF"
id="midPointStop601" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop602" />
</linearGradient>
<path
id="path166"
style="fill:url(#path166_2_);"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<path
style="fill:#FFFFFF;"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path604" />
<linearGradient
id="XMLID_1_"
gradientUnits="userSpaceOnUse"
x1="7.3057"
y1="7.2559"
x2="50.7728"
y2="50.7231">
<stop
offset="0"
style="stop-color:#94CAFF"
id="stop606" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop607" />
<a:midPointStop
offset="0"
style="stop-color:#94CAFF"
id="midPointStop608" />
<a:midPointStop
offset="0.5"
style="stop-color:#94CAFF"
id="midPointStop609" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop610" />
</linearGradient>
<path
style="fill:url(#XMLID_1_);"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path611" />
<linearGradient
id="XMLID_2_"
gradientUnits="userSpaceOnUse"
x1="23.5039"
y1="2.187"
x2="23.5039"
y2="34.4368">
<stop
offset="0"
style="stop-color:#428AFF"
id="stop613" />
<stop
offset="1"
style="stop-color:#C9E6FF"
id="stop614" />
<a:midPointStop
offset="0"
style="stop-color:#428AFF"
id="midPointStop615" />
<a:midPointStop
offset="0.5"
style="stop-color:#428AFF"
id="midPointStop616" />
<a:midPointStop
offset="1"
style="stop-color:#C9E6FF"
id="midPointStop617" />
</linearGradient>
<path
style="fill:url(#XMLID_2_);"
d="M36.626,6.861c0,0-26.184,0-26.914,0c0,0.704,0,16.59,0,17.294c0.721,0,26.864,0,27.583,0 c0-0.704,0-16.59,0-17.294C36.988,6.861,36.626,6.861,36.626,6.861z"
id="path618" />
<polygon
id="path186_1_"
style="fill:#FFFFFF;"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<linearGradient
id="path186_2_"
gradientUnits="userSpaceOnUse"
x1="-104.5933"
y1="411.6699"
x2="-206.815"
y2="309.4482"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#CCCCCC"
id="stop621" />
<stop
offset="1"
style="stop-color:#F0F0F0"
id="stop622" />
<a:midPointStop
offset="0"
style="stop-color:#CCCCCC"
id="midPointStop623" />
<a:midPointStop
offset="0.5"
style="stop-color:#CCCCCC"
id="midPointStop624" />
<a:midPointStop
offset="1"
style="stop-color:#F0F0F0"
id="midPointStop625" />
</linearGradient>
<polygon
id="path186"
style="fill:url(#path186_2_);"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<path
style="fill:#FFFFFF;stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path627" />
<linearGradient
id="XMLID_3_"
gradientUnits="userSpaceOnUse"
x1="34.5967"
y1="3.5967"
x2="18.4087"
y2="19.7847">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop629" />
<stop
offset="0.5506"
style="stop-color:#E6EDFF"
id="stop630" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop631" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop632" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop633" />
<a:midPointStop
offset="0.5506"
style="stop-color:#E6EDFF"
id="midPointStop634" />
<a:midPointStop
offset="0.5"
style="stop-color:#E6EDFF"
id="midPointStop635" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop636" />
</linearGradient>
<path
style="fill:url(#XMLID_3_);stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path637" />
<linearGradient
id="path205_1_"
gradientUnits="userSpaceOnUse"
x1="-174.4409"
y1="300.0908"
x2="-108.8787"
y2="210.2074"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#003399"
id="stop639" />
<stop
offset="0.2697"
style="stop-color:#0035ED"
id="stop640" />
<stop
offset="1"
style="stop-color:#57ADFF"
id="stop641" />
<a:midPointStop
offset="0"
style="stop-color:#003399"
id="midPointStop642" />
<a:midPointStop
offset="0.5"
style="stop-color:#003399"
id="midPointStop643" />
<a:midPointStop
offset="0.2697"
style="stop-color:#0035ED"
id="midPointStop644" />
<a:midPointStop
offset="0.5"
style="stop-color:#0035ED"
id="midPointStop645" />
<a:midPointStop
offset="1"
style="stop-color:#57ADFF"
id="midPointStop646" />
</linearGradient>
<rect
id="path205"
x="12.154"
y="26.479"
style="fill:url(#path205_1_);"
width="22.007"
height="13.978" />
<linearGradient
id="XMLID_4_"
gradientUnits="userSpaceOnUse"
x1="21.8687"
y1="25.1875"
x2="21.8687"
y2="44.6251">
<stop
offset="0"
style="stop-color:#DFDFDF"
id="stop649" />
<stop
offset="1"
style="stop-color:#7D7D99"
id="stop650" />
<a:midPointStop
offset="0"
style="stop-color:#DFDFDF"
id="midPointStop651" />
<a:midPointStop
offset="0.5"
style="stop-color:#DFDFDF"
id="midPointStop652" />
<a:midPointStop
offset="1"
style="stop-color:#7D7D99"
id="midPointStop653" />
</linearGradient>
<path
style="fill:url(#XMLID_4_);"
d="M13.244,27.021c-0.311,0-0.563,0.252-0.563,0.563v13.104c0,0.312,0.252,0.563,0.563,0.563h17.249 c0.311,0,0.563-0.251,0.563-0.563V27.583c0-0.311-0.252-0.563-0.563-0.563H13.244z M18.85,30.697c0,0.871,0,5.078,0,5.949 c-0.683,0-2.075,0-2.759,0c0-0.871,0-5.078,0-5.949C16.775,30.697,18.167,30.697,18.85,30.697z"
id="path654" />
<linearGradient
id="XMLID_5_"
gradientUnits="userSpaceOnUse"
x1="-158.0337"
y1="288.0684"
x2="-158.0337"
y2="231.3219"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#F0F0F0"
id="stop656" />
<stop
offset="0.6348"
style="stop-color:#CECEDB"
id="stop657" />
<stop
offset="0.8595"
style="stop-color:#B1B1C5"
id="stop658" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop659" />
<a:midPointStop
offset="0"
style="stop-color:#F0F0F0"
id="midPointStop660" />
<a:midPointStop
offset="0.5"
style="stop-color:#F0F0F0"
id="midPointStop661" />
<a:midPointStop
offset="0.6348"
style="stop-color:#CECEDB"
id="midPointStop662" />
<a:midPointStop
offset="0.5"
style="stop-color:#CECEDB"
id="midPointStop663" />
<a:midPointStop
offset="0.8595"
style="stop-color:#B1B1C5"
id="midPointStop664" />
<a:midPointStop
offset="0.5"
style="stop-color:#B1B1C5"
id="midPointStop665" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop666" />
</linearGradient>
<path
style="fill:url(#XMLID_5_);"
d="M13.244,27.583v13.104h17.249V27.583H13.244z M19.413,37.209h-3.884v-7.074h3.884V37.209z"
id="path667" />
<linearGradient
id="path228_1_"
gradientUnits="userSpaceOnUse"
x1="-68.1494"
y1="388.4561"
x2="-68.1494"
y2="404.6693"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#3399FF"
id="stop669" />
<stop
offset="1"
style="stop-color:#000000"
id="stop670" />
<a:midPointStop
offset="0"
style="stop-color:#3399FF"
id="midPointStop671" />
<a:midPointStop
offset="0.5"
style="stop-color:#3399FF"
id="midPointStop672" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop673" />
</linearGradient>
<rect
id="path228"
x="37.83"
y="9.031"
style="fill:url(#path228_1_);"
width="1.784"
height="1.785" />
<polyline
id="_x3C_Slice_x3E_"
style="fill:none;"
points="0,48 0,0 48,0 48,48 " />
</g>
<rect
id="rect810"
fill="none"
width="256"
height="256"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:none;" />
<g
id="g979"
transform="matrix(0.207200,1.691268,-1.691268,0.207200,86.28419,53.75496)">
<path
opacity="0.2"
d="M191.924,195.984c-11.613-36.127-13.717-42.67-14.859-44.064c0.119,0.076,0.289,0.178,0.289,0.178 l-78.55-87.455c-4.195-4.65-14.005,0.356-21.355,6.976c-7.283,6.542-13.32,15.773-9.37,20.564l78.944,87.543l0.533,0.094 l37.768,17.602l7.688,2.365L191.924,195.984z"
id="path731"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
opacity="0.2"
d="M193.557,193.516c-11.611-36.125-13.713-42.67-14.855-44.064c0.117,0.072,0.287,0.178,0.287,0.178 l-78.545-87.455c-4.199-4.651-14.015,0.355-21.361,6.975c-7.281,6.545-13.32,15.773-9.368,20.566l78.945,87.539l0.533,0.1 l37.77,17.598l7.682,2.367L193.557,193.516z"
id="path732"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
opacity="0.2"
d="M186.773,191.049c-11.613-36.127-13.713-42.672-14.863-44.068c0.121,0.074,0.295,0.18,0.295,0.18 L93.653,59.704c-4.192-4.65-14.009,0.359-21.354,6.978c-7.283,6.542-13.321,15.771-9.369,20.565l78.942,87.541l0.535,0.096 l37.768,17.598l7.686,2.367L186.773,191.049z"
id="path733"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.2;" />
<path
fill="#FFFFFF"
d="M186.43,189.355c-11.613-36.125-13.713-42.666-14.863-44.061c0.123,0.072,0.293,0.18,0.293,0.18 L93.314,58.016c-4.199-4.651-14.015,0.357-21.359,6.977c-7.283,6.543-13.322,15.774-9.37,20.566l78.941,87.541l0.535,0.098 l37.771,17.598l7.686,2.363L186.43,189.355z"
id="path734"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="url(#XMLID_11_)"
d="M186.43,189.355c-11.613-36.125-13.713-42.666-14.863-44.061c0.123,0.072,0.293,0.18,0.293,0.18 L93.314,58.016c-4.199-4.651-14.015,0.357-21.359,6.977c-7.283,6.543-13.322,15.774-9.37,20.566l78.941,87.541l0.535,0.098 l37.771,17.598l7.686,2.363L186.43,189.355z"
id="path741"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_11_);" />
<path
fill="url(#XMLID_12_)"
d="M166.969,147.762l13.723,38.129l-36.371-17.902l0.168-0.152c-0.25-0.08-0.496-0.178-0.701-0.316 l-0.125,0.121l-75.303-83.57l0.123-0.104c-2.246-2.49,1.032-9.094,7.308-14.752c6.28-5.652,13.18-8.219,15.425-5.733 l75.292,83.565L166.969,147.762z"
id="path748"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_12_);" />
<path
fill="url(#XMLID_13_)"
d="M148.652,170.121c2.076-0.369,4.635-1.479,7.252-3.139c1.617-1.018,3.279-2.283,4.898-3.744 c1.455-1.303,2.736-2.666,3.84-4.01c2.076-2.531,3.322-5.213,3.781-7.424l-1.455-4.043l-0.463-0.715L91.707,64.028 c0.608,2.24-0.962,5.938-4.063,9.74c-1.134,1.389-2.441,2.789-3.945,4.141c-1.574,1.419-3.195,2.652-4.767,3.654 c-4.493,2.871-8.628,3.928-10.548,2.486l-0.025,0.021l75.303,83.57l0.125-0.121c0.205,0.139,0.451,0.236,0.701,0.316 l-0.168,0.152L148.652,170.121z"
id="path758"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_13_);" />
<path
fill="#FFFFFF"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path759"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="#FFFFFF"
d="M75.79,69.215c6.28-5.652,13.18-8.219,15.425-5.733l16.961,18.828l1.152,26.49l-17.973,0.784 L68.359,84.071l0.123-0.104C66.236,81.477,69.514,74.874,75.79,69.215z"
id="path760"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="#FFFFFF"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path761"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#ffffff;" />
<path
fill="url(#XMLID_14_)"
d="M75.79,69.215c6.28-5.652,13.18-8.219,15.425-5.733l16.961,18.828l1.152,26.49l-17.973,0.784 L68.359,84.071l0.123-0.104C66.236,81.477,69.514,74.874,75.79,69.215z"
id="path768"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_14_);" />
<path
fill="url(#XMLID_15_)"
d="M68.083,83.41c1.732,1.772,5.994,0.776,10.643-2.194c1.541-0.982,3.132-2.193,4.677-3.586 c1.476-1.325,2.759-2.701,3.872-4.063c3.578-4.388,5.091-8.642,3.477-10.584l0.023-0.024l75.817,84.119 c0.635,2.262-0.588,6.498-3.754,10.357c-1.082,1.318-2.34,2.656-3.77,3.934c-1.588,1.434-3.219,2.676-4.807,3.676 c-4.74,3.006-9.303,4.199-11.016,2.301c-0.393-0.439-2.098-2.336-2.145-2.406L67.845,83.626L68.083,83.41z"
id="path778"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_15_);" />
<path
fill="url(#XMLID_16_)"
d="M74.357,90.713c0,0,6.036-0.212,10.685-3.182c1.542-0.983,3.132-2.193,4.677-3.586 c1.477-1.326,2.76-2.701,3.873-4.064c2.928-3.589,4.469-7.088,4.049-9.307l-6.865-7.617l-0.023,0.024 c1.614,1.942,0.102,6.196-3.477,10.584c-1.113,1.362-2.396,2.738-3.872,4.063c-1.545,1.393-3.136,2.604-4.677,3.586 c-4.648,2.971-8.91,3.967-10.643,2.194l-0.238,0.217l73.256,81.311c0.047,0.07,1.752,1.967,2.145,2.406 c0.342,0.377,0.799,0.627,1.344,0.771L74.357,90.713z"
id="path790"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:url(#XMLID_16_);" />
<path
fill="#003333"
d="M172.035,175.354c-1.635,1.477-3.307,2.764-4.949,3.84l13.605,6.697l-5.096-14.156 C174.537,172.953,173.352,174.176,172.035,175.354z"
id="path791"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;fill:#003333;" />
<path
opacity="0.5"
fill="#FFFFFF"
d="M163.121,157.053L86.968,73.93c0.1-0.12,0.213-0.242,0.307-0.364 c1.428-1.752,2.52-3.49,3.225-5.058l75.768,82.707C165.715,153.039,164.668,155.082,163.121,157.053z"
id="path792"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.5;fill:#ffffff;" />
<path
opacity="0.5"
fill="#FFFFFF"
d="M87.275,73.566c0.634-0.774,1.189-1.548,1.694-2.3l76.015,82.974 c-0.578,1.063-1.283,2.146-2.146,3.193c-0.744,0.896-1.566,1.805-2.465,2.697L84.152,76.932 C85.316,75.824,86.361,74.692,87.275,73.566z"
id="path793"
transform="matrix(0.125000,0.000000,0.000000,0.125000,-41.51768,12.75884)"
style="font-size:12;opacity:0.5;fill:#ffffff;" />
</g>
</svg>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<!-- Created with Sodipodi ("http://www.sodipodi.com/") -->
<svg
width="48pt"
height="48pt"
viewBox="0 0 48 48"
style="overflow:visible;enable-background:new 0 0 48 48"
xml:space="preserve"
xmlns="http://www.w3.org/2000/svg"
xmlns:xap="http://ns.adobe.com/xap/1.0/"
xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:a="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/"
xmlns:x="adobe:ns:meta/"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:xlink="http://www.w3.org/1999/xlink"
id="svg589"
sodipodi:version="0.32"
sodipodi:docname="/home/david/Desktop/temp/devices/gnome-dev-floppy.svg"
sodipodi:docbase="/home/david/Desktop/temp/devices/">
<defs
id="defs677" />
<sodipodi:namedview
id="base" />
<metadata
id="metadata590">
<xpacket>begin='' id='W5M0MpCehiHzreSzNTczkc9d' </xpacket>
<x:xmpmeta
x:xmptk="XMP toolkit 3.0-29, framework 1.6">
<rdf:RDF>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<pdf:Producer>
Adobe PDF library 5.00</pdf:Producer>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998" />
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xap:CreateDate>
2004-02-04T02:08:51+02:00</xap:CreateDate>
<xap:ModifyDate>
2004-03-29T09:20:16Z</xap:ModifyDate>
<xap:CreatorTool>
Adobe Illustrator 10.0</xap:CreatorTool>
<xap:MetadataDate>
2004-02-29T14:54:28+01:00</xap:MetadataDate>
<xap:Thumbnails>
<rdf:Alt>
<rdf:li
rdf:parseType="Resource">
<xapGImg:format>
JPEG</xapGImg:format>
<xapGImg:width>
256</xapGImg:width>
<xapGImg:height>
256</xapGImg:height>
<xapGImg:image>
/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7
FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7F
XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FX
Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXzd+b/wDzlWum3k+h+QxFc3EJMdzrkoEkKuNiLZPsyU/nb4fAEb50vZ/YXEBPLsP5v62meXue
A3v5mfmprl080vmLVriXdjHBcTIi17rFCVRfoXOghocEBQhH5NJmepUf8Tfmj/1dtb/6SLv/AJqy
f5fD/Nj8gjxPN3+JvzR/6u2t/wDSRd/81Y/l8P8ANj8gviebv8Tfmj/1dtb/AOki7/5qx/L4f5sf
kF8Tzd/ib80f+rtrf/SRd/8ANWP5fD/Nj8gviebv8Tfmj/1dtb/6SLv/AJqx/L4f5sfkF8Tzd/ib
80f+rtrf/SRd/wDNWP5fD/Nj8gviebv8Tfmj/wBXbW/+ki7/AOasfy+H+bH5BfE83f4m/NH/AKu2
t/8ASRd/81Y/l8P82PyC+J5u/wATfmj/ANXbW/8ApIu/+asfy+H+bH5BfE83f4m/NH/q7a3/ANJF
3/zVj+Xw/wA2PyC+J5u/xN+aP/V21v8A6SLv/mrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/wA1Y/l8
P82PyC+J5u/xN+aP/V21v/pIu/8AmrH8vh/mx+QXxPN3+JvzR/6u2t/9JF3/AM1Y/l8P82PyC+J5
u/xN+aP/AFdtb/6SLv8A5qx/L4f5sfkF8Tzd/ib80f8Aq7a3/wBJF3/zVj+Xw/zY/IL4nm7/ABN+
aP8A1dtb/wCki7/5qx/L4f5sfkF8Tzd/ib80f+rtrf8A0kXf/NWP5fD/ADY/IL4nm7/E35o/9XbW
/wDpIu/+asfy+H+bH5BfE82j5t/M+Aes2ta3EI/i9U3N2vGnfly2x/LYT/DH5BePzZ15C/5yh/Mb
y7cxRaxcHzDpQIEsF2f9IC9zHc058v8AX5D9ea/VdiYcg9I4JeXL5NkchD688jeefLvnby/DrmhT
+rayEpLE4CywygAtFKtTxYV+RG4qDnH6nTTwT4JjdyIytkGY6XYq7FXYq7FXYq7FXjX/ADlH+YV1
5W8hppunymHU/MMj2qSqaMltGoNwynxPNE/2WbrsPSDLl4pfTDf49GvJKg+VPy+8lP5ivecqM9rG
4jWFaqZpTvw57cVUULGvcfMdtYFk7Ac3Ua3VHGAI/XLk+jNK/LfSLS0SK4JYqDSGCkUCV3PBVAPX
vtXwzWT7TlfoAA+11f5Xi3mTIo608meV/wBL2lnLbSSLcc/92sB8Kk70IOU5+0s4xSmCPT5NuDRY
pZBEjmyu2/KnydcFgliF4ip5TT/wY5ov5f1f877B+p2/8kaf+b9pVv8AlT3lL/lkT/kdcf1w/wAv
az+d9kf1I/kjTfzftLR/J/yl/wAsif8AI65/rj/L2s/nfZH9S/yRpv5v2lafyg8p/wDLKn/I65/r
h/l3Wfzvsj+pf5J03837S0fyh8p/8sqf8jrn+uP8u6z+d9kf1L/JOm/m/aWj+UXlP/llj/5HXP8A
XH+XdZ/O+yP6l/knTfzftLX/ACqPyn/yzR/8jrn+uH+XNb/O+yP6l/knTd32lr/lUflX/lmj/wCR
1z/XB/Lmt/nfZH9S/wAk6bu+0u/5VD5W/wCWaP8A5HXP9cf5d1n877I/qX+SdN/N+0u/5VB5Y/5Z
ov8Akdc/1x/l3Wfzvsj+pf5J03837S7/AJU/5a/5Zov+R1z/AFx/l3Wfzvsj+pf5J03837S7/lT3
lv8A5Zov+R1z/XB/L2s/nfZH9S/yRpv5v2l3/KnfLv8AyzRf8jrn+uP8vaz+d9kf1L/JGm/m/aXf
8qc8v/8ALNF/yOuf64/y9rP532R/Uv8AJGm/m/aXf8qb0H/lmh/5HXP9cf5f1n877I/qX+SNN/N+
0u/5U1oP/LND/wAjrn+uD+X9Z/O+wfqT/JGn/m/aVk/5P6BDBJM1rEVjUswE1xWg8KnH/RBq/wCd
9g/Uv8kaf+b9pYp5i8oeXLOGBoLQo0j8SRJIe3+Uxza9ldq6jNKQnLkO4Ov1/Z2HGAYj7SkreXdK
IoEZD/Mrmo+Vaj8M3I1eR1fgRee/mD+W8NxE91ZIPrhq0UygL6rbt6ctNubfssevy6XwmJjbYjo5
ml1csUhGRuB+xJP+cfvzGvfJvny1T1T+iNXdLTUbcn4SWNIpPZkduvgTmq7Z0gy4Sf4obj9L0WOV
F93xSJLGsiGqOAyn2O+cK5K7FXYq7FXYq7FXYq+R/wDnM65lbzjoFsT+6i05pEG/2pJ2VvbpGM6/
2cH7uR/pfocfNzb/ACCs7caXZzBAJPQuJS3fn9ZMXL/gNs2uvkRirvl+h0GffUm+kfx972EnNKyU
LXfzNpZ/4y/8QOOo/wAWn8PvbdN/fRei6SPjl/1R+vOWDvyjyMsQsIwoWkYVWEYULSMKFhGSVrFV
wOBVwOBVwOBK4HFVwOBK4HAq4HAlcDgVQ1I/7jrn/jE36siUh5X5uH+j23tL/DN52F9U/c6vtX6Q
x0nOidEgNZodNmBAP2aE9jzG4+jL9P8AWGrL9JfNGuSmDzPqEsICGK9maNRsF4ykgCnhmRKArhel
08iccT5B+iHk+4afQbcsalBx+8Bv+Ns8wdknWKuxV2KuxV2KuxV8hf8AOZn/ACneif8AbLH/AFES
52Hs7/dS/rfoDj5uaO/IUf7gbI/8ulx/1GnNlr/7v/O/Q6DN/jEv6v6nqxOahksshXzJpv8Az0/4
gcjqf8Xn8PvbdL/exei6SPjk/wBUfrzlw9AmBGTYrSMKrCMKFpGFVhGFC0jChYRklaxVcDgVcDgV
cDgSuBxVcDgSuBwKuBwJUdRP+4+5/wCMTfqyJSHlvmwf6Lb+0n8M3XYX1S9zq+1fpDwzzXoX1nzD
eT8a82U1/wBgBm1y6fikS6qGfhFJt5T076lomoJSnOSM/dTMzQYuCTj6rJxh4h5k/wCUi1T/AJjJ
/wDk62bM83fab+6j/VH3P0N8jf8AHBj+Y/5NpnlztGQYq7FXYq7FXYq7FXyF/wA5mf8AKd6J/wBs
sf8AURLnYezv91L+t+gOPm5ph+Q4/wCddsj/AMutx/1Gtmx1/wBH+d+h0Gb/ABiX9X9T1InNUl2n
b+Y9P/56f8QOQ1X+Lz+H3t+l/vYvRtJH7yT/AFR+vOWDv0xIySFhGSQtIwqsIwoWkYVWEYULSMKF
hGSVrFVwOBVwOBVwOBK4HFVwOBK4HAqjf/8AHPuf+MTfqyEkh5j5rH+iQ/65/Uc3XYf1y9zre1Pp
DDpbGzkcu8QZ26k50weeMQoXVvDDZyrEgQNQkD5jLMX1BhMbPmrzN/ykmrf8xlx/ydbMp6XTf3cf
6o+5+hnkb/jgx/Mf8m0zy52bIMVdirsVdirsVdir5C/5zM/5TvRP+2WP+oiXOw9nf7qX9b9AcfNz
TL8iR/zrFif+Xa4/6jWzYa76f879Doc/9/L3fqenE5rEL9KFfMNh85P+IHK9X/cT+H3uRpP72L0f
SR+8k/1f45yzv0xIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4FXA4FXA4ErgcVXA4EqV
9/vBc/8AGJv1ZCXJIea+ah/ocfsx/wCInNx2H9cvcHW9qfQGIE507z6HvN7dx8v1jLMfNhPk+Z/N
H/KTav8A8xtx/wAnWzJek0/93H+qPufoX5G/44MfzH/JtM8vdmyDFXYq7FXYq7FXYq+Qv+czP+U7
0T/tlj/qIlzsPZ3+6l/W/QHHzc0z/Isf86nYH/l3uP8AqNbM/W8v879Doc/9/L3fqelk5rkK2j76
/ZfN/wDiBynWf3Evx1cjSf3oej6UP3r/AOr/ABzl3fpliq0jCq0jChYRkkLSMKrCMKFpGFVhGFC0
jChYRklaxVcDgVcDgVcDgSuBxVTvP94rn/jE36shPkyDzjzUP9BX5n/iJzbdifXL4Ou7U+gfFhhO
dS86pXG8TD5frycebGXJ8z+av+Un1j/mNuf+TrZkh6TT/wB3H+qPufoV5G/44MfzH/JtM8vdmyDF
XYq7FXYq7FXYq+Qv+czP+U70T/tlj/qIlzsPZ3+6l/W/QHHzc01/I0f86fp5/wCKLj/qNbM7W8v8
79Dos/8AfH3fqejE5gMEVoe+u2fzf/iByjW/3Evx1cnR/wB4Ho+l/wB4/wAv45y7v0xxV2KrSMKr
SMKFhGSQtIwqsIwoWkYVWEYULSMKFhGSVrFVwOBVwOBVwOBKy6P+h3H/ABib9WQnySHnnmkf6APY
t/xE5texPrPwdf2n9A+LByc6t5xTfcEZIIL5p82f8pTrP/Mdc/8AJ5syRyek0/8Adx9w+5+hPkb/
AI4MfzH/ACbTPL3ZsgxV2KuxV2KuxV2KvkL/AJzM/wCU70T/ALZY/wCoiXOw9nf7qX9b9AcfNzTf
8jx/zpWnH/im4/6jHzO1n6f0Oi1H98fd+p6ETmE1o3y/vrdr82/4gcxtd/cycrR/3gej6b/eP8v4
5y7v0wxV2KuxVaRhVaRhQsIySFpGFVhGFC0jCqwjChaRhQsIyStYquBwKuBwKtuT/olx/wAYm/Vk
J8mUXn/mkf7jj/sv+InNp2L/AHh+Dr+0/oHxYGTnWvONDdgMUPmnzb/yletf8x9z/wAnmzIjyelw
f3cfcH6EeRv+ODH8x/ybTPMHZMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0Bx8
3NOPyRH/ADo2mn/im4/6jHzN1fP4/odHqP70+5n5OYjUmHlzfWrb5t/xA5ia7+5k5Wi/vA9H07+8
f5fxzmHfo/FXYq7FXYqtIwqtIwoWEZJC0jCqwjChaRhVYRhQtIwoWEZJWsVXA4Fan/3luP8AjE36
shk5MosD80D/AHGt8m/4gc2XY394fg4Haf0fN56TnXvNLod5VHz/AFYJclD5p83/APKWa3/zH3X/
ACebMiPIPS4P7uPuD9CPI3/HBj+Y/wCTaZ5g7JkGKuxV2KuxV2KuxV8hf85mf8p3on/bLH/URLnY
ezv91L+t+gOPm5p1+SYp5B0w/wDFVx/1GPmZq/q+P6HR6n+9PuZ0TmM0pr5Y31iD5t/xA5h6/wDu
i5mi/vA9G0/7b/LOYd8jsVdirsVdirsVWkYVWkYULCMkhaRhVYRhQtIwqsIwoWkYULCMkrWKul/3
mn/4xt+rK8nJMebB/NA/3Fyf6r/8QObHsb+8Pw+9we0/o+bzgnOxeZVLXe4QfP8AUcjPkmPN81ec
f+Uu1z/toXX/ACebL4fSHpcH0R9wfoP5G/44MfzH/JtM8xdkyDFXYq7FXYq7FXYq+Qv+czP+U70T
/tlj/qIlzsPZ3+6l/W/QHHzc08/JUf8AIPNLP/Fdx/1GSZl6r6z7/wBDpNT/AHh9zNicocdOPKu+
rQ/M/wDEGzB7Q/ui5uh+sPRbEhXappt3zmXfI3mn8w+/FXeon8w+/FWvUj/mH3jFXepH/MPvGKu9
WP8AnH3jFXepF/Ov3jFVpeP+dfvGG1Wl4/51+8YbQtLJ/Mv3jDa0tJT+ZfvGHiCKWnj/ADL/AMEP
64eILS08f5l/4If1w8QRS0qP5l/4If1w8YWlpUfzL/wS/wBceMIorCn+Uv8AwS/1w8YXhKyai289
WXeNgPiB3I+eRnIEJiGFeZx/uKm/1H/4gc2PY/8AefL73B7S+j5vNCc7N5dWsN7uMfP/AIichl+k
so83zX5z/wCUw13/ALaF1/yffL8f0j3PS4foj7g/QbyN/wAcGP5j/k2meYuyZBirsVdirsVdirsV
fIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmnv5Lj/AJBxpZ/yLj/qMkzK1X1n3/odJqv7
w+5mZOVOOmvly5jtrwTyAlIzuFpXdSO9Mw9bjM4cI6uVpJiMrLK/8T2H++5fuX/mrNL/ACdk7x+P
g7b85DuLX+JbD/fcv3L/AM1Y/wAnZO8fj4L+ch3Fr/Elj/vuX7l/5qx/k7J3j8fBfzkO4tf4jsf9
9y/cv/NWP8nZO8fj4L+ch3Fo+YrH/fcv3L/zVj/J2TvH4+C/nIdxW/4hsv5JPuX/AJqx/k7J3j8f
BfzkO4tfp+y/kk+5f+asf5Oyd4/HwX85DuLX6es/5JPuX/mrH+TsnePx8F/OQ7i1+nbP+ST7l/5q
x/k7J3j8fBfzkO4tfpy0/kk+5f64/wAnZO8fj4L+ch3Fr9N2n8kn3L/XH+TsnePx8F/OQ7i0datf
5JPuX+uP8nZO8fj4L+ch3Fb+mLX+R/uH9cf5Oyd4/HwX85DuLX6Xtv5H+4f1x/k7J3j8fBfzkO4t
fpa2/lf7h/XH+TsnePx8F/OQ7i0dVt/5X+4f1x/k7J3j8fBfzkO4tHVLf+V/uH9cf5Oyd4/HwX85
DuKW6/dxz6XcKgYFY5DvT+Q++bDs7TSx5Bdbkfe4etzicNvN5sTnWPOojTN7+If63/ETleb6Cyhz
fNnnX/lMte/7aN3/AMn3y/H9I9z02H6B7g/QXyN/xwY/mP8Ak2meYuxZBirsVdirsVdirsVfIX/O
Zn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5uaf/kyP+QZ6Uf8m4/6jJMytT/eH8dHS6r6z7mXk5W4rSyy
JXgxWvWhIxMQVEiOTjdXH+/X/wCCOPAO5eM9603Vz/v1/wDgjh4I9y8Z71pu7n/fz/8ABHDwR7kc
Z71pu7r/AH8//BH+uHw49y8cu9aby6/39J/wR/rh8OPcEccu9ab27/3/ACf8E39cPhx7gjjl3rTe
3f8Av+T/AINv64fDj3BfEl3rTfXn+/5P+Db+uHw49wR4ku8rTfXv/LRJ/wAG39cPhR7gviS7ytN/
e/8ALRJ/wbf1w+FHuCPEl3ladQvv+WiX/g2/rh8KPcEeJLvK06hff8tMv/Bt/XD4Ue4L4ku8rTqN
/wD8tMv/AAbf1w+FDuCPEl3ladRv/wDlpl/4Nv64fBh3D5L4ku8rTqWof8tUv/Bt/XD4MO4fJHiy
7ytOp6h/y1Tf8jG/rh8GHcPkjxZd5aOp6j/y1Tf8jG/rh8GHcPkviy7ypvqN+6lWuZWVhRlLsQQe
xFcIwwHQfJByS7yhScta0Xo++pQj/W/4icq1H0Fnj+p82+d/+Uz1/wD7aN3/AMn3y7F9I9z02H6B
7g/QTyN/xwY/mP8Ak2meZOxZBirsVdirsVdirsVfIX/OZn/Kd6J/2yx/1ES52Hs7/dS/rfoDj5ub
IfybH/ILtJPtcf8AUZLmTqP70/jo6XVfWWVE5FxFpOFVpOFDCLz82fLtrdz2slteGSCRonKpFQlC
VNKyDbbLRjLLgKgfzh8tf8s17/wEX/VXD4ZXwytP5weWv+Wa9/4CL/qrjwFHhlo/m95b/wCWa8/4
CL/qrh4Cvhlo/m75b/5Zrz/gIv8Aqrh4V8Mrf+Vt+XD/AMe15/wEX/VXCIFHhF3/ACtjy6f+Pa8/
4CL/AKqZMYijwy1/ytXy8f8Aj3u/+Ai/6qZYNPJHhl3/ACtPy+f+Pe7/AOAj/wCqmTGll5I8Mtf8
rQ0A/wDHvd/8BH/1UywaKfkjwy7/AJWboR/497r/AICP/qpkx2fPvCOAtf8AKytDP+6Lr/gI/wDq
pkx2bk7x+PgjgLY/MXRT0guf+Bj/AOa8P8nZO8fj4LwFseftIPSG4/4FP+a8f5Pn3j8fBHAUTY+b
dOvbqO2iimWSQkKXVQNhXejHwyGTSSiLNIMSE4JzGYLCcKFpOFCN0PfVYB/rf8QOU6n+7LZi+oPm
7zx/ymvmD/tpXn/J98uxfQPcHpsX0D3B+gfkb/jgx/Mf8m0zzJ2LIMVdirsVdirsVdir5C/5zM/5
TvRP+2WP+oiXOw9nf7qX9b9AcfNzZF+To/5BVpB9rj/qMlzI1H98fx0dNq/qLJycXDWk4ULScKEq
/IbT7OTVvMty0S/Wm1BoRPQcxHVmKqT0BPXNL25M3EdKd52bEUS9s/RNv/O/3j+maC3Zu/RNv/O/
3j+mNq79E2/87/eP6Y2rv0Tb/wA7/eP6Y2rv0Tb/AM7/AHj+mNq79E2/87/eP6Y2rv0Tb/zv94/p
jau/RNv/ADv94/pjau/RNv8Azv8AeP6Y2rv0Tb/zv94/pjau/RNv/O/3j+mNq80/PXTbMeUJmaMP
LbyQvBKwBZC8gRqEU6qc6L2YyyjqwAdpA38nA7RiDiJ7nzykeekEvOpz5cSmsWx9z/xE5jak+gsZ
cmeE5qWhaThQtJwqj/L2+sW4/wBf/iDZRq/7s/jq2YfqD5v89f8AKb+Yf+2nef8AUQ+W4foHuD02
L6R7n6BeRv8Ajgx/Mf8AJtM8zdiyDFXYq7FXYq7FXYq+Qv8AnMz/AJTvRP8Atlj/AKiJc7D2d/up
f1v0Bx83Nkn5Pj/kEujn/mI/6jJcvz/35/HR02r+osjJyThLScKFhOSQgvyCamo+YR46o3/G2aHt
z6o+533Zv0l7pmhdk7FXYq7FXYq7FXYq7FXYq7FXYq8w/PPfytdr7wf8nRm/9m/8bj7pfc4PaP8A
cn4PntI89IJebTXQUpqlufc/8ROY+c+gsZcmZk5rWhaThVaThQmPlrfW7Yf6/wDybbMfWf3R/HVt
wfWHzh58/wCU58xf9tO8/wCoh8twfRH3B6fH9I9z9AfI3/HBj+Y/5NpnmbsGQYq7FXYq7FXYq7FX
yF/zmZ/yneif9ssf9REudh7O/wB1L+t+gOPm5sm/KEf8gh0Y+9x/1GTZdm/vz+OgdPrOZT8nLHAW
E5JC0nCqX/kO9NT8wf8AbUb/AI2zQ9ufVH3O+7N+kvdPUzQ07Jg/5n+a7ny3o9zq0CGY20cREHMx
hvUnEfUA9OVemZmh03jZRC6u/utpz5eCBl3PIv8AoY3V/wDq1j/pKf8A5ozoR7NxP8f2ftdf/KR/
m/ay/wDLf81dQ826lcW0tsbQWypJyWZpOXJuNKELmu7U7JGliJCXFZ7nJ0ur8UkVVPZvUzR05rvU
xpXepjSu9TGld6mNK71MaV3qY0rzP8625eXrlf8AjB/ydGb32c/xuPul9zg9o/3J+DwdI89FJebT
PRkpqEJ9z+o5RmPpLCXJlJOYLStJwoWE4UJp5V31+1H/ABk/5NtmNrf7o/D727T/AFh84efv+U68
x/8AbUvf+oh8swf3cfcHp8f0j3P0B8jf8cGP5j/k2meaOwZBirsVdirsVdirsVfIX/OZn/Kd6J/2
yx/1ES52Hs7/AHUv636A4+bmyf8AKMf8gc0U/wCVcf8AUZNl2b/GD+OgdPrOZTsnLnXrScKrScKE
s/I1qanr3/bTb/jbND22PVH3O/7N+kvb/UzROyeYfny9fJmoj/iu2/6i0zbdiD/CofH/AHJcTW/3
R+H3vmQDPQ4wefep/kEeOuah/wAYov8Ak5nOe1Eaxw/rH7nZdmfUfc+l/UziXcu9TFXepirvUxV3
qYq71MVd6mKvOPzhblolwPaH/k5m79nv8aj7j9zgdo/3J+DxdI89BJebTDTEpeRH3P6jlOQ7MZck
/JzFaFhOFC0nCqbeUd/MVoP+Mn/Jpsxdf/cy+H3hu031h84/mB/ynnmT/tqXv/UQ+Waf+7j/AFR9
z0+P6R7n6AeRv+ODH8x/ybTPNHYMgxV2KuxV2KuxV2KvkL/nMz/lO9E/7ZY/6iJc7D2d/upf1v0B
x83NlP5TD/kC+iH/AC7n/qMmy3L/AIzL8dA6jWcym5OZDrlpOFC0nChKfyUbjqmue+pN/wAbZpO3
h6of1Xf9m/SXtXqZz9Oyeafnm9fKOoD/AIrt/wDqKXNz2CP8Lh/nf7kuJrv7o/D73zaFz0mMHnre
nfkWeOt33/GKP/k5nMe1kaxQ/rH7nZ9l/Ufc+j/UzhKdy71MaV3qY0rvUxpXepjSu9TGld6mNK8/
/NduWlzL7Rf8nM3XYH+NR+P3OD2l/cn4PJEjzvSXmkbYpS4Q/wCfTKpnZjLkmpOUtC0nCq0nJITj
ybv5lsx/xk/5NPmH2h/cy+H3hv0394Hzl+YP/KfeZf8Atq3v/US+Waf+7j/VH3PTw+kPv/yN/wAc
GP5j/k2meaOwZBirsVdirsVdirsVfIX/ADmZ/wAp3on/AGyx/wBREudh7O/3Uv636A4+bmyv8qB/
yBPRD/xZc/8AUZNlmT/GpfjoHUa1MycynWrScKFhOFUn/JxuOqa1/wBtJv8AjbNR7QD1Q/qu+7M+
kvZfUznKdm83/Ox+XlW/H/Fdv/1Erm69nh/hkP8AO/3JcTXf3J+H3vncLnp8YvOPSvyUHDWL0+Mc
f/E85P2u/uof1j9ztOy/qPufQ3qZwVO6d6mNK71MaV3qY0rvUxpXepjSu9TGlYJ+ZjcrGUe0X/E8
3HYX+Mx+P3OB2l/cn4PNEjzuSXmkVbpSRTlZLGXJFk5FpWk5JC0nChOvJG/miyH/ABl/5MvmF2l/
cS+H3hyNL/eD8dHzn+Yf/Kf+Zv8AtrX3/US+T0391H+qPueoh9Iff3kb/jgx/Mf8m0zzVz2QYq7F
XYq7FXYq7FXyF/zmZ/yneif9ssf9REudh7O/3Uv636A4+bmyz8qv/JHaGf8Aiy5/6jJ8nk/xuXu/
QHUa1MCczHWLCcKrScKEk/KN+Gqaz/20W/42zV+0Y3x/1Xfdl/SXr31gZzVO0Yv520E+YLSSwbms
EyIHkjKhgUk9Tbl8hmXodXLTZRliATG+fmKas2IZImJ6sFH5J2Q/3ddffF/TOh/0W5/5kPt/W4P8
lw7ynvlX8v18vXbz25mkMoVX9QpQBWrtxAzV9pdsZNXERkAOHutyNPpI4iSDzei/WBmnpy3fWBjS
u+sDGld9YGNK76wMaV31gY0rvrAxpWGfmA4kt5B/kx/8Tzbdi/4wPj9zgdpf3J+DAkjztCXmldEp
vkbYy5Licm0LScKFhOFU98ib+a7H/nr/AMmXzB7T/wAXl8PvDkaT+8H46PnT8xf/ACYPmf8A7a19
/wBRL5PTf3Uf6o+56iHIPv3yN/xwY/mP+TaZ5q57IMVdirsVdirsVdir5C/5zMB/x1oh7fosf9RE
udh7O/3Uv636A4+bmyz8qv8AyRuh07S3Ffb/AEyfJz/xuXu/QHUa3kjSczXWLScKFpOFDH/ywfhq
OsH/AJf2/W2a72lG+P8AqO+7L+kvT/rXvnMU7R31r3xpXfWvfGld9a98aV31r3xpXfWvfGld9a98
aV31r3xpXfWvfGld9a98aV31r3xpWM+bpPUiYeyf8Szadj/4wPj9zg9pf3J+DFUjzsCXmVVkpGTg
id2MuSHJy9oWE4VWk4UJ95CqfNljQbD1a/8AIl8wO1P8Xl8PvDkaP+8H46PnX8xf/Jg+Z/8AtrX3
/US+T0v91H+qPuephyD798jf8cGP5j/k2meaueyDFXYq7FXYq7FXYq+b/wDnMvyrcXGj6F5ngQtH
YSSWV6QK8VuOLxMfBQ8bLXxYZ0vs7nAlLGeu4+DTmHVif/OOXm+xvdGvfImoTiO5LvdaSXbZlIDS
RINt0ZfUp1ILeGbPtDGYTGUfF12pxcQZ/fafeWUhjuIytDQPT4W+Ry3FljMWC6acDHmhCcta1hOF
Uo/KW39fzBf2/X1dQYU/4LNf7UHfH/Ud92V9Je4/4U/yPwzkuN2tO/wp/kfhjxrTv8Kf5H4Y8a07
/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GPGtO/wp/kfhjxrTv8Kf5H4Y8a07/Cn+R+GP
GtO/wp/kfhjxrTz78wrH6lf/AFelKxI1Pmx/pm27GN5x8fucDtP+5PwYmkedcS8wuuEpbufb+OMD
6mMuSWE5ltK0nChyJJK4jjUu7bKqgkk+wGJIAsqBfJldi1p5F0G982+Yf3BjjMdlZsQsskjbqig/
tvxoB2FSds0Wu1H5iQxY9+8u20OlINl82eV7HUPNvny1WWs1zqF4bm8cDqC5lmb2rvT3zK1mUYMB
PdGh9wd/AWafoD5TtzBo6L2LEj5ABf8AjXPPHLTjFXYq7FXYq7FXYql/mDQdL8waLeaLqsIuNPv4
mhuIj3Vu4PZlO6nsd8sxZZY5CUeYQRb4V/NL8oPNv5a656pEs2kiX1NL1uDko+FqpzZf7qVdtvHd
Sc7vQ9o49TGuUusfxzDjTgQmOjf85K/mRp1klrMbLUymy3F5C5loBQAtDJCG+ZFfE4z7KxSN7j3O
OcUSj/8Aoaf8wf8Aq36T/wAibn/soyH8kYu+X2fqR4Ad/wBDT/mD/wBW/Sf+RNz/ANlGP8kYu+X2
fqXwAoN/zkl5puryK6v9OtRJACIHsXmtXUk9SzvcfgBlObsSEuUiPfv+puxejkjP+hnPMn++bz/u
JS/9U8xv9Dw/n/7H9rd4rv8AoZzzJ/vm8/7iUv8A1Tx/0PD+f/sf2r4rv+hnPMn++bz/ALiUv/VP
H/Q8P5/+x/aviu/6Gc8yf75vP+4lL/1Tx/0PD+f/ALH9q+K7/oZzzJ/vm8/7iUv/AFTx/wBDw/n/
AOx/aviu/wChnPMn++bz/uJS/wDVPH/Q8P5/+x/aviu/6Gc8yf75vP8AuJS/9U8f9Dw/n/7H9q+K
7/oZzzJ/vm8/7iUv/VPH/Q8P5/8Asf2r4rv+hnPMn++bz/uJS/8AVPH/AEPD+f8A7H9q+K7/AKGc
8yf75vP+4lL/ANU8f9Dw/n/7H9q+K7/oZzzJ/vm8/wC4lL/1Tx/0PD+f/sf2r4qEm/5yR8yi8jvr
awikvEBQyahNLdjgRSg4mBh1/mPyy7D2FCJ3kT7hX62vJLjFK3/Q0/5g/wDVv0n/AJE3P/ZRmT/J
GLvl9n6nH8AO/wChp/zB/wCrfpP/ACJuf+yjH+SMXfL7P1L4Ad/0NP8AmD/1b9J/5E3P/ZRj/JGL
vl9n6l8AO/6Gn/MH/q36T/yJuf8Asox/kjF3y+z9S+AGj/zlP+YJH/HP0ke/o3P/AGUY/wAkYu+X
2fqXwQwPXvM/nfz/AKxF9emm1O7qRa2cS0jiDHf040AVR0qx32+I5lxhi08L2iO9tjCtg+ifyJ/J
ubQF+u36q+tXajmRusEXXiD+vxNPAE8f2r2l+YlUfoH2+f6nKhCn0XBCkEKQxiiRgKv0ZqGxfirs
VdirsVdirsVdiqhfWFlf2slpewpcW0o4yQyKGVh7g4QSNwryzXP+cZ/yy1G4a4i0xIGY1McTyQrX
5RMo/wCFzYY+1tTAUJn40fvYHGEp/wChVPy+/wCWAf8ASXdf1yf8tar+f9kf1L4cXf8AQqn5ff8A
LAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/
rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n
/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF
3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff
8sA/6S7r+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r
+uP8tar+f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+
f9kf1L4cXf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4c
Xf8AQqn5ff8ALAP+ku6/rj/LWq/n/ZH9S+HF3/Qqn5ff8sA/6S7r+uP8tar+f9kf1L4cW1/5xW/L
9WDCwWo33urkj7icT2zqv5/2R/UvhxZl5Z/KLy9oKcLG1t7RduRgT42p4sQN/c5g5tRkym5yMmQA
DNrOytrSL04E4j9o9ST7nKUq+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku
xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Kux
V2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV//2Q==</xapGImg:image>
</rdf:li>
</rdf:Alt>
</xap:Thumbnails>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<xapMM:DocumentID>
uuid:f3c53255-be8a-4b04-817b-695bf2c54c8b</xapMM:DocumentID>
</rdf:Description>
<rdf:Description
rdf:about="uuid:9dfcc10e-f4e2-4cbf-91b0-8deea2f1a998">
<dc:format>
image/svg+xml</dc:format>
<dc:title>
<rdf:Alt>
<rdf:li
xml:lang="x-default">
filesave.ai</rdf:li>
</rdf:Alt>
</dc:title>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<xpacket>end='w' </xpacket>
</metadata>
<g
id="Layer_1">
<path
style="opacity:0.2;"
d="M9.416,5.208c-2.047,0-3.712,1.693-3.712,3.775V39.15c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.983c0-2.082-1.665-3.775-3.712-3.775H9.416z"
id="path592" />
<path
style="opacity:0.2;"
d="M9.041,4.833c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.608c0-2.082-1.665-3.775-3.712-3.775H9.041z"
id="path593" />
<path
style="fill:#00008D;"
d="M8.854,4.646c-2.047,0-3.712,1.693-3.712,3.775v30.167c0,2.082,1.666,3.775,3.712,3.775h29.401 c2.047,0,3.712-1.693,3.712-3.775V8.42c0-2.082-1.665-3.775-3.712-3.775H8.854z"
id="path594" />
<path
style="fill:#00008D;"
d="M8.854,5.021c-1.84,0-3.337,1.525-3.337,3.4v30.167c0,1.875,1.497,3.4,3.337,3.4h29.401 c1.84,0,3.337-1.525,3.337-3.4V8.42c0-1.875-1.497-3.4-3.337-3.4H8.854z"
id="path595" />
<path
id="path166_1_"
style="fill:#FFFFFF;"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<linearGradient
id="path166_2_"
gradientUnits="userSpaceOnUse"
x1="-149.0464"
y1="251.1436"
x2="-149.0464"
y2="436.303"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#B4E2FF"
id="stop598" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop599" />
<a:midPointStop
offset="0"
style="stop-color:#B4E2FF"
id="midPointStop600" />
<a:midPointStop
offset="0.5"
style="stop-color:#B4E2FF"
id="midPointStop601" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop602" />
</linearGradient>
<path
id="path166"
style="fill:url(#path166_2_);"
d="M40.654,38.588c0,1.36-1.074,2.463-2.399,2.463H8.854c-1.326,0-2.4-1.103-2.4-2.463V8.42 c0-1.36,1.074-2.462,2.4-2.462h29.401c1.325,0,2.399,1.103,2.399,2.462V38.588z" />
<path
style="fill:#FFFFFF;"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path604" />
<linearGradient
id="XMLID_1_"
gradientUnits="userSpaceOnUse"
x1="7.3057"
y1="7.2559"
x2="50.7728"
y2="50.7231">
<stop
offset="0"
style="stop-color:#94CAFF"
id="stop606" />
<stop
offset="1"
style="stop-color:#006DFF"
id="stop607" />
<a:midPointStop
offset="0"
style="stop-color:#94CAFF"
id="midPointStop608" />
<a:midPointStop
offset="0.5"
style="stop-color:#94CAFF"
id="midPointStop609" />
<a:midPointStop
offset="1"
style="stop-color:#006DFF"
id="midPointStop610" />
</linearGradient>
<path
style="fill:url(#XMLID_1_);"
d="M8.854,6.521c-1.013,0-1.837,0.852-1.837,1.9v30.167c0,1.048,0.824,1.9,1.837,1.9h29.401 c1.013,0,1.837-0.853,1.837-1.9V8.42c0-1.048-0.824-1.9-1.837-1.9H8.854z"
id="path611" />
<linearGradient
id="XMLID_2_"
gradientUnits="userSpaceOnUse"
x1="23.5039"
y1="2.187"
x2="23.5039"
y2="34.4368">
<stop
offset="0"
style="stop-color:#428AFF"
id="stop613" />
<stop
offset="1"
style="stop-color:#C9E6FF"
id="stop614" />
<a:midPointStop
offset="0"
style="stop-color:#428AFF"
id="midPointStop615" />
<a:midPointStop
offset="0.5"
style="stop-color:#428AFF"
id="midPointStop616" />
<a:midPointStop
offset="1"
style="stop-color:#C9E6FF"
id="midPointStop617" />
</linearGradient>
<path
style="fill:url(#XMLID_2_);"
d="M36.626,6.861c0,0-26.184,0-26.914,0c0,0.704,0,16.59,0,17.294c0.721,0,26.864,0,27.583,0 c0-0.704,0-16.59,0-17.294C36.988,6.861,36.626,6.861,36.626,6.861z"
id="path618" />
<polygon
id="path186_1_"
style="fill:#FFFFFF;"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<linearGradient
id="path186_2_"
gradientUnits="userSpaceOnUse"
x1="-104.5933"
y1="411.6699"
x2="-206.815"
y2="309.4482"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#CCCCCC"
id="stop621" />
<stop
offset="1"
style="stop-color:#F0F0F0"
id="stop622" />
<a:midPointStop
offset="0"
style="stop-color:#CCCCCC"
id="midPointStop623" />
<a:midPointStop
offset="0.5"
style="stop-color:#CCCCCC"
id="midPointStop624" />
<a:midPointStop
offset="1"
style="stop-color:#F0F0F0"
id="midPointStop625" />
</linearGradient>
<polygon
id="path186"
style="fill:url(#path186_2_);"
points="35.809,6.486 10.221,6.486 10.221,23.405 36.788,23.405 36.788,6.486 " />
<path
style="fill:#FFFFFF;stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path627" />
<linearGradient
id="XMLID_3_"
gradientUnits="userSpaceOnUse"
x1="34.5967"
y1="3.5967"
x2="18.4087"
y2="19.7847">
<stop
offset="0"
style="stop-color:#FFFFFF"
id="stop629" />
<stop
offset="0.5506"
style="stop-color:#E6EDFF"
id="stop630" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop631" />
<a:midPointStop
offset="0"
style="stop-color:#FFFFFF"
id="midPointStop632" />
<a:midPointStop
offset="0.5"
style="stop-color:#FFFFFF"
id="midPointStop633" />
<a:midPointStop
offset="0.5506"
style="stop-color:#E6EDFF"
id="midPointStop634" />
<a:midPointStop
offset="0.5"
style="stop-color:#E6EDFF"
id="midPointStop635" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop636" />
</linearGradient>
<path
style="fill:url(#XMLID_3_);stroke:#FFFFFF;stroke-width:0.1875;"
d="M11.488,7.019c0,0.698,0,14.542,0,15.239c0.716,0,23.417,0,24.133,0c0-0.698,0-14.541,0-15.239 C34.904,7.019,12.204,7.019,11.488,7.019z"
id="path637" />
<linearGradient
id="path205_1_"
gradientUnits="userSpaceOnUse"
x1="-174.4409"
y1="300.0908"
x2="-108.8787"
y2="210.2074"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#003399"
id="stop639" />
<stop
offset="0.2697"
style="stop-color:#0035ED"
id="stop640" />
<stop
offset="1"
style="stop-color:#57ADFF"
id="stop641" />
<a:midPointStop
offset="0"
style="stop-color:#003399"
id="midPointStop642" />
<a:midPointStop
offset="0.5"
style="stop-color:#003399"
id="midPointStop643" />
<a:midPointStop
offset="0.2697"
style="stop-color:#0035ED"
id="midPointStop644" />
<a:midPointStop
offset="0.5"
style="stop-color:#0035ED"
id="midPointStop645" />
<a:midPointStop
offset="1"
style="stop-color:#57ADFF"
id="midPointStop646" />
</linearGradient>
<rect
id="path205"
x="12.154"
y="26.479"
style="fill:url(#path205_1_);"
width="22.007"
height="13.978" />
<linearGradient
id="XMLID_4_"
gradientUnits="userSpaceOnUse"
x1="21.8687"
y1="25.1875"
x2="21.8687"
y2="44.6251">
<stop
offset="0"
style="stop-color:#DFDFDF"
id="stop649" />
<stop
offset="1"
style="stop-color:#7D7D99"
id="stop650" />
<a:midPointStop
offset="0"
style="stop-color:#DFDFDF"
id="midPointStop651" />
<a:midPointStop
offset="0.5"
style="stop-color:#DFDFDF"
id="midPointStop652" />
<a:midPointStop
offset="1"
style="stop-color:#7D7D99"
id="midPointStop653" />
</linearGradient>
<path
style="fill:url(#XMLID_4_);"
d="M13.244,27.021c-0.311,0-0.563,0.252-0.563,0.563v13.104c0,0.312,0.252,0.563,0.563,0.563h17.249 c0.311,0,0.563-0.251,0.563-0.563V27.583c0-0.311-0.252-0.563-0.563-0.563H13.244z M18.85,30.697c0,0.871,0,5.078,0,5.949 c-0.683,0-2.075,0-2.759,0c0-0.871,0-5.078,0-5.949C16.775,30.697,18.167,30.697,18.85,30.697z"
id="path654" />
<linearGradient
id="XMLID_5_"
gradientUnits="userSpaceOnUse"
x1="-158.0337"
y1="288.0684"
x2="-158.0337"
y2="231.3219"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#F0F0F0"
id="stop656" />
<stop
offset="0.6348"
style="stop-color:#CECEDB"
id="stop657" />
<stop
offset="0.8595"
style="stop-color:#B1B1C5"
id="stop658" />
<stop
offset="1"
style="stop-color:#FFFFFF"
id="stop659" />
<a:midPointStop
offset="0"
style="stop-color:#F0F0F0"
id="midPointStop660" />
<a:midPointStop
offset="0.5"
style="stop-color:#F0F0F0"
id="midPointStop661" />
<a:midPointStop
offset="0.6348"
style="stop-color:#CECEDB"
id="midPointStop662" />
<a:midPointStop
offset="0.5"
style="stop-color:#CECEDB"
id="midPointStop663" />
<a:midPointStop
offset="0.8595"
style="stop-color:#B1B1C5"
id="midPointStop664" />
<a:midPointStop
offset="0.5"
style="stop-color:#B1B1C5"
id="midPointStop665" />
<a:midPointStop
offset="1"
style="stop-color:#FFFFFF"
id="midPointStop666" />
</linearGradient>
<path
style="fill:url(#XMLID_5_);"
d="M13.244,27.583v13.104h17.249V27.583H13.244z M19.413,37.209h-3.884v-7.074h3.884V37.209z"
id="path667" />
<linearGradient
id="path228_1_"
gradientUnits="userSpaceOnUse"
x1="-68.1494"
y1="388.4561"
x2="-68.1494"
y2="404.6693"
gradientTransform="matrix(0.1875 0 0 -0.1875 51.5 83.75)">
<stop
offset="0"
style="stop-color:#3399FF"
id="stop669" />
<stop
offset="1"
style="stop-color:#000000"
id="stop670" />
<a:midPointStop
offset="0"
style="stop-color:#3399FF"
id="midPointStop671" />
<a:midPointStop
offset="0.5"
style="stop-color:#3399FF"
id="midPointStop672" />
<a:midPointStop
offset="1"
style="stop-color:#000000"
id="midPointStop673" />
</linearGradient>
<rect
id="path228"
x="37.83"
y="9.031"
style="fill:url(#path228_1_);"
width="1.784"
height="1.785" />
<polyline
id="_x3C_Slice_x3E_"
style="fill:none;"
points="0,48 0,0 48,0 48,48 " />
</g>
</svg>
openFile=Open
openFileDetail=Open image or label file
quit=Quit
quitApp=Quit application
openDir=Open Dir
openDatasetDir=Open DatasetDir
copyPrevBounding=Copy previous Bounding Boxes in the current image
changeSavedAnnotationDir=Change default saved Annotation dir
openAnnotation=Open Annotation
openAnnotationDetail=Open an annotation file
changeSaveDir=Change Save Dir
nextImg=Next Image
nextImgDetail=Open the next Image
prevImg=Prev Image
prevImgDetail=Open the previous Image
verifyImg=Verify Image
verifyImgDetail=Verify Image
save=Check
saveDetail=Save the labels to a file
changeSaveFormat=Change save format
saveAs=Save As
saveAsDetail=Save the labels to a different file
closeCur=Close
closeCurDetail=Close the current file
deleteImg=Delete current image
deleteImgDetail=Delete the current image
resetAll=Reset Interface and Save Dir
resetAllDetail=Reset All
boxLineColor=Box Line Color
boxLineColorDetail=Choose Box line color
crtBox=Create RectBox
crtBoxDetail=Draw a new box
delBox=Delete RectBox
delBoxDetail=Remove the box
dupBox=Duplicate RectBox
dupBoxDetail=Create a duplicate of the selected box
tutorial=PaddleOCR url
tutorialDetail=Show demo
info=Information
zoomin=Zoom In
zoominDetail=Increase zoom level
zoomout=Zoom Out
zoomoutDetail=Decrease zoom level
originalsize=Original size
originalsizeDetail=Zoom to original size
fitWin=Fit Window
fitWinDetail=Zoom follows window size
fitWidth=Fit Width
fitWidthDetail=Zoom follows window width
editLabel=Edit Label
editLabelDetail=Modify the label of the selected Box
shapeLineColor=Shape Line Color
shapeLineColorDetail=Change the line color for this specific shape
shapeFillColor=Shape Fill Color
shapeFillColorDetail=Change the fill color for this specific shape
showHide=Show/Hide Label Panel
useDefaultLabel=Use default label
useDifficult=Difficult
boxLabelText=Box Labels
labels=Labels
autoSaveMode=Auto Save mode
singleClsMode=Single Class Mode
displayLabel=Display Labels
fileList=File List
files=Files
advancedMode=Advanced Mode
advancedModeDetail=Swtich to advanced mode
showAllBoxDetail=Show all bounding boxes
hideAllBoxDetail=Hide all bounding boxes
annoPanel=anno Panel
anno=anno
addNewBbox=new bbox
reLabel=reLabel
choosemodel=Choose OCR model
tipchoosemodel=Choose OCR model from dir
ImageResize=Image Resize
IR=Image Resize
autoRecognition=Auto Recognition
reRecognition=Re-recognition
mfile=File
medit=Edit
mview=View
mhelp=Help
iconList=Icon List
detectionBoxposition=Detection box position
recognitionResult=Recognition result
creatPolygon=Create PolygonBox
rotateLeft=Left turn 90 degrees
rotateRight=Right turn 90 degrees
drawSquares=Draw Squares
saveRec=Export Recognition Result
tempLabel=TEMPORARY
nullLabel=NULL
steps=Steps
keys=Shortcut Keys
choseModelLg=Choose Model Language
cancel=Cancel
ok=OK
autolabeling=Automatic Labeling
hideBox=Hide All Box
showBox=Show All Box
saveLabel=Export Label
singleRe=Re-recognition RectBox
labelDialogOption=Pop-up Label Input Dialog
undo=Undo
undoLastPoint=Undo Last Point
autoSaveMode=Auto Export Label Mode
lockBox=Lock selected box/Unlock all box
lockBoxDetail=Lock selected box/Unlock all box
keyListTitle=Key List
keyDialogTip=Enter object label
keyChange=Change Box Key
TableRecognition=Table Recognition
cellreRecognition=Cell Re-Recognition
exportJSON=Export Excel Label(PubTabNet)
saveAsDetail=將标签保存到其他文件
changeSaveDir=改变存放目录
openFile=打开文件
shapeLineColorDetail=更改线条颜色
resetAll=重置界面与保存地址
crtBox=矩形标注
crtBoxDetail=创建一个新的区块
dupBoxDetail=复制区块
verifyImg=验证图像
zoominDetail=放大
verifyImgDetail=验证图像
saveDetail=保存标签文件
openFileDetail=打开图像文件
fitWidthDetail=调整宽度适应到窗口宽度
tutorial=PaddleOCR地址
editLabel=编辑标签
openAnnotationDetail=打开标签文件
quit=退出
shapeFillColorDetail=更改填充颜色
closeCurDetail=关闭当前文件
closeCur=关闭文件
deleteImg=删除图像
deleteImgDetail=删除当前图像
fitWin=调整到窗口大小
delBox=删除选择的区块
boxLineColorDetail=选择线框颜色
originalsize=原始大小
resetAllDetail=重置所有设定
zoomoutDetail=放大画面
save=确认
saveAs=另存为
fitWinDetail=缩放到当前窗口大小
openDir=打开目录
openDatasetDir=打开数据集路径
copyPrevBounding=复制当前图像中的上一个边界框
showHide=显示/隐藏标签
changeSaveFormat=更改存储格式
shapeFillColor=填充颜色
quitApp=退出程序
dupBox=复制区块
delBoxDetail=删除区块
zoomin=放大画面
info=信息
openAnnotation=开启标签
prevImgDetail=上一个图像
fitWidth=缩放到当前画面宽度
zoomout=缩小画面
changeSavedAnnotationDir=更改保存标签文件的预设目录
nextImgDetail=下一个图像
originalsizeDetail=放大到原始大小
prevImg=上一张
tutorialDetail=显示示范内容
shapeLineColor=形状线条颜色
boxLineColor=区块线条颜色
editLabelDetail=修改当前所选的区块颜色
nextImg=下一张
useDefaultLabel=使用预设标签
useDifficult=有难度的
boxLabelText=区块的标签
labels=标签
autoSaveMode=自动保存模式
singleClsMode=单一类别模式
displayLabel=显示类别
fileList=文件列表
files=文件
advancedMode=专家模式
advancedModeDetail=切换到专家模式
showAllBoxDetail=显示所有区块
hideAllBoxDetail=隐藏所有区块
annoPanel=标注面板
anno=标注
addNewBbox=新框
reLabel=重标注
choosemodel=选择模型
tipchoosemodel=选择OCR模型
ImageResize=图片缩放
IR=图片缩放
autoRecognition=自动标注
reRecognition=重新识别
mfile=文件
medit=编辑
mview=视图
mhelp=帮助
iconList=缩略图
detectionBoxposition=检测框位置
recognitionResult=识别结果
creatPolygon=多点标注
drawSquares=正方形标注
rotateLeft=图片左旋转90度
rotateRight=图片右旋转90度
saveRec=导出识别结果
tempLabel=待识别
nullLabel=无法识别
steps=操作步骤
keys=快捷键
choseModelLg=选择模型语言
cancel=取消
ok=确认
autolabeling=自动标注中
hideBox=隐藏所有标注
showBox=显示所有标注
saveLabel=导出标记结果
singleRe=重识别此区块
labelDialogOption=弹出标记输入框
undo=撤销
undoLastPoint=撤销上个点
autoSaveMode=自动导出标记结果
lockBox=锁定框/解除锁定框
lockBoxDetail=若当前没有框处于锁定状态则锁定选中的框,若存在锁定框则解除所有锁定框的锁定状态
keyListTitle=关键词列表
keyDialogTip=请输入类型名称
keyChange=更改Box关键字类别
TableRecognition=表格识别
cellreRecognition=单元格重识别
exportJSON=导出表格JSON标注
\ No newline at end of file
[bumpversion]
commit = True
tag = True
[bumpversion:file:setup.py]
[bdist_wheel]
universal = 1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from setuptools import setup
from io import open
with open('requirements.txt', encoding="utf-8-sig") as f:
requirements = f.readlines()
requirements.append('tqdm')
def readme():
with open('README.md', encoding="utf-8-sig") as f:
README = f.read()
return README
setup(
name='PPOCRLabel',
packages=['PPOCRLabel'],
package_data = {'PPOCRLabel': ['libs/*','resources/strings/*','resources/icons/*']},
package_dir={'PPOCRLabel': ''},
include_package_data=True,
entry_points={"console_scripts": ["PPOCRLabel= PPOCRLabel.PPOCRLabel:main"]},
version='1.0.2',
install_requires=requirements,
license='Apache License 2.0',
description='PPOCRLabel is a semi-automatic graphic annotation tool suitable for OCR field, with built-in PPOCR model to automatically detect and re-recognize data. It is written in python3 and pyqt5, supporting rectangular box annotation and four-point annotation modes. Annotations can be directly used for the training of PPOCR detection and recognition models',
long_description=readme(),
long_description_content_type='text/markdown',
url='https://github.com/PaddlePaddle/PaddleOCR',
download_url='https://github.com/PaddlePaddle/PaddleOCR.git',
keywords=[
'ocr textdetection textrecognition paddleocr crnn east star-net rosetta ocrlite db chineseocr chinesetextdetection chinesetextrecognition'
],
classifiers=[
'Intended Audience :: Developers', 'Operating System :: OS Independent',
'Natural Language :: English',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7', 'Topic :: Utilities'
], )
\ No newline at end of file
English | [简体中文](README_ch.md)
<p align="center">
<img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">
<p align="left">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
<a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>
## Introduction
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
<div align="center">
<img src="./doc/imgs_results/PP-OCRv3/en/en_4.png" width="800">
</div>
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00006737.jpg" width="800">
</div>
## Recent updates
- **🔥2022.7 Release [OCR scene application collection](./applications/README_en.md)**
- PaddleOCR scene application covers general, manufacturing, finance, transportation industry of the main OCR vertical applications, including digital tube, LCD screen character, license plate, high-precision SVTR model, etc. **7 vertical models**.
- **🔥2022.5.9 Release PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
- Release [PP-OCRv3](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
- Release [PPOCRLabelv2](./PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Release interactive e-book [*"Dive into OCR"*](./doc/doc_en/ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
- 2021.12.21 Release PaddleOCR [release/2.4](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.4)
- Release 1 text detection algorithm ([PSENet](./doc/doc_en/algorithm_det_psenet_en.md)), 3 text recognition algorithms ([NRTR](./doc/doc_en/algorithm_rec_nrtr_en.md)[SEED](./doc/doc_en/algorithm_rec_seed_en.md)[SAR](./doc/doc_en/algorithm_rec_nrtr_en.md)).
- Release 1 key information extraction algorithm [SDMGR](./ppstructure/docs/kie_en.md) and 3 [DocVQA](./ppstructure/vqa) algorithms (LayoutLM, LayoutLMv2, LayoutXLM).
- 2021.9.7 Release PaddleOCR [release/2.3](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.3)
- Release [PP-OCRv2](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv2). The inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server in CPU device. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile.
- 2021.8.3 Release PaddleOCR [release/2.2](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.2)
- Release a new structured documents analysis toolkit, i.e., [PP-Structure](./ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
- [more](./doc/doc_en/update_en.md)
## Features
PaddleOCR support a variety of cutting-edge algorithms related to OCR, and developed industrial featured models/solution [PP-OCR](./doc/doc_en/ppocr_introduction_en.md) and [PP-Structure](./ppstructure/README.md) on this basis, and get through the whole process of data production, model training, compression, inference and deployment.
![](./doc/features_en.png)
> It is recommended to start with the “quick start” in the document tutorial
## Quick Experience
- One line of code quick use: [Quick Start](./doc/doc_en/quickstart_en.md)
- Web online experience for the ultra-lightweight OCR: [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
- Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
<a name="book"></a>
## E-book: *Dive Into OCR*
- [Dive Into OCR 📚](./doc/doc_en/ocr_book_en.md)
<a name="Community"></a>
## Community👬
- For international developers, we regard [PaddleOCR Discussions](https://github.com/PaddlePaddle/PaddleOCR/discussions) as our international community platform. All ideas and questions can be discussed here in English.
- For Chinese develops, Scan the QR code below with your Wechat, you can join the official technical discussion group. For richer community content, please refer to [中文README](README_ch.md), looking forward to your participation.
<div align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG" width = "150" height = "150" />
</div>
<a name="Supported-Chinese-model-list"></a>
## PP-OCR Series Model List(Update on September 8th)
| Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight PP-OCRv3 model(16.2M) | ch_PP-OCRv3_xx | Mobile & Server | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
| English ultra-lightweight PP-OCRv3 model(13.4M) | en_PP-OCRv3_xx | Mobile & Server | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) | ch_PP-OCRv2_xx |Mobile & Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
| Chinese and English ultra-lightweight PP-OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
| Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
- For more model downloads (including multiple languages), please refer to [PP-OCR series model downloads](./doc/doc_en/models_list_en.md).
- For a new language request, please refer to [Guideline for new language_requests](#language_requests).
- For structural document analysis models, please refer to [PP-Structure models](./ppstructure/docs/models_list_en.md).
## Tutorials
- [Environment Preparation](./doc/doc_en/environment_en.md)
- [PP-OCR 🔥](./doc/doc_en/ppocr_introduction_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Model Zoo](./doc/doc_en/models_en.md)
- [Model training](./doc/doc_en/training_en.md)
- [Text Detection](./doc/doc_en/detection_en.md)
- [Text Recognition](./doc/doc_en/recognition_en.md)
- [Text Direction Classification](./doc/doc_en/angle_class_en.md)
- Model Compression
- [Model Quantization](./deploy/slim/quantization/README_en.md)
- [Model Pruning](./deploy/slim/prune/README_en.md)
- [Knowledge Distillation](./doc/doc_en/knowledge_distillation_en.md)
- [Inference and Deployment](./deploy/README.md)
- [Python Inference](./doc/doc_en/inference_ppocr_en.md)
- [C++ Inference](./deploy/cpp_infer/readme.md)
- [Serving](./deploy/pdserving/README.md)
- [Mobile](./deploy/lite/readme.md)
- [Paddle2ONNX](./deploy/paddle2onnx/readme.md)
- [PaddleCloud](./deploy/paddlecloud/README.md)
- [Benchmark](./doc/doc_en/benchmark_en.md)
- [PP-Structure 🔥](./ppstructure/README.md)
- [Quick Start](./ppstructure/docs/quickstart_en.md)
- [Model Zoo](./ppstructure/docs/models_list_en.md)
- [Model training](./doc/doc_en/training_en.md)
- [Layout Parser](./ppstructure/layout/README.md)
- [Table Recognition](./ppstructure/table/README.md)
- [DocVQA](./ppstructure/vqa/README.md)
- [Key Information Extraction](./ppstructure/docs/kie_en.md)
- [Inference and Deployment](./deploy/README.md)
- [Python Inference](./ppstructure/docs/inference_en.md)
- [C++ Inference]()
- [Serving](./deploy/pdserving/README.md)
- [Academic algorithms](./doc/doc_en/algorithms_en.md)
- [Text detection](./doc/doc_en/algorithm_overview_en.md)
- [Text recognition](./doc/doc_en/algorithm_overview_en.md)
- [End-to-end](./doc/doc_en/algorithm_overview_en.md)
- [Add New Algorithms to PaddleOCR](./doc/doc_en/add_new_algorithm_en.md)
- Data Annotation and Synthesis
- [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
- [Data Synthesis Tool: Style-Text](./StyleText/README.md)
- [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
- [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- Datasets
- [General OCR Datasets(Chinese/English)](doc/doc_en/dataset/datasets_en.md)
- [HandWritten_OCR_Datasets(Chinese)](doc/doc_en/dataset/handwritten_datasets_en.md)
- [Various OCR Datasets(multilingual)](doc/doc_en/dataset/vertical_and_multilingual_datasets_en.md)
- [layout analysis](doc/doc_en/dataset/layout_datasets_en.md)
- [table recognition](doc/doc_en/dataset/table_datasets_en.md)
- [DocVQA](doc/doc_en/dataset/docvqa_datasets_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- [Visualization](#Visualization)
- [Community](#Community)
- [New language requests](#language_requests)
- [FAQ](./doc/doc_en/FAQ_en.md)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
<a name="Visualization"></a>
## Visualization [more](./doc/doc_en/visualization_en.md)
<details open>
<summary>PP-OCRv3 Chinese model</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic001.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic002.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic003.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv3 English model</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/en/en_1.png" width="800">
<img src="doc/imgs_results/PP-OCRv3/en/en_2.png" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv3 Multilingual model</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/multi_lang/japan_2.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/multi_lang/korean_1.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-Structure</summary>
- layout analysis + table recognition
<div align="center">
<img src="./ppstructure/docs/table/ppstructure.GIF" width="800">
</div>
- SER (Semantic entity recognition)
<div align="center">
<img src="./ppstructure/docs/vqa/result_ser/zh_val_0_ser.jpg" width="800">
</div>
- RE (Relation Extraction)
<div align="center">
<img src="./ppstructure/docs/vqa/result_re/zh_val_21_re.jpg" width="800">
</div>
</details>
<a name="language_requests"></a>
## Guideline for New Language Requests
If you want to request a new language support, a PR with 1 following files are needed:
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.
If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.
More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
[English](README.md) | 简体中文
<p align="center">
<img src="./doc/PaddleOCR_log.png" align="middle" width = "600"/>
<p align="center">
<p align="left">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
<a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>
## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
</div>
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00006737.jpg" width="800">
</div>
## 近期更新
- **🔥2022.7 发布[OCR场景应用集合](./applications)**
- 发布OCR场景应用集合,包含数码管、液晶屏、车牌、高精度SVTR模型等**7个垂类模型**,覆盖通用,制造、金融、交通行业的主要OCR垂类应用。
- **🔥2022.5.9 发布PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
- 发布[PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 发布半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
- 发布OCR产业落地工具集:打通22种训练部署软硬件环境与方式,覆盖企业90%的训练部署环境需求;
- 发布交互式OCR开源电子书[《动手学OCR》](./doc/doc_ch/ocr_book.md),覆盖OCR全栈技术的前沿理论与代码实践,并配套教学视频。
- 2021.12.21 发布PaddleOCR [release/2.4](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.4)
- OCR算法新增1种文本检测算法([PSENet](./doc/doc_ch/algorithm_det_psenet.md)),3种文本识别算法([NRTR](./doc/doc_ch/algorithm_rec_nrtr.md)[SEED](./doc/doc_ch/algorithm_rec_seed.md)[SAR](./doc/doc_ch/algorithm_rec_sar.md));
- 文档结构化算法新增1种关键信息提取算法([SDMGR](./ppstructure/docs/kie.md)),3种[DocVQA](./ppstructure/vqa)算法(LayoutLM、LayoutLMv2,LayoutXLM)。
- 2021.9.7 发布PaddleOCR [release/2.3](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.3)
- 发布[PP-OCRv2](./doc/doc_ch/ppocr_introduction.md#pp-ocrv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。
- 2021.8.3 发布PaddleOCR [release/2.2](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.2)
- 发布文档结构分析[PP-Structure](./ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。
> [更多](./doc/doc_ch/update.md)
## 特性
支持多种OCR相关前沿算法,在此基础上打造产业级特色模型[PP-OCR](./doc/doc_ch/ppocr_introduction.md)[PP-Structure](./ppstructure/README_ch.md),并打通数据生产、模型训练、压缩、预测部署全流程。
![](./doc/features.png)
> 上述内容的使用方法建议从文档教程中的快速开始体验
## 快速开始
- 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端demo体验:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)
- 一行命令快速使用:[快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md)
<a name="电子书"></a>
## 《动手学OCR》电子书
- [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md)
<a name="开源社区"></a>
## 开源社区
- **项目合作📑:** 如果您是企业开发者且有明确的OCR垂类应用需求,填写[问卷](https://paddle.wjx.cn/vj/QwF7GKw.aspx)后可免费与官方团队展开不同层次的合作。
- **加入社区👬:** 微信扫描二维码并填写问卷之后,加入交流群领取福利
- **获取PaddleOCR最新发版解说《OCR超强技术详解与产业应用实战》系列直播课回放链接**
- **10G重磅OCR学习大礼包:**《动手学OCR》电子书,配套讲解视频和notebook项目;66篇OCR相关顶会前沿论文打包放送,包括CVPR、AAAI、IJCAI、ICCV等;PaddleOCR历次发版直播课视频;OCR社区优秀开发者项目分享视频。
- **社区项目**🏅️:[社区项目](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。
- **社区常规赛**🎁:社区常规赛是面向OCR开发者的积分赛事,覆盖文档、代码、模型和应用四大类型,以季度为单位评选并发放奖励,赛题详情与报名方法可参考[链接](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)
<div align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG" width = "150" height = "150" />
</div>
<a name="模型下载"></a>
## PP-OCR系列模型列表(更新中)
| 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 中英文超轻量PP-OCRv3模型(16.2M) | ch_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
| 英文超轻量PP-OCRv3模型(13.4M) | en_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
- 超轻量OCR系列更多模型下载(包括多语言),可以参考[PP-OCR系列模型下载](./doc/doc_ch/models_list.md),文档分析相关模型参考[PP-Structure系列模型下载](./ppstructure/docs/models_list.md)
### PaddleOCR场景应用模型
| 行业 | 类别 | 亮点 | 文档说明 | 模型下载 |
| ---- | ------------ | ---------------------------------- | ------------------------------------------------------------ | --------------------------------------------- |
| 制造 | 数码管识别 | 数码管数据合成、漏识别调优 | [光功率计数码管字符识别](./applications/光功率计数码管字符识别/光功率计数码管字符识别.md) | [下载链接](./applications/README.md#模型下载) |
| 金融 | 通用表单识别 | 多模态通用表单结构化提取 | [多模态表单识别](./applications/多模态表单识别.md) | [下载链接](./applications/README.md#模型下载) |
| 交通 | 车牌识别 | 多角度图像处理、轻量模型、端侧部署 | [轻量级车牌识别](./applications/轻量级车牌识别.md) | [下载链接](./applications/README.md#模型下载) |
- 更多制造、金融、交通行业的主要OCR垂类应用模型(如电表、液晶屏、高精度SVTR模型等),可参考[场景应用模型下载](./applications)
<a name="文档教程"></a>
## 文档教程
- [运行环境准备](./doc/doc_ch/environment.md)
- [PP-OCR文本检测识别🔥](./doc/doc_ch/ppocr_introduction.md)
- [快速开始](./doc/doc_ch/quickstart.md)
- [模型库](./doc/doc_ch/models_list.md)
- [模型训练](./doc/doc_ch/training.md)
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)
- [文本方向分类器](./doc/doc_ch/angle_class.md)
- 模型压缩
- [模型量化](./deploy/slim/quantization/README.md)
- [模型裁剪](./deploy/slim/prune/README.md)
- [知识蒸馏](./doc/doc_ch/knowledge_distillation.md)
- [推理部署](./deploy/README_ch.md)
- [基于Python预测引擎推理](./doc/doc_ch/inference_ppocr.md)
- [基于C++预测引擎推理](./deploy/cpp_infer/readme.md)
- [服务化部署](./deploy/pdserving/README_CN.md)
- [端侧部署](./deploy/lite/readme.md)
- [Paddle2ONNX模型转化与预测](./deploy/paddle2onnx/readme.md)
- [云上飞桨部署工具](./deploy/paddlecloud/README.md)
- [Benchmark](./doc/doc_ch/benchmark.md)
- [PP-Structure文档分析🔥](./ppstructure/README_ch.md)
- [快速开始](./ppstructure/docs/quickstart.md)
- [模型库](./ppstructure/docs/models_list.md)
- [模型训练](./doc/doc_ch/training.md)
- [版面分析](./ppstructure/layout/README_ch.md)
- [表格识别](./ppstructure/table/README_ch.md)
- [关键信息提取](./ppstructure/docs/kie.md)
- [DocVQA](./ppstructure/vqa/README_ch.md)
- [推理部署](./deploy/README_ch.md)
- [基于Python预测引擎推理](./ppstructure/docs/inference.md)
- [基于C++预测引擎推理]()
- [服务化部署](./deploy/pdserving/README_CN.md)
- [前沿算法与模型🚀](./doc/doc_ch/algorithm.md)
- [文本检测算法](./doc/doc_ch/algorithm_overview.md#11-%E6%96%87%E6%9C%AC%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95)
- [文本识别算法](./doc/doc_ch/algorithm_overview.md#12-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
- [端到端算法](./doc/doc_ch/algorithm_overview.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
- [使用PaddleOCR架构添加新算法](./doc/doc_ch/add_new_algorithm.md)
- [场景应用](./applications)
- 数据标注与合成
- [半自动标注工具PPOCRLabel](./PPOCRLabel/README_ch.md)
- [数据合成工具Style-Text](./StyleText/README_ch.md)
- [其它数据标注工具](./doc/doc_ch/data_annotation.md)
- [其它数据合成工具](./doc/doc_ch/data_synthesis.md)
- 数据集
- [通用中英文OCR数据集](doc/doc_ch/dataset/datasets.md)
- [手写中文OCR数据集](doc/doc_ch/dataset/handwritten_datasets.md)
- [垂类多语言OCR数据集](doc/doc_ch/dataset/vertical_and_multilingual_datasets.md)
- [版面分析数据集](doc/doc_ch/dataset/layout_datasets.md)
- [表格识别数据集](doc/doc_ch/dataset/table_datasets.md)
- [DocVQA数据集](doc/doc_ch/dataset/docvqa_datasets.md)
- [代码组织结构](./doc/doc_ch/tree.md)
- [效果展示](#效果展示)
- [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md)
- [开源社区](#开源社区)
- FAQ
- [通用问题](./doc/doc_ch/FAQ.md)
- [PaddleOCR实战问题](./doc/doc_ch/FAQ.md)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
<a name="效果展示"></a>
## 效果展示 [more](./doc/doc_ch/visualization.md)
<details open>
<summary>PP-OCRv3 中文模型</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic001.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic002.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/ch/PP-OCRv3-pic003.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv3 英文模型</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/en/en_1.png" width="800">
<img src="doc/imgs_results/PP-OCRv3/en/en_2.png" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv3 多语言模型</summary>
<div align="center">
<img src="doc/imgs_results/PP-OCRv3/multi_lang/japan_2.jpg" width="800">
<img src="doc/imgs_results/PP-OCRv3/multi_lang/korean_1.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-Structure 文档分析</summary>
- 版面分析+表格识别
<div align="center">
<img src="./ppstructure/docs/table/ppstructure.GIF" width="800">
</div>
- SER(语义实体识别)
<div align="center">
<img src="./ppstructure/docs/vqa/result_ser/zh_val_0_ser.jpg" width="800">
</div>
- RE(关系提取)
<div align="center">
<img src="./ppstructure/docs/vqa/result_re/zh_val_21_re.jpg" width="800">
</div>
</details>
<a name="许可证书"></a>
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
English | [简体中文](README_ch.md)
## Style Text
### Contents
- [1. Introduction](#Introduction)
- [2. Preparation](#Preparation)
- [3. Quick Start](#Quick_Start)
- [4. Applications](#Applications)
- [5. Code Structure](#Code_structure)
<a name="Introduction"></a>
### Introduction
<div align="center">
<img src="doc/images/3.png" width="800">
</div>
<div align="center">
<img src="doc/images/9.png" width="600">
</div>
The Style-Text data synthesis tool is a tool based on Baidu and HUST cooperation research work, "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).
Different from the commonly used GAN-based data synthesis tools, the main framework of Style-Text includes:
* (1) Text foreground style transfer module.
* (2) Background extraction module.
* (3) Fusion module.
After these three steps, you can quickly realize the image text style transfer. The following figure is some results of the data synthesis tool.
<div align="center">
<img src="doc/images/10.png" width="1000">
</div>
<a name="Preparation"></a>
#### Preparation
1. Please refer the [QUICK INSTALLATION](../doc/doc_en/installation_en.md) to install PaddlePaddle. Python3 environment is strongly recommended.
2. Download the pretrained models and unzip:
```bash
cd StyleText
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/style_text_models.zip
unzip style_text_models.zip
```
If you save the model in another location, please modify the address of the model file in `configs/config.yml`, and you need to modify these three configurations at the same time:
```
bg_generator:
pretrain: style_text_models/bg_generator
...
text_generator:
pretrain: style_text_models/text_generator
...
fusion_generator:
pretrain: style_text_models/fusion_generator
```
<a name="Quick_Start"></a>
### Quick Start
#### Synthesis single image
1. You can run `tools/synth_image` and generate the demo image, which is saved in the current folder.
```python
python3 tools/synth_image.py -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
```
* Note 1: The language options is correspond to the corpus. Currently, the tool only supports English(en), Simplified Chinese(ch) and Korean(ko).
* Note 2: Synth-Text is mainly used to generate images for OCR recognition models.
So the height of style images should be around 32 pixels. Images in other sizes may behave poorly.
* Note 3: You can modify `use_gpu` in `configs/config.yml` to determine whether to use GPU for prediction.
For example, enter the following image and corpus `PaddleOCR`.
<div align="center">
<img src="examples/style_images/2.jpg" width="300">
</div>
The result `fake_fusion.jpg` will be generated.
<div align="center">
<img src="doc/images/4.jpg" width="300">
</div>
What's more, the medium result `fake_bg.jpg` will also be saved, which is the background output.
<div align="center">
<img src="doc/images/7.jpg" width="300">
</div>
`fake_text.jpg` * `fake_text.jpg` is the generated image with the same font style as `Style Input`.
<div align="center">
<img src="doc/images/8.jpg" width="300">
</div>
#### Batch synthesis
In actual application scenarios, it is often necessary to synthesize pictures in batches and add them to the training set. StyleText can use a batch of style pictures and corpus to synthesize data in batches. The synthesis process is as follows:
1. The referenced dataset can be specifed in `configs/dataset_config.yml`:
* `Global`
* `output_dir:`:Output synthesis data path.
* `StyleSampler`
* `image_home`:style images' folder.
* `label_file`:Style images' file list. If label is provided, then it is the label file path.
* `with_label`:Whether the `label_file` is label file list.
* `CorpusGenerator`
* `method`:Method of CorpusGenerator,supports `FileCorpus` and `EnNumCorpus`. If `EnNumCorpus` is used,No other configuration is needed,otherwise you need to set `corpus_file` and `language`.
* `language`:Language of the corpus. Currently, the tool only supports English(en), Simplified Chinese(ch) and Korean(ko).
* `corpus_file`: Filepath of the corpus. Corpus file should be a text file which will be split by line-endings('\n'). Corpus generator samples one line each time.
Example of corpus file:
```
PaddleOCR
飞桨文字识别
StyleText
风格文本图像数据合成
```
We provide a general dataset containing Chinese, English and Korean (50,000 images in all) for your trial ([download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)), some examples are given below :
<div align="center">
<img src="doc/images/5.png" width="800">
</div>
2. You can run the following command to start synthesis task:
``` bash
python3 tools/synth_dataset.py -c configs/dataset_config.yml
```
We also provide example corpus and images in `examples` folder.
<div align="center">
<img src="examples/style_images/1.jpg" width="300">
<img src="examples/style_images/2.jpg" width="300">
</div>
If you run the code above directly, you will get example output data in `output_data` folder.
You will get synthesis images and labels as below:
<div align="center">
<img src="doc/images/12.png" width="800">
</div>
There will be some cache under the `label` folder. If the program exit unexpectedly, you can find cached labels there.
When the program finish normally, you will find all the labels in `label.txt` which give the final results.
<a name="Applications"></a>
### Applications
We take two scenes as examples, which are metal surface English number recognition and general Korean recognition, to illustrate practical cases of using StyleText to synthesize data to improve text recognition. The following figure shows some examples of real scene images and composite images:
<div align="center">
<img src="doc/images/11.png" width="800">
</div>
After adding the above synthetic data for training, the accuracy of the recognition model is improved, which is shown in the following table:
| Scenario | Characters | Raw Data | Test Data | Only Use Raw Data</br>Recognition Accuracy | New Synthetic Data | Simultaneous Use of Synthetic Data</br>Recognition Accuracy | Index Improvement |
| -------- | ---------- | -------- | -------- | -------------------------- | ------------ | ---------------------- | -------- |
| Metal surface | English and numbers | 2203 | 650 | 0.5938 | 20000 | 0.7546 | 16% |
| Random background | Korean | 5631 | 1230 | 0.3012 | 100000 | 0.5057 | 20% |
<a name="Code_structure"></a>
### Code Structure
```
StyleText
|-- arch // Network module files.
| |-- base_module.py
| |-- decoder.py
| |-- encoder.py
| |-- spectral_norm.py
| `-- style_text_rec.py
|-- configs // Config files.
| |-- config.yml
| `-- dataset_config.yml
|-- engine // Synthesis engines.
| |-- corpus_generators.py // Sample corpus from file or generate random corpus.
| |-- predictors.py // Predict using network.
| |-- style_samplers.py // Sample style images.
| |-- synthesisers.py // Manage other engines to synthesis images.
| |-- text_drawers.py // Generate standard input text images.
| `-- writers.py // Write synthesis images and labels into files.
|-- examples // Example files.
| |-- corpus
| | `-- example.txt
| |-- image_list.txt
| `-- style_images
| |-- 1.jpg
| `-- 2.jpg
|-- fonts // Font files.
| |-- ch_standard.ttf
| |-- en_standard.ttf
| `-- ko_standard.ttf
|-- tools // Program entrance.
| |-- __init__.py
| |-- synth_dataset.py // Synthesis dataset.
| `-- synth_image.py // Synthesis image.
`-- utils // Module of basic functions.
|-- config.py
|-- load_params.py
|-- logging.py
|-- math_functions.py
`-- sys_funcs.py
```
简体中文 | [English](README.md)
## Style Text
### 目录
- [一、工具简介](#工具简介)
- [二、环境配置](#环境配置)
- [三、快速上手](#快速上手)
- [四、应用案例](#应用案例)
- [五、代码结构](#代码结构)
<a name="工具简介"></a>
### 一、工具简介
<div align="center">
<img src="doc/images/3.png" width="800">
</div>
<div align="center">
<img src="doc/images/1.png" width="600">
</div>
Style-Text数据合成工具是基于百度和华科合作研发的文本编辑算法《Editing Text in the Wild》https://arxiv.org/abs/1908.03047
不同于常用的基于GAN的数据合成工具,Style-Text主要框架包括:1.文本前景风格迁移模块 2.背景抽取模块 3.融合模块。经过这样三步,就可以迅速实现图像文本风格迁移。下图是一些该数据合成工具效果图。
<div align="center">
<img src="doc/images/2.png" width="1000">
</div>
<a name="环境配置"></a>
### 二、环境配置
1. 参考[快速安装](../doc/doc_ch/installation.md),安装PaddleOCR。
2. 进入`StyleText`目录,下载模型,并解压:
```bash
cd StyleText
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/style_text_models.zip
unzip style_text_models.zip
```
如果您将模型保存再其他位置,请在`configs/config.yml`中修改模型文件的地址,修改时需要同时修改这三个配置:
```
bg_generator:
pretrain: style_text_models/bg_generator
...
text_generator:
pretrain: style_text_models/text_generator
...
fusion_generator:
pretrain: style_text_models/fusion_generator
```
<a name="快速上手"></a>
### 三、快速上手
#### 合成单张图
输入一张风格图和一段文字语料,运行tools/synth_image,合成单张图片,结果图像保存在当前目录下:
```python
python3 tools/synth_image.py -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
```
* 注1:语言选项和语料相对应,目前支持英文(en)、简体中文(ch)和韩语(ko)。
* 注2:Style-Text生成的数据主要应用于OCR识别场景。基于当前PaddleOCR识别模型的设计,我们主要支持高度在32左右的风格图像。
如果输入图像尺寸相差过多,效果可能不佳。
* 注3:可以通过修改配置文件`configs/config.yml`中的`use_gpu`(true或者false)参数来决定是否使用GPU进行预测。
例如,输入如下图片和语料"PaddleOCR":
<div align="center">
<img src="examples/style_images/2.jpg" width="300">
</div>
生成合成数据`fake_fusion.jpg`
<div align="center">
<img src="doc/images/4.jpg" width="300">
</div>
除此之外,程序还会生成并保存中间结果`fake_bg.jpg`:为风格参考图去掉文字后的背景;
<div align="center">
<img src="doc/images/7.jpg" width="300">
</div>
`fake_text.jpg`:是用提供的字符串,仿照风格参考图中文字的风格,生成在灰色背景上的文字图片。
<div align="center">
<img src="doc/images/8.jpg" width="300">
</div>
#### 批量合成
在实际应用场景中,经常需要批量合成图片,补充到训练集中。Style-Text可以使用一批风格图片和语料,批量合成数据。合成过程如下:
1.`configs/dataset_config.yml`中配置目标场景风格图像和语料的路径,具体如下:
* `Global`
* `output_dir:`:保存合成数据的目录。
* `StyleSampler`
* `image_home`:风格图片目录;
* `label_file`:风格图片路径列表文件,如果所用数据集有label,则label_file为label文件路径;
* `with_label`:标志`label_file`是否为label文件。
* `CorpusGenerator`
* `method`:语料生成方法,目前有`FileCorpus``EnNumCorpus`可选。如果使用`EnNumCorpus`,则不需要填写其他配置,否则需要修改`corpus_file``language`
* `language`:语料的语种,目前支持英文(en)、简体中文(ch)和韩语(ko);
* `corpus_file`: 语料文件路径。语料文件应使用文本文件。语料生成器首先会将语料按行切分,之后每次随机选取一行。
语料文件格式示例:
```
PaddleOCR
飞桨文字识别
StyleText
风格文本图像数据合成
...
```
Style-Text也提供了一批中英韩5万张通用场景数据用作文本风格图像,便于合成场景丰富的文本图像,下图给出了一些示例。
中英韩5万张通用场景数据: [下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)
<div align="center">
<img src="doc/images/5.png" width="800">
</div>
2. 运行`tools/synth_dataset`合成数据:
``` bash
python3 tools/synth_dataset.py -c configs/dataset_config.yml
```
我们在examples目录下提供了样例图片和语料。
<div align="center">
<img src="examples/style_images/1.jpg" width="300">
<img src="examples/style_images/2.jpg" width="300">
</div>
直接运行上述命令,可以在output_data中产生样例输出,包括图片和用于训练识别模型的标注文件:
<div align="center">
<img src="doc/images/12.png" width="800">
</div>
其中label目录下的标注文件为程序运行过程中产生的缓存,如果程序在中途异常终止,可以使用缓存的标注文件。
如果程序正常运行完毕,则会在output_data下生成label.txt,为最终的标注结果。
<a name="应用案例"></a>
### 四、应用案例
下面以金属表面英文数字识别和通用韩语识别两个场景为例,说明使用Style-Text合成数据,来提升文本识别效果的实际案例。下图给出了一些真实场景图像和合成图像的示例:
<div align="center">
<img src="doc/images/6.png" width="800">
</div>
在添加上述合成数据进行训练后,识别模型的效果提升,如下表所示:
| 场景 | 字符 | 原始数据 | 测试数据 | 只使用原始数据</br>识别准确率 | 新增合成数据 | 同时使用合成数据</br>识别准确率 | 指标提升 |
| -------- | ---------- | -------- | -------- | -------------------------- | ------------ | ---------------------- | -------- |
| 金属表面 | 英文和数字 | 2203 | 650 | 0.5938 | 20000 | 0.7546 | 16% |
| 随机背景 | 韩语 | 5631 | 1230 | 0.3012 | 100000 | 0.5057 | 20% |
<a name="代码结构"></a>
### 五、代码结构
```
StyleText
|-- arch // 网络结构定义文件
| |-- base_module.py
| |-- decoder.py
| |-- encoder.py
| |-- spectral_norm.py
| `-- style_text_rec.py
|-- configs // 配置文件
| |-- config.yml
| `-- dataset_config.yml
|-- engine // 数据合成引擎
| |-- corpus_generators.py // 从文本采样或随机生成语料
| |-- predictors.py // 调用网络生成数据
| |-- style_samplers.py // 采样风格图片
| |-- synthesisers.py // 调度各个模块,合成数据
| |-- text_drawers.py // 生成标准文字图片,用作输入
| `-- writers.py // 将合成的图片和标签写入本地目录
|-- examples // 示例文件
| |-- corpus
| | `-- example.txt
| |-- image_list.txt
| `-- style_images
| |-- 1.jpg
| `-- 2.jpg
|-- fonts // 字体文件
| |-- ch_standard.ttf
| |-- en_standard.ttf
| `-- ko_standard.ttf
|-- tools // 程序入口
| |-- __init__.py
| |-- synth_dataset.py // 批量合成数据
| `-- synth_image.py // 合成单张图片
`-- utils // 其他基础功能模块
|-- config.py
|-- load_params.py
|-- logging.py
|-- math_functions.py
`-- sys_funcs.py
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment