Commit 83303bc7 authored by LDOUBLEV's avatar LDOUBLEV
Browse files

fix conflicts

parents 3af943f3 af0bac58
......@@ -249,7 +249,7 @@ class ResNet(nn.Layer):
name=conv_name))
shortcut = True
self.block_list.append(bottleneck_block)
self.out_channels = num_filters[block]
self.out_channels = num_filters[block] * 4
else:
for block in range(len(depth)):
shortcut = False
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
__all__ = ['MobileNetV3']
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
def __init__(self,
in_channels=3,
model_name='large',
scale=0.5,
disable_se=False,
**kwargs):
"""
the MobilenetV3 backbone network for detection module.
Args:
params(dict): the super parameters for build network
"""
super(MobileNetV3, self).__init__()
self.disable_se = disable_se
if model_name == "large":
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', 2],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hardswish', 2],
[3, 200, 80, False, 'hardswish', 1],
[3, 184, 80, False, 'hardswish', 1],
[3, 184, 80, False, 'hardswish', 1],
[3, 480, 112, True, 'hardswish', 1],
[3, 672, 112, True, 'hardswish', 1],
[5, 672, 160, True, 'hardswish', 2],
[5, 960, 160, True, 'hardswish', 1],
[5, 960, 160, True, 'hardswish', 1],
]
cls_ch_squeeze = 960
elif model_name == "small":
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hardswish', 2],
[5, 240, 40, True, 'hardswish', 1],
[5, 240, 40, True, 'hardswish', 1],
[5, 120, 48, True, 'hardswish', 1],
[5, 144, 48, True, 'hardswish', 1],
[5, 288, 96, True, 'hardswish', 2],
[5, 576, 96, True, 'hardswish', 1],
[5, 576, 96, True, 'hardswish', 1],
]
cls_ch_squeeze = 576
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert scale in supported_scale, \
"supported scale are {} but input scale is {}".format(supported_scale, scale)
inplanes = 16
# conv1
self.conv = ConvBNLayer(
in_channels=in_channels,
out_channels=make_divisible(inplanes * scale),
kernel_size=3,
stride=2,
padding=1,
groups=1,
if_act=True,
act='hardswish',
name='conv1')
self.stages = []
self.out_channels = []
block_list = []
i = 0
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in cfg:
se = se and not self.disable_se
start_idx = 2 if model_name == 'large' else 0
if s == 2 and i > start_idx:
self.out_channels.append(inplanes)
self.stages.append(nn.Sequential(*block_list))
block_list = []
block_list.append(
ResidualUnit(
in_channels=inplanes,
mid_channels=make_divisible(scale * exp),
out_channels=make_divisible(scale * c),
kernel_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
inplanes = make_divisible(scale * c)
i += 1
block_list.append(
ConvBNLayer(
in_channels=inplanes,
out_channels=make_divisible(scale * cls_ch_squeeze),
kernel_size=1,
stride=1,
padding=0,
groups=1,
if_act=True,
act='hardswish',
name='conv_last'))
self.stages.append(nn.Sequential(*block_list))
self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
for i, stage in enumerate(self.stages):
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
def forward(self, x):
x = self.conv(x)
out_list = []
for stage in self.stages:
x = stage(x)
out_list.append(x)
return out_list
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=None,
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = F.relu(x)
elif self.act == "hardswish":
x = F.hardswish(x)
else:
print("The activation function({}) is selected incorrectly.".
format(self.act))
exit()
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
kernel_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_channels == out_channels
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=int((kernel_size - 1) // 2),
groups=mid_channels,
if_act=True,
act=act,
name=name + "_depthwise")
if self.if_se:
self.mid_se = SEModule(mid_channels, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(inputs, x)
return x
class SEModule(nn.Layer):
def __init__(self, in_channels, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.conv1 = nn.Conv2D(
in_channels=in_channels,
out_channels=in_channels // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = nn.Conv2D(
in_channels=in_channels // reduction,
out_channels=in_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
return inputs * outputs
\ No newline at end of file
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
__all__ = ["ResNet"]
class ConvBNLayer(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels * 4,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet(nn.Layer):
def __init__(self, in_channels=3, layers=50, **kwargs):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512,
1024] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512]
self.conv1_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=32,
kernel_size=3,
stride=2,
act='relu',
name="conv1_1")
self.conv1_2 = ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name="conv1_2")
self.conv1_3 = ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name="conv1_3")
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.stages = []
self.out_channels = []
if layers >= 50:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(bottleneck_block)
self.out_channels.append(num_filters[block] * 4)
self.stages.append(nn.Sequential(*block_list))
else:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block],
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(basic_block)
self.out_channels.append(num_filters[block])
self.stages.append(nn.Sequential(*block_list))
def forward(self, inputs):
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
out = []
for block in self.stages:
y = block(y)
out.append(y)
return out
......@@ -20,12 +20,16 @@ def build_head(config):
from .det_db_head import DBHead
from .det_east_head import EASTHead
from .det_sast_head import SASTHead
from .det_pse_head import PSEHead
from .e2e_pg_head import PGHead
# rec head
from .rec_ctc_head import CTCHead
from .rec_att_head import AttentionHead
from .rec_srn_head import SRNHead
from .rec_nrtr_head import Transformer
from .rec_sar_head import SARHead
from .rec_aster_head import AsterHead
# cls head
from .cls_head import ClsHead
......@@ -33,11 +37,16 @@ def build_head(config):
#kie head
from .kie_sdmgr_head import SDMGRHead
from .table_att_head import TableAttentionHead
support_dict = [
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead',
'SRNHead', 'PGHead', 'SDMGRHead'
'DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead',
'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead'
]
#table head
module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format(
support_dict))
......
......@@ -43,7 +43,7 @@ class ClsHead(nn.Layer):
initializer=nn.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"), )
def forward(self, x):
def forward(self, x, targets=None):
x = self.pool(x)
x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.fc(x)
......
......@@ -23,10 +23,10 @@ import paddle.nn.functional as F
from paddle import ParamAttr
def get_bias_attr(k, name):
def get_bias_attr(k):
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
bias_attr = ParamAttr(initializer=initializer)
return bias_attr
......@@ -38,18 +38,14 @@ class Head(nn.Layer):
out_channels=in_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
weight_attr=ParamAttr(),
bias_attr=False)
self.conv_bn1 = nn.BatchNorm(
num_channels=in_channels // 4,
param_attr=ParamAttr(
name=name_list[1] + '.w_0',
initializer=paddle.nn.initializer.Constant(value=1.0)),
bias_attr=ParamAttr(
name=name_list[1] + '.b_0',
initializer=paddle.nn.initializer.Constant(value=1e-4)),
moving_mean_name=name_list[1] + '.w_1',
moving_variance_name=name_list[1] + '.w_2',
act='relu')
self.conv2 = nn.Conv2DTranspose(
in_channels=in_channels // 4,
......@@ -57,19 +53,14 @@ class Head(nn.Layer):
kernel_size=2,
stride=2,
weight_attr=ParamAttr(
name=name_list[2] + '.w_0',
initializer=paddle.nn.initializer.KaimingUniform()),
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
bias_attr=get_bias_attr(in_channels // 4))
self.conv_bn2 = nn.BatchNorm(
num_channels=in_channels // 4,
param_attr=ParamAttr(
name=name_list[3] + '.w_0',
initializer=paddle.nn.initializer.Constant(value=1.0)),
bias_attr=ParamAttr(
name=name_list[3] + '.b_0',
initializer=paddle.nn.initializer.Constant(value=1e-4)),
moving_mean_name=name_list[3] + '.w_1',
moving_variance_name=name_list[3] + '.w_2',
act="relu")
self.conv3 = nn.Conv2DTranspose(
in_channels=in_channels // 4,
......@@ -77,10 +68,8 @@ class Head(nn.Layer):
kernel_size=2,
stride=2,
weight_attr=ParamAttr(
name=name_list[4] + '.w_0',
initializer=paddle.nn.initializer.KaimingUniform()),
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
)
bias_attr=get_bias_attr(in_channels // 4), )
def forward(self, x):
x = self.conv1(x)
......@@ -117,7 +106,7 @@ class DBHead(nn.Layer):
def step_function(self, x, y):
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
def forward(self, x):
def forward(self, x, targets=None):
shrink_maps = self.binarize(x)
if not self.training:
return {'maps': shrink_maps}
......
......@@ -109,7 +109,7 @@ class EASTHead(nn.Layer):
act=None,
name="f_geo")
def forward(self, x):
def forward(self, x, targets=None):
f_det = self.det_conv1(x)
f_det = self.det_conv2(f_det)
f_score = self.score_conv(f_det)
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import nn
class PSEHead(nn.Layer):
def __init__(self,
in_channels,
hidden_dim=256,
out_channels=7,
**kwargs):
super(PSEHead, self).__init__()
self.conv1 = nn.Conv2D(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2D(hidden_dim)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2D(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, **kwargs):
out = self.conv1(x)
out = self.relu1(self.bn1(out))
out = self.conv2(out)
return {'maps': out}
......@@ -116,7 +116,7 @@ class SASTHead(nn.Layer):
self.head1 = SAST_Header1(in_channels)
self.head2 = SAST_Header2(in_channels)
def forward(self, x):
def forward(self, x, targets=None):
f_score, f_border = self.head1(x)
f_tvo, f_tco = self.head2(x)
......
......@@ -220,7 +220,7 @@ class PGHead(nn.Layer):
weight_attr=ParamAttr(name="conv_f_direc{}".format(4)),
bias_attr=False)
def forward(self, x):
def forward(self, x, targets=None):
f_score = self.conv_f_score1(x)
f_score = self.conv_f_score2(f_score)
f_score = self.conv_f_score3(f_score)
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Linear
from paddle.nn.initializer import XavierUniform as xavier_uniform_
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)
class MultiheadAttention(nn.Layer):
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
"""
def __init__(self,
embed_dim,
num_heads,
dropout=0.,
bias=True,
add_bias_kv=False,
add_zero_attn=False):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
self._reset_parameters()
self.conv1 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
self.conv2 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
self.conv3 = paddle.nn.Conv2D(
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
def _reset_parameters(self):
xavier_uniform_(self.out_proj.weight)
def forward(self,
query,
key,
value,
key_padding_mask=None,
incremental_state=None,
attn_mask=None):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
q_shape = paddle.shape(query)
src_shape = paddle.shape(key)
q = self._in_proj_q(query)
k = self._in_proj_k(key)
v = self._in_proj_v(value)
q *= self.scaling
q = paddle.transpose(
paddle.reshape(
q, [q_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
k = paddle.transpose(
paddle.reshape(
k, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
v = paddle.transpose(
paddle.reshape(
v, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
[1, 2, 0, 3])
if key_padding_mask is not None:
assert key_padding_mask.shape[0] == q_shape[1]
assert key_padding_mask.shape[1] == src_shape[0]
attn_output_weights = paddle.matmul(q,
paddle.transpose(k, [0, 1, 3, 2]))
if attn_mask is not None:
attn_mask = paddle.unsqueeze(paddle.unsqueeze(attn_mask, 0), 0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = paddle.reshape(
attn_output_weights,
[q_shape[1], self.num_heads, q_shape[0], src_shape[0]])
key = paddle.unsqueeze(paddle.unsqueeze(key_padding_mask, 1), 2)
key = paddle.cast(key, 'float32')
y = paddle.full(
shape=paddle.shape(key), dtype='float32', fill_value='-inf')
y = paddle.where(key == 0., key, y)
attn_output_weights += y
attn_output_weights = F.softmax(
attn_output_weights.astype('float32'),
axis=-1,
dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16
else attn_output_weights.dtype)
attn_output_weights = F.dropout(
attn_output_weights, p=self.dropout, training=self.training)
attn_output = paddle.matmul(attn_output_weights, v)
attn_output = paddle.reshape(
paddle.transpose(attn_output, [2, 0, 1, 3]),
[q_shape[0], q_shape[1], self.embed_dim])
attn_output = self.out_proj(attn_output)
return attn_output
def _in_proj_q(self, query):
query = paddle.transpose(query, [1, 2, 0])
query = paddle.unsqueeze(query, axis=2)
res = self.conv1(query)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_k(self, key):
key = paddle.transpose(key, [1, 2, 0])
key = paddle.unsqueeze(key, axis=2)
res = self.conv2(key)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
def _in_proj_v(self, value):
value = paddle.transpose(value, [1, 2, 0]) #(1, 2, 0)
value = paddle.unsqueeze(value, axis=2)
res = self.conv3(value)
res = paddle.squeeze(res, axis=2)
res = paddle.transpose(res, [2, 0, 1])
return res
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import paddle
from paddle import nn
from paddle.nn import functional as F
class AsterHead(nn.Layer):
def __init__(self,
in_channels,
out_channels,
sDim,
attDim,
max_len_labels,
time_step=25,
beam_width=5,
**kwargs):
super(AsterHead, self).__init__()
self.num_classes = out_channels
self.in_planes = in_channels
self.sDim = sDim
self.attDim = attDim
self.max_len_labels = max_len_labels
self.decoder = AttentionRecognitionHead(in_channels, out_channels, sDim,
attDim, max_len_labels)
self.time_step = time_step
self.embeder = Embedding(self.time_step, in_channels)
self.beam_width = beam_width
self.eos = self.num_classes - 1
def forward(self, x, targets=None, embed=None):
return_dict = {}
embedding_vectors = self.embeder(x)
if self.training:
rec_targets, rec_lengths, _ = targets
rec_pred = self.decoder([x, rec_targets, rec_lengths],
embedding_vectors)
return_dict['rec_pred'] = rec_pred
return_dict['embedding_vectors'] = embedding_vectors
else:
rec_pred, rec_pred_scores = self.decoder.beam_search(
x, self.beam_width, self.eos, embedding_vectors)
return_dict['rec_pred'] = rec_pred
return_dict['rec_pred_scores'] = rec_pred_scores
return_dict['embedding_vectors'] = embedding_vectors
return return_dict
class Embedding(nn.Layer):
def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
super(Embedding, self).__init__()
self.in_timestep = in_timestep
self.in_planes = in_planes
self.embed_dim = embed_dim
self.mid_dim = mid_dim
self.eEmbed = nn.Linear(
in_timestep * in_planes,
self.embed_dim) # Embed encoder output to a word-embedding like
def forward(self, x):
x = paddle.reshape(x, [paddle.shape(x)[0], -1])
x = self.eEmbed(x)
return x
class AttentionRecognitionHead(nn.Layer):
"""
input: [b x 16 x 64 x in_planes]
output: probability sequence: [b x T x num_classes]
"""
def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):
super(AttentionRecognitionHead, self).__init__()
self.num_classes = out_channels # this is the output classes. So it includes the <EOS>.
self.in_planes = in_channels
self.sDim = sDim
self.attDim = attDim
self.max_len_labels = max_len_labels
self.decoder = DecoderUnit(
sDim=sDim, xDim=in_channels, yDim=self.num_classes, attDim=attDim)
def forward(self, x, embed):
x, targets, lengths = x
batch_size = paddle.shape(x)[0]
# Decoder
state = self.decoder.get_initial_state(embed)
outputs = []
for i in range(max(lengths)):
if i == 0:
y_prev = paddle.full(
shape=[batch_size], fill_value=self.num_classes)
else:
y_prev = targets[:, i - 1]
output, state = self.decoder(x, state, y_prev)
outputs.append(output)
outputs = paddle.concat([_.unsqueeze(1) for _ in outputs], 1)
return outputs
# inference stage.
def sample(self, x):
x, _, _ = x
batch_size = x.size(0)
# Decoder
state = paddle.zeros([1, batch_size, self.sDim])
predicted_ids, predicted_scores = [], []
for i in range(self.max_len_labels):
if i == 0:
y_prev = paddle.full(
shape=[batch_size], fill_value=self.num_classes)
else:
y_prev = predicted
output, state = self.decoder(x, state, y_prev)
output = F.softmax(output, axis=1)
score, predicted = output.max(1)
predicted_ids.append(predicted.unsqueeze(1))
predicted_scores.append(score.unsqueeze(1))
predicted_ids = paddle.concat([predicted_ids, 1])
predicted_scores = paddle.concat([predicted_scores, 1])
# return predicted_ids.squeeze(), predicted_scores.squeeze()
return predicted_ids, predicted_scores
def beam_search(self, x, beam_width, eos, embed):
def _inflate(tensor, times, dim):
repeat_dims = [1] * tensor.dim()
repeat_dims[dim] = times
output = paddle.tile(tensor, repeat_dims)
return output
# https://github.com/IBM/pytorch-seq2seq/blob/fede87655ddce6c94b38886089e05321dc9802af/seq2seq/models/TopKDecoder.py
batch_size, l, d = x.shape
x = paddle.tile(
paddle.transpose(
x.unsqueeze(1), perm=[1, 0, 2, 3]), [beam_width, 1, 1, 1])
inflated_encoder_feats = paddle.reshape(
paddle.transpose(
x, perm=[1, 0, 2, 3]), [-1, l, d])
# Initialize the decoder
state = self.decoder.get_initial_state(embed, tile_times=beam_width)
pos_index = paddle.reshape(
paddle.arange(batch_size) * beam_width, shape=[-1, 1])
# Initialize the scores
sequence_scores = paddle.full(
shape=[batch_size * beam_width, 1], fill_value=-float('Inf'))
index = [i * beam_width for i in range(0, batch_size)]
sequence_scores[index] = 0.0
# Initialize the input vector
y_prev = paddle.full(
shape=[batch_size * beam_width], fill_value=self.num_classes)
# Store decisions for backtracking
stored_scores = list()
stored_predecessors = list()
stored_emitted_symbols = list()
for i in range(self.max_len_labels):
output, state = self.decoder(inflated_encoder_feats, state, y_prev)
state = paddle.unsqueeze(state, axis=0)
log_softmax_output = paddle.nn.functional.log_softmax(
output, axis=1)
sequence_scores = _inflate(sequence_scores, self.num_classes, 1)
sequence_scores += log_softmax_output
scores, candidates = paddle.topk(
paddle.reshape(sequence_scores, [batch_size, -1]),
beam_width,
axis=1)
# Reshape input = (bk, 1) and sequence_scores = (bk, 1)
y_prev = paddle.reshape(
candidates % self.num_classes, shape=[batch_size * beam_width])
sequence_scores = paddle.reshape(
scores, shape=[batch_size * beam_width, 1])
# Update fields for next timestep
pos_index = paddle.expand_as(pos_index, candidates)
predecessors = paddle.cast(
candidates / self.num_classes + pos_index, dtype='int64')
predecessors = paddle.reshape(
predecessors, shape=[batch_size * beam_width, 1])
state = paddle.index_select(
state, index=predecessors.squeeze(), axis=1)
# Update sequence socres and erase scores for <eos> symbol so that they aren't expanded
stored_scores.append(sequence_scores.clone())
y_prev = paddle.reshape(y_prev, shape=[-1, 1])
eos_prev = paddle.full_like(y_prev, fill_value=eos)
mask = eos_prev == y_prev
mask = paddle.nonzero(mask)
if mask.dim() > 0:
sequence_scores = sequence_scores.numpy()
mask = mask.numpy()
sequence_scores[mask] = -float('inf')
sequence_scores = paddle.to_tensor(sequence_scores)
# Cache results for backtracking
stored_predecessors.append(predecessors)
y_prev = paddle.squeeze(y_prev)
stored_emitted_symbols.append(y_prev)
# Do backtracking to return the optimal values
#====== backtrak ======#
# Initialize return variables given different types
p = list()
l = [[self.max_len_labels] * beam_width for _ in range(batch_size)
] # Placeholder for lengths of top-k sequences
# the last step output of the beams are not sorted
# thus they are sorted here
sorted_score, sorted_idx = paddle.topk(
paddle.reshape(
stored_scores[-1], shape=[batch_size, beam_width]),
beam_width)
# initialize the sequence scores with the sorted last step beam scores
s = sorted_score.clone()
batch_eos_found = [0] * batch_size # the number of EOS found
# in the backward loop below for each batch
t = self.max_len_labels - 1
# initialize the back pointer with the sorted order of the last step beams.
# add pos_index for indexing variable with b*k as the first dimension.
t_predecessors = paddle.reshape(
sorted_idx + pos_index.expand_as(sorted_idx),
shape=[batch_size * beam_width])
while t >= 0:
# Re-order the variables with the back pointer
current_symbol = paddle.index_select(
stored_emitted_symbols[t], index=t_predecessors, axis=0)
t_predecessors = paddle.index_select(
stored_predecessors[t].squeeze(), index=t_predecessors, axis=0)
eos_indices = stored_emitted_symbols[t] == eos
eos_indices = paddle.nonzero(eos_indices)
if eos_indices.dim() > 0:
for i in range(eos_indices.shape[0] - 1, -1, -1):
# Indices of the EOS symbol for both variables
# with b*k as the first dimension, and b, k for
# the first two dimensions
idx = eos_indices[i]
b_idx = int(idx[0] / beam_width)
# The indices of the replacing position
# according to the replacement strategy noted above
res_k_idx = beam_width - (batch_eos_found[b_idx] %
beam_width) - 1
batch_eos_found[b_idx] += 1
res_idx = b_idx * beam_width + res_k_idx
# Replace the old information in return variables
# with the new ended sequence information
t_predecessors[res_idx] = stored_predecessors[t][idx[0]]
current_symbol[res_idx] = stored_emitted_symbols[t][idx[0]]
s[b_idx, res_k_idx] = stored_scores[t][idx[0], 0]
l[b_idx][res_k_idx] = t + 1
# record the back tracked results
p.append(current_symbol)
t -= 1
# Sort and re-order again as the added ended sequences may change
# the order (very unlikely)
s, re_sorted_idx = s.topk(beam_width)
for b_idx in range(batch_size):
l[b_idx] = [
l[b_idx][k_idx.item()] for k_idx in re_sorted_idx[b_idx, :]
]
re_sorted_idx = paddle.reshape(
re_sorted_idx + pos_index.expand_as(re_sorted_idx),
[batch_size * beam_width])
# Reverse the sequences and re-order at the same time
# It is reversed because the backtracking happens in reverse time order
p = [
paddle.reshape(
paddle.index_select(step, re_sorted_idx, 0),
shape=[batch_size, beam_width, -1]) for step in reversed(p)
]
p = paddle.concat(p, -1)[:, 0, :]
return p, paddle.ones_like(p)
class AttentionUnit(nn.Layer):
def __init__(self, sDim, xDim, attDim):
super(AttentionUnit, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.attDim = attDim
self.sEmbed = nn.Linear(sDim, attDim)
self.xEmbed = nn.Linear(xDim, attDim)
self.wEmbed = nn.Linear(attDim, 1)
def forward(self, x, sPrev):
batch_size, T, _ = x.shape # [b x T x xDim]
x = paddle.reshape(x, [-1, self.xDim]) # [(b x T) x xDim]
xProj = self.xEmbed(x) # [(b x T) x attDim]
xProj = paddle.reshape(xProj, [batch_size, T, -1]) # [b x T x attDim]
sPrev = sPrev.squeeze(0)
sProj = self.sEmbed(sPrev) # [b x attDim]
sProj = paddle.unsqueeze(sProj, 1) # [b x 1 x attDim]
sProj = paddle.expand(sProj,
[batch_size, T, self.attDim]) # [b x T x attDim]
sumTanh = paddle.tanh(sProj + xProj)
sumTanh = paddle.reshape(sumTanh, [-1, self.attDim])
vProj = self.wEmbed(sumTanh) # [(b x T) x 1]
vProj = paddle.reshape(vProj, [batch_size, T])
alpha = F.softmax(
vProj, axis=1) # attention weights for each sample in the minibatch
return alpha
class DecoderUnit(nn.Layer):
def __init__(self, sDim, xDim, yDim, attDim):
super(DecoderUnit, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.yDim = yDim
self.attDim = attDim
self.emdDim = attDim
self.attention_unit = AttentionUnit(sDim, xDim, attDim)
self.tgt_embedding = nn.Embedding(
yDim + 1, self.emdDim, weight_attr=nn.initializer.Normal(
std=0.01)) # the last is used for <BOS>
self.gru = nn.GRUCell(input_size=xDim + self.emdDim, hidden_size=sDim)
self.fc = nn.Linear(
sDim,
yDim,
weight_attr=nn.initializer.Normal(std=0.01),
bias_attr=nn.initializer.Constant(value=0))
self.embed_fc = nn.Linear(300, self.sDim)
def get_initial_state(self, embed, tile_times=1):
assert embed.shape[1] == 300
state = self.embed_fc(embed) # N * sDim
if tile_times != 1:
state = state.unsqueeze(1)
trans_state = paddle.transpose(state, perm=[1, 0, 2])
state = paddle.tile(trans_state, repeat_times=[tile_times, 1, 1])
trans_state = paddle.transpose(state, perm=[1, 0, 2])
state = paddle.reshape(trans_state, shape=[-1, self.sDim])
state = state.unsqueeze(0) # 1 * N * sDim
return state
def forward(self, x, sPrev, yPrev):
# x: feature sequence from the image decoder.
batch_size, T, _ = x.shape
alpha = self.attention_unit(x, sPrev)
context = paddle.squeeze(paddle.matmul(alpha.unsqueeze(1), x), axis=1)
yPrev = paddle.cast(yPrev, dtype="int64")
yProj = self.tgt_embedding(yPrev)
concat_context = paddle.concat([yProj, context], 1)
concat_context = paddle.squeeze(concat_context, 1)
sPrev = paddle.squeeze(sPrev, 0)
output, state = self.gru(concat_context, sPrev)
output = paddle.squeeze(output, axis=1)
output = self.fc(output)
return output, state
\ No newline at end of file
......@@ -23,32 +23,66 @@ from paddle import ParamAttr, nn
from paddle.nn import functional as F
def get_para_bias_attr(l2_decay, k, name):
def get_para_bias_attr(l2_decay, k):
regularizer = paddle.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = nn.initializer.Uniform(-stdv, stdv)
weight_attr = ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
bias_attr = ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
return [weight_attr, bias_attr]
class CTCHead(nn.Layer):
def __init__(self, in_channels, out_channels, fc_decay=0.0004, **kwargs):
def __init__(self,
in_channels,
out_channels,
fc_decay=0.0004,
mid_channels=None,
return_feats=False,
**kwargs):
super(CTCHead, self).__init__()
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels, name='ctc_fc')
self.fc = nn.Linear(
in_channels,
out_channels,
weight_attr=weight_attr,
bias_attr=bias_attr,
name='ctc_fc')
if mid_channels is None:
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels)
self.fc = nn.Linear(
in_channels,
out_channels,
weight_attr=weight_attr,
bias_attr=bias_attr)
else:
weight_attr1, bias_attr1 = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels)
self.fc1 = nn.Linear(
in_channels,
mid_channels,
weight_attr=weight_attr1,
bias_attr=bias_attr1)
weight_attr2, bias_attr2 = get_para_bias_attr(
l2_decay=fc_decay, k=mid_channels)
self.fc2 = nn.Linear(
mid_channels,
out_channels,
weight_attr=weight_attr2,
bias_attr=bias_attr2)
self.out_channels = out_channels
self.mid_channels = mid_channels
self.return_feats = return_feats
def forward(self, x, targets=None):
if self.mid_channels is None:
predicts = self.fc(x)
else:
x = self.fc1(x)
predicts = self.fc2(x)
if self.return_feats:
result = (x, predicts)
else:
result = predicts
def forward(self, x, labels=None):
predicts = self.fc(x)
if not self.training:
predicts = F.softmax(predicts, axis=2)
return predicts
result = predicts
return result
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import copy
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
from ppocr.modeling.heads.multiheadAttention import MultiheadAttention
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_
zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)
class Transformer(nn.Layer):
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
"""
def __init__(self,
d_model=512,
nhead=8,
num_encoder_layers=6,
beam_size=0,
num_decoder_layers=6,
dim_feedforward=1024,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1,
custom_encoder=None,
custom_decoder=None,
in_channels=0,
out_channels=0,
scale_embedding=True):
super(Transformer, self).__init__()
self.out_channels = out_channels + 1
self.embedding = Embeddings(
d_model=d_model,
vocab=self.out_channels,
padding_idx=0,
scale_embedding=scale_embedding)
self.positional_encoding = PositionalEncoding(
dropout=residual_dropout_rate,
dim=d_model, )
if custom_encoder is not None:
self.encoder = custom_encoder
else:
if num_encoder_layers > 0:
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.encoder = TransformerEncoder(encoder_layer,
num_encoder_layers)
else:
self.encoder = None
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, attention_dropout_rate,
residual_dropout_rate)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)
self._reset_parameters()
self.beam_size = beam_size
self.d_model = d_model
self.nhead = nhead
self.tgt_word_prj = nn.Linear(
d_model, self.out_channels, bias_attr=False)
w0 = np.random.normal(0.0, d_model**-0.5,
(d_model, self.out_channels)).astype(np.float32)
self.tgt_word_prj.weight.set_value(w0)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2D):
xavier_normal_(m.weight)
if m.bias is not None:
zeros_(m.bias)
def forward_train(self, src, tgt):
tgt = tgt[:, :-1]
tgt_key_padding_mask = self.generate_padding_mask(tgt)
tgt = self.embedding(tgt).transpose([1, 0, 2])
tgt = self.positional_encoding(tgt)
tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
if self.encoder is not None:
src = self.positional_encoding(src.transpose([1, 0, 2]))
memory = self.encoder(src)
else:
memory = src.squeeze(2).transpose([2, 0, 1])
output = self.decoder(
tgt,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=None)
output = output.transpose([1, 0, 2])
logit = self.tgt_word_prj(output)
return logit
def forward(self, src, targets=None):
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
Shape:
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
Examples:
>>> output = transformer_model(src, tgt)
"""
if self.training:
max_len = targets[1].max()
tgt = targets[0][:, :2 + max_len]
return self.forward_train(src, tgt)
else:
if self.beam_size > 0:
return self.forward_beam(src)
else:
return self.forward_test(src)
def forward_test(self, src):
bs = paddle.shape(src)[0]
if self.encoder is not None:
src = self.positional_encoding(paddle.transpose(src, [1, 0, 2]))
memory = self.encoder(src)
else:
memory = paddle.transpose(paddle.squeeze(src, 2), [2, 0, 1])
dec_seq = paddle.full((bs, 1), 2, dtype=paddle.int64)
dec_prob = paddle.full((bs, 1), 1., dtype=paddle.float32)
for len_dec_seq in range(1, 25):
dec_seq_embed = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq_embed)[0])
output = self.decoder(
dec_seq_embed,
memory,
tgt_mask=tgt_mask,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None)
dec_output = paddle.transpose(output, [1, 0, 2])
dec_output = dec_output[:, -1, :]
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
preds_idx = paddle.argmax(word_prob, axis=1)
if paddle.equal_all(
preds_idx,
paddle.full(
paddle.shape(preds_idx), 3, dtype='int64')):
break
preds_prob = paddle.max(word_prob, axis=1)
dec_seq = paddle.concat(
[dec_seq, paddle.reshape(preds_idx, [-1, 1])], axis=1)
dec_prob = paddle.concat(
[dec_prob, paddle.reshape(preds_prob, [-1, 1])], axis=1)
return [dec_seq, dec_prob]
def forward_beam(self, images):
''' Translation work in one batch '''
def get_inst_idx_to_tensor_position_map(inst_idx_list):
''' Indicate the position of an instance in a tensor. '''
return {
inst_idx: tensor_position
for tensor_position, inst_idx in enumerate(inst_idx_list)
}
def collect_active_part(beamed_tensor, curr_active_inst_idx,
n_prev_active_inst, n_bm):
''' Collect tensor parts associated to active instances. '''
beamed_tensor_shape = paddle.shape(beamed_tensor)
n_curr_active_inst = len(curr_active_inst_idx)
new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],
beamed_tensor_shape[2])
beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])
beamed_tensor = beamed_tensor.index_select(
curr_active_inst_idx, axis=0)
beamed_tensor = beamed_tensor.reshape(new_shape)
return beamed_tensor
def collate_active_info(src_enc, inst_idx_to_position_map,
active_inst_idx_list):
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
n_prev_active_inst = len(inst_idx_to_position_map)
active_inst_idx = [
inst_idx_to_position_map[k] for k in active_inst_idx_list
]
active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
active_src_enc = collect_active_part(
src_enc.transpose([1, 0, 2]), active_inst_idx,
n_prev_active_inst, n_bm).transpose([1, 0, 2])
active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
return active_src_enc, active_inst_idx_to_position_map
def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output,
inst_idx_to_position_map, n_bm,
memory_key_padding_mask):
''' Decode and update beam status, and then return active beam idx '''
def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
dec_partial_seq = [
b.get_current_state() for b in inst_dec_beams if not b.done
]
dec_partial_seq = paddle.stack(dec_partial_seq)
dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
return dec_partial_seq
def predict_word(dec_seq, enc_output, n_active_inst, n_bm,
memory_key_padding_mask):
dec_seq = paddle.transpose(self.embedding(dec_seq), [1, 0, 2])
dec_seq = self.positional_encoding(dec_seq)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq)[0])
dec_output = self.decoder(
dec_seq,
enc_output,
tgt_mask=tgt_mask,
tgt_key_padding_mask=None,
memory_key_padding_mask=memory_key_padding_mask, )
dec_output = paddle.transpose(dec_output, [1, 0, 2])
dec_output = dec_output[:,
-1, :] # Pick the last step: (bh * bm) * d_h
word_prob = F.softmax(self.tgt_word_prj(dec_output), axis=1)
word_prob = paddle.reshape(word_prob, [n_active_inst, n_bm, -1])
return word_prob
def collect_active_inst_idx_list(inst_beams, word_prob,
inst_idx_to_position_map):
active_inst_idx_list = []
for inst_idx, inst_position in inst_idx_to_position_map.items():
is_inst_complete = inst_beams[inst_idx].advance(word_prob[
inst_position])
if not is_inst_complete:
active_inst_idx_list += [inst_idx]
return active_inst_idx_list
n_active_inst = len(inst_idx_to_position_map)
dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm,
None)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list = collect_active_inst_idx_list(
inst_dec_beams, word_prob, inst_idx_to_position_map)
return active_inst_idx_list
def collect_hypothesis_and_scores(inst_dec_beams, n_best):
all_hyp, all_scores = [], []
for inst_idx in range(len(inst_dec_beams)):
scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
all_scores += [scores[:n_best]]
hyps = [
inst_dec_beams[inst_idx].get_hypothesis(i)
for i in tail_idxs[:n_best]
]
all_hyp += [hyps]
return all_hyp, all_scores
with paddle.no_grad():
#-- Encode
if self.encoder is not None:
src = self.positional_encoding(images.transpose([1, 0, 2]))
src_enc = self.encoder(src)
else:
src_enc = images.squeeze(2).transpose([0, 2, 1])
n_bm = self.beam_size
src_shape = paddle.shape(src_enc)
inst_dec_beams = [Beam(n_bm) for _ in range(1)]
active_inst_idx_list = list(range(1))
# Repeat data for beam search
src_enc = paddle.tile(src_enc, [1, n_bm, 1])
inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(
active_inst_idx_list)
# Decode
for len_dec_seq in range(1, 25):
src_enc_copy = src_enc.clone()
active_inst_idx_list = beam_decode_step(
inst_dec_beams, len_dec_seq, src_enc_copy,
inst_idx_to_position_map, n_bm, None)
if not active_inst_idx_list:
break # all instances have finished their path to <EOS>
src_enc, inst_idx_to_position_map = collate_active_info(
src_enc_copy, inst_idx_to_position_map,
active_inst_idx_list)
batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams,
1)
result_hyp = []
hyp_scores = []
for bs_hyp, score in zip(batch_hyp, batch_scores):
l = len(bs_hyp[0])
bs_hyp_pad = bs_hyp[0] + [3] * (25 - l)
result_hyp.append(bs_hyp_pad)
score = float(score) / l
hyp_score = [score for _ in range(25)]
hyp_scores.append(hyp_score)
return [
paddle.to_tensor(
np.array(result_hyp), dtype=paddle.int64),
paddle.to_tensor(hyp_scores)
]
def generate_square_subsequent_mask(self, sz):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask = paddle.zeros([sz, sz], dtype='float32')
mask_inf = paddle.triu(
paddle.full(
shape=[sz, sz], dtype='float32', fill_value='-inf'),
diagonal=1)
mask = mask + mask_inf
return mask
def generate_padding_mask(self, x):
padding_mask = paddle.equal(x, paddle.to_tensor(0, dtype=x.dtype))
return padding_mask
def _reset_parameters(self):
"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
class TransformerEncoder(nn.Layer):
"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, encoder_layer, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
def forward(self, src):
"""Pass the input through the endocder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
output = src
for i in range(self.num_layers):
output = self.layers[i](output,
src_mask=None,
src_key_padding_mask=None)
return output
class TransformerDecoder(nn.Layer):
"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
"""
def __init__(self, decoder_layer, num_layers):
super(TransformerDecoder, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
output = tgt
for i in range(self.num_layers):
output = self.layers[i](
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
return output
class TransformerEncoderLayer(nn.Layer):
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""Pass the input through the endocder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
src2 = self.self_attn(
src,
src,
src,
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src = paddle.transpose(src, [1, 2, 0])
src = paddle.unsqueeze(src, 2)
src2 = self.conv2(F.relu(self.conv1(src)))
src2 = paddle.squeeze(src2, 2)
src2 = paddle.transpose(src2, [2, 0, 1])
src = paddle.squeeze(src, 2)
src = paddle.transpose(src, [2, 0, 1])
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class TransformerDecoderLayer(nn.Layer):
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
attention_dropout_rate=0.0,
residual_dropout_rate=0.1):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.multihead_attn = MultiheadAttention(
d_model, nhead, dropout=attention_dropout_rate)
self.conv1 = Conv2D(
in_channels=d_model,
out_channels=dim_feedforward,
kernel_size=(1, 1))
self.conv2 = Conv2D(
in_channels=dim_feedforward,
out_channels=d_model,
kernel_size=(1, 1))
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(residual_dropout_rate)
self.dropout2 = Dropout(residual_dropout_rate)
self.dropout3 = Dropout(residual_dropout_rate)
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None):
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
tgt2 = self.self_attn(
tgt,
tgt,
tgt,
attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
tgt,
memory,
memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# default
tgt = paddle.transpose(tgt, [1, 2, 0])
tgt = paddle.unsqueeze(tgt, 2)
tgt2 = self.conv2(F.relu(self.conv1(tgt)))
tgt2 = paddle.squeeze(tgt2, 2)
tgt2 = paddle.transpose(tgt2, [2, 0, 1])
tgt = paddle.squeeze(tgt, 2)
tgt = paddle.transpose(tgt, [2, 0, 1])
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def _get_clones(module, N):
return LayerList([copy.deepcopy(module) for i in range(N)])
class PositionalEncoding(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.unsqueeze(pe, 0)
pe = paddle.transpose(pe, [1, 0, 2])
self.register_buffer('pe', pe)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[:paddle.shape(x)[0], :]
return self.dropout(x)
class PositionalEncoding_2d(nn.Layer):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, dropout, dim, max_len=5000):
super(PositionalEncoding_2d, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = paddle.zeros([max_len, dim])
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, dim, 2).astype('float32') *
(-math.log(10000.0) / dim))
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = paddle.transpose(paddle.unsqueeze(pe, 0), [1, 0, 2])
self.register_buffer('pe', pe)
self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
self.linear1 = nn.Linear(dim, dim)
self.linear1.weight.data.fill_(1.)
self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
self.linear2 = nn.Linear(dim, dim)
self.linear2.weight.data.fill_(1.)
def forward(self, x):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:paddle.shape(x)[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = paddle.transpose(w_pe, [1, 2, 0])
w_pe = paddle.unsqueeze(w_pe, 2)
h_pe = self.pe[:paddle.shape(x).shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = paddle.transpose(h_pe, [1, 2, 0])
h_pe = paddle.unsqueeze(h_pe, 3)
x = x + w_pe + h_pe
x = paddle.transpose(
paddle.reshape(x,
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]),
[2, 0, 1])
return self.dropout(x)
class Embeddings(nn.Layer):
def __init__(self, d_model, vocab, padding_idx, scale_embedding):
super(Embeddings, self).__init__()
self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
w0 = np.random.normal(0.0, d_model**-0.5,
(vocab, d_model)).astype(np.float32)
self.embedding.weight.set_value(w0)
self.d_model = d_model
self.scale_embedding = scale_embedding
def forward(self, x):
if self.scale_embedding:
x = self.embedding(x)
return x * math.sqrt(self.d_model)
return self.embedding(x)
class Beam():
''' Beam search '''
def __init__(self, size, device=False):
self.size = size
self._done = False
# The score for each translation on the beam.
self.scores = paddle.zeros((size, ), dtype=paddle.float32)
self.all_scores = []
# The backpointers at each time-step.
self.prev_ks = []
# The outputs at each time-step.
self.next_ys = [paddle.full((size, ), 0, dtype=paddle.int64)]
self.next_ys[0][0] = 2
def get_current_state(self):
"Get the outputs for the current timestep."
return self.get_tentative_hypothesis()
def get_current_origin(self):
"Get the backpointers for the current timestep."
return self.prev_ks[-1]
@property
def done(self):
return self._done
def advance(self, word_prob):
"Update beam status and check if finished or not."
num_words = word_prob.shape[1]
# Sum the previous scores.
if len(self.prev_ks) > 0:
beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
else:
beam_lk = word_prob[0]
flat_beam_lk = beam_lk.reshape([-1])
best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True,
True) # 1st sort
self.all_scores.append(self.scores)
self.scores = best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k = best_scores_id // num_words
self.prev_ks.append(prev_k)
self.next_ys.append(best_scores_id - prev_k * num_words)
# End condition is when top-of-beam is EOS.
if self.next_ys[-1][0] == 3:
self._done = True
self.all_scores.append(self.scores)
return self._done
def sort_scores(self):
"Sort the scores."
return self.scores, paddle.to_tensor(
[i for i in range(int(self.scores.shape[0]))], dtype='int32')
def get_the_best_score_and_idx(self):
"Get the score of the best in the beam."
scores, ids = self.sort_scores()
return scores[1], ids[1]
def get_tentative_hypothesis(self):
"Get the decoded sequence for the current timestep."
if len(self.next_ys) == 1:
dec_seq = self.next_ys[0].unsqueeze(1)
else:
_, keys = self.sort_scores()
hyps = [self.get_hypothesis(k) for k in keys]
hyps = [[2] + h for h in hyps]
dec_seq = paddle.to_tensor(hyps, dtype='int64')
return dec_seq
def get_hypothesis(self, k):
""" Walk back to construct the full hypothesis. """
hyp = []
for j in range(len(self.prev_ks) - 1, -1, -1):
hyp.append(self.next_ys[j + 1][k])
k = self.prev_ks[j][k]
return list(map(lambda x: x.item(), hyp[::-1]))
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
class SAREncoder(nn.Layer):
"""
Args:
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
enc_gru (bool): If True, use GRU, else LSTM in encoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
mask (bool): If True, mask padding in RNN sequence.
"""
def __init__(self,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
d_model=512,
d_enc=512,
mask=True,
**kwargs):
super().__init__()
assert isinstance(enc_bi_rnn, bool)
assert isinstance(enc_drop_rnn, (int, float))
assert 0 <= enc_drop_rnn < 1.0
assert isinstance(enc_gru, bool)
assert isinstance(d_model, int)
assert isinstance(d_enc, int)
assert isinstance(mask, bool)
self.enc_bi_rnn = enc_bi_rnn
self.enc_drop_rnn = enc_drop_rnn
self.mask = mask
# LSTM Encoder
if enc_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=d_model,
hidden_size=d_enc,
num_layers=2,
time_major=False,
dropout=enc_drop_rnn,
direction=direction)
if enc_gru:
self.rnn_encoder = nn.GRU(**kwargs)
else:
self.rnn_encoder = nn.LSTM(**kwargs)
# global feature transformation
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
def forward(self, feat, img_metas=None):
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
h_feat = feat.shape[2] # bsz c h w
feat_v = F.max_pool2d(
feat, kernel_size=(h_feat, 1), stride=1, padding=0)
feat_v = feat_v.squeeze(2) # bsz * C * W
feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
if valid_ratios is not None:
valid_hf = []
T = holistic_feat.shape[1]
for i, valid_ratio in enumerate(valid_ratios):
valid_step = min(T, math.ceil(T * valid_ratio)) - 1
valid_hf.append(holistic_feat[i, valid_step, :])
valid_hf = paddle.stack(valid_hf, axis=0)
else:
valid_hf = holistic_feat[:, -1, :] # bsz * C
holistic_feat = self.linear(valid_hf) # bsz * C
return holistic_feat
class BaseDecoder(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
def forward_train(self, feat, out_enc, targets, img_metas):
raise NotImplementedError
def forward_test(self, feat, out_enc, img_metas):
raise NotImplementedError
def forward(self,
feat,
out_enc,
label=None,
img_metas=None,
train_mode=True):
self.train_mode = train_mode
if train_mode:
return self.forward_train(feat, out_enc, label, img_metas)
return self.forward_test(feat, out_enc, img_metas)
class ParallelSARDecoder(BaseDecoder):
"""
Args:
out_channels (int): Output class number.
enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
dec_drop_rnn (float): Dropout of RNN layer in decoder.
dec_gru (bool): If True, use GRU, else LSTM in decoder.
d_model (int): Dim of channels from backbone.
d_enc (int): Dim of encoder RNN layer.
d_k (int): Dim of channels of attention module.
pred_dropout (float): Dropout probability of prediction layer.
max_seq_len (int): Maximum sequence length for decoding.
mask (bool): If True, mask padding in feature map.
start_idx (int): Index of start token.
padding_idx (int): Index of padding token.
pred_concat (bool): If True, concat glimpse feature from
attention with holistic feature and hidden state.
"""
def __init__(
self,
out_channels, # 90 + unknown + start + padding
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_model=512,
d_enc=512,
d_k=64,
pred_dropout=0.1,
max_text_length=30,
mask=True,
pred_concat=True,
**kwargs):
super().__init__()
self.num_classes = out_channels
self.enc_bi_rnn = enc_bi_rnn
self.d_k = d_k
self.start_idx = out_channels - 2
self.padding_idx = out_channels - 1
self.max_seq_len = max_text_length
self.mask = mask
self.pred_concat = pred_concat
encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
# 2D attention layer
self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
self.conv3x3_1 = nn.Conv2D(
d_model, d_k, kernel_size=3, stride=1, padding=1)
self.conv1x1_2 = nn.Linear(d_k, 1)
# Decoder RNN layer
if dec_bi_rnn:
direction = 'bidirectional'
else:
direction = 'forward'
kwargs = dict(
input_size=encoder_rnn_out_size,
hidden_size=encoder_rnn_out_size,
num_layers=2,
time_major=False,
dropout=dec_drop_rnn,
direction=direction)
if dec_gru:
self.rnn_decoder = nn.GRU(**kwargs)
else:
self.rnn_decoder = nn.LSTM(**kwargs)
# Decoder input embedding
self.embedding = nn.Embedding(
self.num_classes,
encoder_rnn_out_size,
padding_idx=self.padding_idx)
# Prediction layer
self.pred_dropout = nn.Dropout(pred_dropout)
pred_num_classes = self.num_classes - 1
if pred_concat:
fc_in_channel = decoder_rnn_out_size + d_model + d_enc
else:
fc_in_channel = d_model
self.prediction = nn.Linear(fc_in_channel, pred_num_classes)
def _2d_attention(self,
decoder_input,
feat,
holistic_feat,
valid_ratios=None):
y = self.rnn_decoder(decoder_input)[0]
# y: bsz * (seq_len + 1) * hidden_size
attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
bsz, seq_len, attn_size = attn_query.shape
attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
# (bsz, seq_len + 1, attn_size, 1, 1)
attn_key = self.conv3x3_1(feat)
# bsz * attn_size * h * w
attn_key = attn_key.unsqueeze(1)
# bsz * 1 * attn_size * h * w
attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
# bsz * (seq_len + 1) * attn_size * h * w
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
# bsz * (seq_len + 1) * h * w * attn_size
attn_weight = self.conv1x1_2(attn_weight)
# bsz * (seq_len + 1) * h * w * 1
bsz, T, h, w, c = attn_weight.shape
assert c == 1
if valid_ratios is not None:
# cal mask of attention weight
for i, valid_ratio in enumerate(valid_ratios):
valid_width = min(w, math.ceil(w * valid_ratio))
if valid_width < w:
attn_weight[i, :, :, valid_width:, :] = float('-inf')
attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
attn_weight = F.softmax(attn_weight, axis=-1)
attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
# attn_weight: bsz * T * c * h * w
# feat: bsz * c * h * w
attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
(3, 4),
keepdim=False)
# bsz * (seq_len + 1) * C
# Linear transformation
if self.pred_concat:
hf_c = holistic_feat.shape[-1]
holistic_feat = paddle.expand(
holistic_feat, shape=[bsz, seq_len, hf_c])
y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
else:
y = self.prediction(attn_feat)
# bsz * (seq_len + 1) * num_classes
if self.train_mode:
y = self.pred_dropout(y)
return y
def forward_train(self, feat, out_enc, label, img_metas):
'''
img_metas: [label, valid_ratio]
'''
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
label = label.cuda()
lab_embedding = self.embedding(label)
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
# bsz * (seq_len + 1) * C
out_dec = self._2d_attention(
in_dec, feat, out_enc, valid_ratios=valid_ratios)
# bsz * (seq_len + 1) * num_classes
return out_dec[:, 1:, :] # bsz * seq_len * num_classes
def forward_test(self, feat, out_enc, img_metas):
if img_metas is not None:
assert len(img_metas[0]) == feat.shape[0]
valid_ratios = None
if img_metas is not None and self.mask:
valid_ratios = img_metas[-1]
seq_len = self.max_seq_len
bsz = feat.shape[0]
start_token = paddle.full(
(bsz, ), fill_value=self.start_idx, dtype='int64')
# bsz
start_token = self.embedding(start_token)
# bsz * emb_dim
emb_dim = start_token.shape[1]
start_token = start_token.unsqueeze(1)
start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
# bsz * seq_len * emb_dim
out_enc = out_enc.unsqueeze(1)
# bsz * 1 * emb_dim
decoder_input = paddle.concat((out_enc, start_token), axis=1)
# bsz * (seq_len + 1) * emb_dim
outputs = []
for i in range(1, seq_len + 1):
decoder_output = self._2d_attention(
decoder_input, feat, out_enc, valid_ratios=valid_ratios)
char_output = decoder_output[:, i, :] # bsz * num_classes
char_output = F.softmax(char_output, -1)
outputs.append(char_output)
max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
char_embedding = self.embedding(max_idx) # bsz * emb_dim
if i < seq_len:
decoder_input[:, i + 1, :] = char_embedding
outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes
return outputs
class SARHead(nn.Layer):
def __init__(self,
out_channels,
enc_bi_rnn=False,
enc_drop_rnn=0.1,
enc_gru=False,
dec_bi_rnn=False,
dec_drop_rnn=0.0,
dec_gru=False,
d_k=512,
pred_dropout=0.1,
max_text_length=30,
pred_concat=True,
**kwargs):
super(SARHead, self).__init__()
# encoder module
self.encoder = SAREncoder(
enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru)
# decoder module
self.decoder = ParallelSARDecoder(
out_channels=out_channels,
enc_bi_rnn=enc_bi_rnn,
dec_bi_rnn=dec_bi_rnn,
dec_drop_rnn=dec_drop_rnn,
dec_gru=dec_gru,
d_k=d_k,
pred_dropout=pred_dropout,
max_text_length=max_text_length,
pred_concat=pred_concat)
def forward(self, feat, targets=None):
'''
img_metas: [label, valid_ratio]
'''
holistic_feat = self.encoder(feat, targets) # bsz c
if self.training:
label = targets[0] # label
label = paddle.to_tensor(label, dtype='int64')
final_out = self.decoder(
feat, holistic_feat, label, img_metas=targets)
if not self.training:
final_out = self.decoder(
feat,
holistic_feat,
label=None,
img_metas=targets,
train_mode=False)
# (bsz, seq_len, num_classes)
return final_out
......@@ -250,7 +250,8 @@ class SRNHead(nn.Layer):
self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
def forward(self, inputs, others):
def forward(self, inputs, targets=None):
others = targets[-4:]
encoder_word_pos = others[0]
gsrm_word_pos = others[1]
gsrm_slf_attn_bias1 = others[2]
......
......@@ -285,8 +285,7 @@ class PrePostProcessLayer(nn.Layer):
elif cmd == "n": # add layer normalization
self.functors.append(
self.add_sublayer(
"layer_norm_%d" % len(
self.sublayers(include_sublayers=False)),
"layer_norm_%d" % len(self.sublayers()),
paddle.nn.LayerNorm(
normalized_shape=d_model,
weight_attr=fluid.ParamAttr(
......@@ -320,9 +319,7 @@ class PrepareEncoder(nn.Layer):
self.src_emb_dim = src_emb_dim
self.src_max_len = src_max_len
self.emb = paddle.nn.Embedding(
num_embeddings=self.src_max_len,
embedding_dim=self.src_emb_dim,
sparse=True)
num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim)
self.dropout_rate = dropout_rate
def forward(self, src_word, src_pos):
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class TableAttentionHead(nn.Layer):
def __init__(self, in_channels, hidden_size, loc_type, in_max_len=488, **kwargs):
super(TableAttentionHead, self).__init__()
self.input_size = in_channels[-1]
self.hidden_size = hidden_size
self.elem_num = 30
self.max_text_length = 100
self.max_elem_length = 500
self.max_cell_num = 500
self.structure_attention_cell = AttentionGRUCell(
self.input_size, hidden_size, self.elem_num, use_gru=False)
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
self.loc_type = loc_type
self.in_max_len = in_max_len
if self.loc_type == 1:
self.loc_generator = nn.Linear(hidden_size, 4)
else:
if self.in_max_len == 640:
self.loc_fea_trans = nn.Linear(400, self.max_elem_length+1)
elif self.in_max_len == 800:
self.loc_fea_trans = nn.Linear(625, self.max_elem_length+1)
else:
self.loc_fea_trans = nn.Linear(256, self.max_elem_length+1)
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None):
# if and else branch are both needed when you want to assign a variable
# if you modify the var in just one branch, then the modification will not work.
fea = inputs[-1]
if len(fea.shape) == 3:
pass
else:
last_shape = int(np.prod(fea.shape[2:])) # gry added
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
batch_size = fea.shape[0]
hidden = paddle.zeros((batch_size, self.hidden_size))
output_hiddens = []
if self.training and targets is not None:
structure = targets[0]
for i in range(self.max_elem_length+1):
elem_onehots = self._char_to_onehot(
structure[:, i], onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
else:
temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
structure_probs = None
loc_preds = None
elem_onehots = None
outputs = None
alpha = None
max_elem_length = paddle.to_tensor(self.max_elem_length)
i = 0
while i < max_elem_length+1:
elem_onehots = self._char_to_onehot(
temp_elem, onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
structure_probs_step = self.structure_generator(outputs)
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
i += 1
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
structure_probs = F.softmax(structure_probs)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
return {'structure_probs':structure_probs, 'loc_preds':loc_preds}
class AttentionGRUCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionGRUCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
class AttentionLSTM(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(AttentionLSTM, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionLSTMCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = inputs.shape[0]
num_steps = batch_max_length
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
(batch_size, self.hidden_size)))
output_hiddens = []
if targets is not None:
for i in range(num_steps):
# one-hot vectors for a i-th char
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
hidden = (hidden[1][0], hidden[1][1])
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(hidden[0])
hidden = (hidden[1][0], hidden[1][1])
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
return probs
class AttentionLSTMCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionLSTMCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
if not use_gru:
self.rnn = nn.LSTMCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
else:
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
......@@ -21,7 +21,9 @@ def build_neck(config):
from .sast_fpn import SASTFPN
from .rnn import SequenceEncoder
from .pg_fpn import PGFPN
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN']
from .table_fpn import TableFPN
from .fpn import FPN
support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
......
......@@ -32,61 +32,53 @@ class DBFPN(nn.Layer):
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_51.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in3_conv = nn.Conv2D(
in_channels=in_channels[1],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_50.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in4_conv = nn.Conv2D(
in_channels=in_channels[2],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_49.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in5_conv = nn.Conv2D(
in_channels=in_channels[3],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_48.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p5_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_52.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p4_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_53.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p3_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_54.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p2_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_55.w_0', initializer=weight_attr),
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
def forward(self, x):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment