Commit 83303bc7 authored by LDOUBLEV's avatar LDOUBLEV
Browse files

fix conflicts

parents 3af943f3 af0bac58
...@@ -20,6 +20,7 @@ from __future__ import unicode_literals ...@@ -20,6 +20,7 @@ from __future__ import unicode_literals
import numpy as np import numpy as np
import string import string
from shapely.geometry import LineString, Point, Polygon from shapely.geometry import LineString, Point, Polygon
import json
class ClsLabelEncode(object): class ClsLabelEncode(object):
...@@ -40,7 +41,6 @@ class DetLabelEncode(object): ...@@ -40,7 +41,6 @@ class DetLabelEncode(object):
pass pass
def __call__(self, data): def __call__(self, data):
import json
label = data['label'] label = data['label']
label = json.loads(label) label = json.loads(label)
nBox = len(label) nBox = len(label)
...@@ -54,6 +54,8 @@ class DetLabelEncode(object): ...@@ -54,6 +54,8 @@ class DetLabelEncode(object):
txt_tags.append(True) txt_tags.append(True)
else: else:
txt_tags.append(False) txt_tags.append(False)
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes) boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32) boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool) txt_tags = np.array(txt_tags, dtype=np.bool)
...@@ -160,6 +162,39 @@ class BaseRecLabelEncode(object): ...@@ -160,6 +162,39 @@ class BaseRecLabelEncode(object):
return text_list return text_list
class NRTRLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN_symbol',
use_space_char=False,
**kwargs):
super(NRTRLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
return dict_character
class CTCLabelEncode(BaseRecLabelEncode): class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """ """ Convert between text-label and text-index """
...@@ -181,6 +216,11 @@ class CTCLabelEncode(BaseRecLabelEncode): ...@@ -181,6 +216,11 @@ class CTCLabelEncode(BaseRecLabelEncode):
data['length'] = np.array(len(text)) data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text)) text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text) data['label'] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data['label_ace'] = np.array(label)
return data return data
def add_special_char(self, dict_character): def add_special_char(self, dict_character):
...@@ -188,31 +228,75 @@ class CTCLabelEncode(BaseRecLabelEncode): ...@@ -188,31 +228,75 @@ class CTCLabelEncode(BaseRecLabelEncode):
return dict_character return dict_character
class E2ELabelEncode(BaseRecLabelEncode): class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(self, def __init__(self,
max_text_length, max_text_length,
character_dict_path=None, character_dict_path=None,
character_type='EN', character_type='EN',
use_space_char=False, use_space_char=False,
**kwargs): **kwargs):
super(E2ELabelEncode, super(E2ELabelEncodeTest,
self).__init__(max_text_length, character_dict_path, self).__init__(max_text_length, character_dict_path,
character_type, use_space_char) character_type, use_space_char)
self.pad_num = len(self.dict) # the length to pad
def __call__(self, data): def __call__(self, data):
text_label_index_list, temp_text = [], [] import json
texts = data['strs'] padnum = len(self.dict)
for text in texts: label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['ignore_tags'] = txt_tags
temp_texts = []
for text in txts:
text = text.lower() text = text.lower()
temp_text = [] text = self.encode(text)
for c_ in text: if text is None:
if c_ in self.dict: return None
temp_text.append(self.dict[c_]) text = text + [padnum] * (self.max_text_len - len(text)
temp_text = temp_text + [self.pad_num] * (self.max_text_len - ) # use 36 to pad
len(temp_text)) temp_texts.append(text)
text_label_index_list.append(temp_text) data['texts'] = np.array(temp_texts)
data['strs'] = np.array(text_label_index_list) return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data return data
...@@ -426,6 +510,38 @@ class AttnLabelEncode(BaseRecLabelEncode): ...@@ -426,6 +510,38 @@ class AttnLabelEncode(BaseRecLabelEncode):
return idx return idx
class SEEDLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(SEEDLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
self.end_str = "eos"
dict_character = dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data['length'] = np.array(len(text)) + 1 # conclude eos
text = text + [len(self.character) - 1] * (self.max_text_len - len(text)
)
data['label'] = np.array(text)
return data
class SRNLabelEncode(BaseRecLabelEncode): class SRNLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """ """ Convert between text-label and text-index """
...@@ -470,3 +586,216 @@ class SRNLabelEncode(BaseRecLabelEncode): ...@@ -470,3 +586,216 @@ class SRNLabelEncode(BaseRecLabelEncode):
assert False, "Unsupport type %s in get_beg_end_flag_idx" \ assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end % beg_or_end
return idx return idx
class TableLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
span_weight=1.0,
**kwargs):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(
character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
for i, char in enumerate(list_character):
self.dict_character[char] = i
self.dict_elem = {}
for i, elem in enumerate(list_elem):
self.dict_elem[elem] = i
self.span_weight = span_weight
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode('utf-8').strip("\r\n")
list_character.append(character)
for eno in range(1 + character_num, 1 + character_num + elem_num):
elem = lines[eno].decode('utf-8').strip("\r\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_span_idx_list(self):
span_idx_list = []
for elem in self.dict_elem:
if 'span' in elem:
span_idx_list.append(self.dict_elem[elem])
return span_idx_list
def __call__(self, data):
cells = data['cells']
structure = data['structure']['tokens']
structure = self.encode(structure, 'elem')
if structure is None:
return None
elem_num = len(structure)
structure = [0] + structure + [len(self.dict_elem) - 1]
structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
)
structure = np.array(structure)
data['structure'] = structure
elem_char_idx1 = self.dict_elem['<td>']
elem_char_idx2 = self.dict_elem['<td']
span_idx_list = self.get_span_idx_list()
td_idx_list = np.logical_or(structure == elem_char_idx1,
structure == elem_char_idx2)
td_idx_list = np.where(td_idx_list)[0]
structure_mask = np.ones(
(self.max_elem_length + 2, 1), dtype=np.float32)
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
bbox_list_mask = np.zeros(
(self.max_elem_length + 2, 1), dtype=np.float32)
img_height, img_width, img_ch = data['image'].shape
if len(span_idx_list) > 0:
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
span_weight = min(max(span_weight, 1.0), self.span_weight)
for cno in range(len(cells)):
if 'bbox' in cells[cno]:
bbox = cells[cno]['bbox'].copy()
bbox[0] = bbox[0] * 1.0 / img_width
bbox[1] = bbox[1] * 1.0 / img_height
bbox[2] = bbox[2] * 1.0 / img_width
bbox[3] = bbox[3] * 1.0 / img_height
td_idx = td_idx_list[cno]
bbox_list[td_idx] = bbox
bbox_list_mask[td_idx] = 1.0
cand_span_idx = td_idx + 1
if cand_span_idx < (self.max_elem_length + 2):
if structure[cand_span_idx] in span_idx_list:
structure_mask[cand_span_idx] = span_weight
data['bbox_list'] = bbox_list
data['bbox_list_mask'] = bbox_list_mask
data['structure_mask'] = structure_mask
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
data['sp_tokens'] = np.array([
char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
elem_char_idx1, elem_char_idx2, self.max_text_length,
self.max_elem_length, self.max_cell_num, elem_num
])
return data
def encode(self, text, char_or_elem):
"""convert text-label into text-index.
"""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_character
else:
max_len = self.max_elem_length
current_dict = self.dict_elem
if len(text) > max_len:
return None
if len(text) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
text_list = []
for char in text:
if char not in current_dict:
return None
text_list.append(current_dict[char])
if len(text_list) == 0:
if char_or_elem == "char":
return [self.dict_character['space']]
else:
return None
return text_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = np.array(self.dict_character[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_character[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
% beg_or_end
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = np.array(self.dict_elem[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_elem[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
% beg_or_end
else:
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx
class SARLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(SARLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
beg_end_str = "<BOS/EOS>"
unknown_str = "<UKN>"
padding_str = "<PAD>"
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data['length'] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
__all__ = ['MakePseGt']
class MakePseGt(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs):
self.kernel_num = kernel_num
self.min_shrink_ratio = min_shrink_ratio
self.size = size
def __call__(self, data):
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w, _ = image.shape
short_edge = min(h, w)
if short_edge < self.size:
# keep short_size >= self.size
scale = self.size / short_edge
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
text_polys *= scale
gt_kernels = []
for i in range(1,self.kernel_num+1):
# s1->sn, from big to small
rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i
text_kernel, ignore_tags = self.generate_kernel(image.shape[0:2], rate, text_polys, ignore_tags)
gt_kernels.append(text_kernel)
training_mask = np.ones(image.shape[0:2], dtype='uint8')
for i in range(text_polys.shape[0]):
if ignore_tags[i]:
cv2.fillPoly(training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0)
gt_kernels = np.array(gt_kernels)
gt_kernels[gt_kernels > 0] = 1
data['image'] = image
data['polys'] = text_polys
data['gt_kernels'] = gt_kernels[0:]
data['gt_text'] = gt_kernels[0]
data['mask'] = training_mask.astype('float32')
return data
def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None):
h, w = img_size
text_kernel = np.zeros((h, w), dtype=np.float32)
for i, poly in enumerate(text_polys):
polygon = Polygon(poly)
distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6)
subject = [tuple(l) for l in poly]
pco = pyclipper.PyclipperOffset()
pco.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = np.array(pco.Execute(-distance))
if len(shrinked) == 0 or shrinked.size == 0:
if ignore_tags is not None:
ignore_tags[i] = True
continue
try:
shrinked = np.array(shrinked[0]).reshape(-1, 2)
except:
if ignore_tags is not None:
ignore_tags[i] = True
continue
cv2.fillPoly(text_kernel, [shrinked.astype(np.int32)], i + 1)
return text_kernel, ignore_tags
...@@ -23,6 +23,7 @@ import sys ...@@ -23,6 +23,7 @@ import sys
import six import six
import cv2 import cv2
import numpy as np import numpy as np
import fasttext
class DecodeImage(object): class DecodeImage(object):
...@@ -57,6 +58,39 @@ class DecodeImage(object): ...@@ -57,6 +58,39 @@ class DecodeImage(object):
return data return data
class NRTRDecodeImage(object):
""" decode image """
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data['image']
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
img = img[:, :, ::-1]
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
return data
class NormalizeImage(object): class NormalizeImage(object):
""" normalize image such as substract mean, divide std """ normalize image such as substract mean, divide std
""" """
...@@ -100,6 +134,17 @@ class ToCHWImage(object): ...@@ -100,6 +134,17 @@ class ToCHWImage(object):
return data return data
class Fasttext(object):
def __init__(self, path="None", **kwargs):
self.fast_model = fasttext.load_model(path)
def __call__(self, data):
label = data['label']
fast_label = self.fast_model[label]
data['fast_label'] = fast_label
return data
class KeepKeys(object): class KeepKeys(object):
def __init__(self, keep_keys, **kwargs): def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys self.keep_keys = keep_keys
...@@ -111,6 +156,34 @@ class KeepKeys(object): ...@@ -111,6 +156,34 @@ class KeepKeys(object):
return data_list return data_list
class Resize(object):
def __init__(self, size=(640, 640), **kwargs):
self.size = size
def resize_image(self, img):
resize_h, resize_w = self.size
ori_h, ori_w = img.shape[:2] # (h, w, c)
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
img = cv2.resize(img, (int(resize_w), int(resize_h)))
return img, [ratio_h, ratio_w]
def __call__(self, data):
img = data['image']
text_polys = data['polys']
img_resize, [ratio_h, ratio_w] = self.resize_image(img)
new_boxes = []
for box in text_polys:
new_box = []
for cord in box:
new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
new_boxes.append(new_box)
data['image'] = img_resize
data['polys'] = np.array(new_boxes, dtype=np.float32)
return data
class DetResizeForTest(object): class DetResizeForTest(object):
def __init__(self, **kwargs): def __init__(self, **kwargs):
super(DetResizeForTest, self).__init__() super(DetResizeForTest, self).__init__()
...@@ -162,7 +235,7 @@ class DetResizeForTest(object): ...@@ -162,7 +235,7 @@ class DetResizeForTest(object):
img, (ratio_h, ratio_w) img, (ratio_h, ratio_w)
""" """
limit_side_len = self.limit_side_len limit_side_len = self.limit_side_len
h, w, _ = img.shape h, w, c = img.shape
# limit the max side # limit the max side
if self.limit_type == 'max': if self.limit_type == 'max':
...@@ -173,7 +246,7 @@ class DetResizeForTest(object): ...@@ -173,7 +246,7 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w ratio = float(limit_side_len) / w
else: else:
ratio = 1. ratio = 1.
else: elif self.limit_type == 'min':
if min(h, w) < limit_side_len: if min(h, w) < limit_side_len:
if h < w: if h < w:
ratio = float(limit_side_len) / h ratio = float(limit_side_len) / h
...@@ -181,6 +254,10 @@ class DetResizeForTest(object): ...@@ -181,6 +254,10 @@ class DetResizeForTest(object):
ratio = float(limit_side_len) / w ratio = float(limit_side_len) / w
else: else:
ratio = 1. ratio = 1.
elif self.limit_type == 'resize_long':
ratio = float(limit_side_len) / max(h, w)
else:
raise Exception('not support limit type, image ')
resize_h = int(h * ratio) resize_h = int(h * ratio)
resize_w = int(w * ratio) resize_w = int(w * ratio)
......
...@@ -88,7 +88,7 @@ class PGProcessTrain(object): ...@@ -88,7 +88,7 @@ class PGProcessTrain(object):
return min_area_quad return min_area_quad
def check_and_validate_polys(self, polys, tags, xxx_todo_changeme): def check_and_validate_polys(self, polys, tags, im_size):
""" """
check so that the text poly is in the same direction, check so that the text poly is in the same direction,
and also filter some invalid polygons and also filter some invalid polygons
...@@ -96,7 +96,7 @@ class PGProcessTrain(object): ...@@ -96,7 +96,7 @@ class PGProcessTrain(object):
:param tags: :param tags:
:return: :return:
""" """
(h, w) = xxx_todo_changeme (h, w) = im_size
if polys.shape[0] == 0: if polys.shape[0] == 0:
return polys, np.array([]), np.array([]) return polys, np.array([]), np.array([])
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1) polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
...@@ -750,8 +750,8 @@ class PGProcessTrain(object): ...@@ -750,8 +750,8 @@ class PGProcessTrain(object):
input_size = 512 input_size = 512
im = data['image'] im = data['image']
text_polys = data['polys'] text_polys = data['polys']
text_tags = data['tags'] text_tags = data['ignore_tags']
text_strs = data['strs'] text_strs = data['texts']
h, w, _ = im.shape h, w, _ = im.shape
text_polys, text_tags, hv_tags = self.check_and_validate_polys( text_polys, text_tags, hv_tags = self.check_and_validate_polys(
text_polys, text_tags, (h, w)) text_polys, text_tags, (h, w))
......
...@@ -164,47 +164,55 @@ class EastRandomCropData(object): ...@@ -164,47 +164,55 @@ class EastRandomCropData(object):
return data return data
class PSERandomCrop(object): class RandomCropImgMask(object):
def __init__(self, size, **kwargs): def __init__(self, size, main_key, crop_keys, p=3 / 8, **kwargs):
self.size = size self.size = size
self.main_key = main_key
self.crop_keys = crop_keys
self.p = p
def __call__(self, data): def __call__(self, data):
imgs = data['imgs'] image = data['image']
h, w = imgs[0].shape[0:2] h, w = image.shape[0:2]
th, tw = self.size th, tw = self.size
if w == tw and h == th: if w == tw and h == th:
return imgs return data
# label中存在文本实例,并且按照概率进行裁剪,使用threshold_label_map控制 mask = data[self.main_key]
if np.max(imgs[2]) > 0 and random.random() > 3 / 8: if np.max(mask) > 0 and random.random() > self.p:
# 文本实例的左上角点 # make sure to crop the text region
tl = np.min(np.where(imgs[2] > 0), axis=1) - self.size tl = np.min(np.where(mask > 0), axis=1) - (th, tw)
tl[tl < 0] = 0 tl[tl < 0] = 0
# 文本实例的右下角点 br = np.max(np.where(mask > 0), axis=1) - (th, tw)
br = np.max(np.where(imgs[2] > 0), axis=1) - self.size
br[br < 0] = 0 br[br < 0] = 0
# 保证选到右下角点时,有足够的距离进行crop
br[0] = min(br[0], h - th) br[0] = min(br[0], h - th)
br[1] = min(br[1], w - tw) br[1] = min(br[1], w - tw)
for _ in range(50000): i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
i = random.randint(tl[0], br[0]) j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
j = random.randint(tl[1], br[1])
# 保证shrink_label_map有文本
if imgs[1][i:i + th, j:j + tw].sum() <= 0:
continue
else:
break
else: else:
i = random.randint(0, h - th) i = random.randint(0, h - th) if h - th > 0 else 0
j = random.randint(0, w - tw) j = random.randint(0, w - tw) if w - tw > 0 else 0
# return i, j, th, tw # return i, j, th, tw
for idx in range(len(imgs)): for k in data:
if len(imgs[idx].shape) == 3: if k in self.crop_keys:
imgs[idx] = imgs[idx][i:i + th, j:j + tw, :] if len(data[k].shape) == 3:
else: if np.argmin(data[k].shape) == 0:
imgs[idx] = imgs[idx][i:i + th, j:j + tw] img = data[k][:, i:i + th, j:j + tw]
data['imgs'] = imgs if img.shape[1] != img.shape[2]:
a = 1
elif np.argmin(data[k].shape) == 2:
img = data[k][i:i + th, j:j + tw, :]
if img.shape[1] != img.shape[0]:
a = 1
else:
img = data[k]
else:
img = data[k][i:i + th, j:j + tw]
if img.shape[0] != img.shape[1]:
a = 1
data[k] = img
return data return data
...@@ -16,7 +16,7 @@ import math ...@@ -16,7 +16,7 @@ import math
import cv2 import cv2
import numpy as np import numpy as np
import random import random
from PIL import Image
from .text_image_aug import tia_perspective, tia_stretch, tia_distort from .text_image_aug import tia_perspective, tia_stretch, tia_distort
...@@ -43,22 +43,64 @@ class ClsResizeImg(object): ...@@ -43,22 +43,64 @@ class ClsResizeImg(object):
return data return data
class NRTRRecResizeImg(object):
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
self.image_shape = image_shape
self.resize_type = resize_type
self.padding = padding
def __call__(self, data):
img = data['image']
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
image_shape = self.image_shape
if self.padding:
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
norm_img = np.expand_dims(resized_image, -1)
norm_img = norm_img.transpose((2, 0, 1))
resized_image = norm_img.astype(np.float32) / 128. - 1.
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data['image'] = padding_im
return data
if self.resize_type == 'PIL':
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
img = np.array(img)
if self.resize_type == 'OpenCV':
img = cv2.resize(img, self.image_shape)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
data['image'] = norm_img.astype(np.float32) / 128. - 1.
return data
class RecResizeImg(object): class RecResizeImg(object):
def __init__(self, def __init__(self,
image_shape, image_shape,
infer_mode=False, infer_mode=False,
character_type='ch', character_type='ch',
padding=True,
**kwargs): **kwargs):
self.image_shape = image_shape self.image_shape = image_shape
self.infer_mode = infer_mode self.infer_mode = infer_mode
self.character_type = character_type self.character_type = character_type
self.padding = padding
def __call__(self, data): def __call__(self, data):
img = data['image'] img = data['image']
if self.infer_mode and self.character_type == "ch": if self.infer_mode and self.character_type == "ch":
norm_img = resize_norm_img_chinese(img, self.image_shape) norm_img = resize_norm_img_chinese(img, self.image_shape)
else: else:
norm_img = resize_norm_img(img, self.image_shape) norm_img = resize_norm_img(img, self.image_shape, self.padding)
data['image'] = norm_img data['image'] = norm_img
return data return data
...@@ -83,16 +125,72 @@ class SRNRecResizeImg(object): ...@@ -83,16 +125,72 @@ class SRNRecResizeImg(object):
return data return data
def resize_norm_img(img, image_shape): class SARRecResizeImg(object):
imgC, imgH, imgW = image_shape def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0] h = img.shape[0]
w = img.shape[1] w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h) ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW: resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img(img, image_shape, padding=True):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW resized_w = imgW
else: else:
resized_w = int(math.ceil(imgH * ratio)) ratio = w / float(h)
resized_image = cv2.resize(img, (resized_w, imgH)) if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32') resized_image = resized_image.astype('float32')
if image_shape[0] == 1: if image_shape[0] == 1:
resized_image = resized_image / 255 resized_image = resized_image / 255
......
...@@ -29,20 +29,20 @@ class PGDataSet(Dataset): ...@@ -29,20 +29,20 @@ class PGDataSet(Dataset):
dataset_config = config[mode]['dataset'] dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader'] loader_config = config[mode]['loader']
self.delimiter = dataset_config.get('delimiter', '\t')
label_file_list = dataset_config.pop('label_file_list') label_file_list = dataset_config.pop('label_file_list')
data_source_num = len(label_file_list) data_source_num = len(label_file_list)
ratio_list = dataset_config.get("ratio_list", [1.0]) ratio_list = dataset_config.get("ratio_list", [1.0])
if isinstance(ratio_list, (float, int)): if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * int(data_source_num) ratio_list = [float(ratio_list)] * int(data_source_num)
self.data_format = dataset_config.get('data_format', 'icdar')
assert len( assert len(
ratio_list ratio_list
) == data_source_num, "The length of ratio_list should be the same as the file_list." ) == data_source_num, "The length of ratio_list should be the same as the file_list."
self.data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle'] self.do_shuffle = loader_config['shuffle']
logger.info("Initialize indexs of datasets:%s" % label_file_list) logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list, self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.data_format)
self.data_idx_order_list = list(range(len(self.data_lines))) self.data_idx_order_list = list(range(len(self.data_lines)))
if mode.lower() == "train": if mode.lower() == "train":
self.shuffle_data_random() self.shuffle_data_random()
...@@ -55,108 +55,42 @@ class PGDataSet(Dataset): ...@@ -55,108 +55,42 @@ class PGDataSet(Dataset):
random.shuffle(self.data_lines) random.shuffle(self.data_lines)
return return
def extract_polys(self, poly_txt_path): def get_image_info_list(self, file_list, ratio_list):
"""
Read text_polys, txt_tags, txts from give txt file.
"""
text_polys, txt_tags, txts = [], [], []
with open(poly_txt_path) as f:
for line in f.readlines():
poly_str, txt = line.strip().split('\t')
poly = list(map(float, poly_str.split(',')))
text_polys.append(
np.array(
poly, dtype=np.float32).reshape(-1, 2))
txts.append(txt)
txt_tags.append(txt == '###')
return np.array(list(map(np.array, text_polys))), \
np.array(txt_tags, dtype=np.bool), txts
def extract_info_textnet(self, im_fn, img_dir=''):
"""
Extract information from line in textnet format.
"""
info_list = im_fn.split('\t')
img_path = ''
for ext in [
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'JPG'
]:
if os.path.exists(os.path.join(img_dir, info_list[0] + "." + ext)):
img_path = os.path.join(img_dir, info_list[0] + "." + ext)
break
if img_path == '':
print('Image {0} NOT found in {1}, and it will be ignored.'.format(
info_list[0], img_dir))
nBox = (len(info_list) - 1) // 9
wordBBs, txts, txt_tags = [], [], []
for n in range(0, nBox):
wordBB = list(map(float, info_list[n * 9 + 1:(n + 1) * 9]))
txt = info_list[(n + 1) * 9]
wordBBs.append([[wordBB[0], wordBB[1]], [wordBB[2], wordBB[3]],
[wordBB[4], wordBB[5]], [wordBB[6], wordBB[7]]])
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
return img_path, np.array(wordBBs, dtype=np.float32), txt_tags, txts
def get_image_info_list(self, file_list, ratio_list, data_format='textnet'):
if isinstance(file_list, str): if isinstance(file_list, str):
file_list = [file_list] file_list = [file_list]
data_lines = [] data_lines = []
for idx, data_source in enumerate(file_list): for idx, file in enumerate(file_list):
image_files = [] with open(file, "rb") as f:
if data_format == 'icdar': lines = f.readlines()
image_files = [(data_source, x) for x in if self.mode == "train" or ratio_list[idx] < 1.0:
os.listdir(os.path.join(data_source, 'rgb')) random.seed(self.seed)
if x.split('.')[-1] in [ lines = random.sample(lines,
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', round(len(lines) * ratio_list[idx]))
'tiff', 'gif', 'JPG' data_lines.extend(lines)
]]
elif data_format == 'textnet':
with open(data_source) as f:
image_files = [(data_source, x.strip())
for x in f.readlines()]
else:
print("Unrecognized data format...")
exit(-1)
random.seed(self.seed)
image_files = random.sample(
image_files, round(len(image_files) * ratio_list[idx]))
data_lines.extend(image_files)
return data_lines return data_lines
def __getitem__(self, idx): def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx] file_idx = self.data_idx_order_list[idx]
data_path, data_line = self.data_lines[file_idx] data_line = self.data_lines[file_idx]
img_id = 0
try: try:
if self.data_format == 'icdar': data_line = data_line.decode('utf-8')
im_path = os.path.join(data_path, 'rgb', data_line) substr = data_line.strip("\n").split(self.delimiter)
poly_path = os.path.join(data_path, 'poly', file_name = substr[0]
data_line.split('.')[0] + '.txt') label = substr[1]
text_polys, text_tags, text_strs = self.extract_polys(poly_path) img_path = os.path.join(self.data_dir, file_name)
else: if self.mode.lower() == 'eval':
image_dir = os.path.join(os.path.dirname(data_path), 'image') try:
im_path, text_polys, text_tags, text_strs = self.extract_info_textnet( img_id = int(data_line.split(".")[0][7:])
data_line, image_dir) except:
img_id = int(data_line.split(".")[0][3:]) img_id = 0
data = {'img_path': img_path, 'label': label, 'img_id': img_id}
data = { if not os.path.exists(img_path):
'img_path': im_path, raise Exception("{} does not exist!".format(img_path))
'polys': text_polys,
'tags': text_tags,
'strs': text_strs,
'img_id': img_id
}
with open(data['img_path'], 'rb') as f: with open(data['img_path'], 'rb') as f:
img = f.read() img = f.read()
data['image'] = img data['image'] = img
outs = transform(data, self.ops) outs = transform(data, self.ops)
except Exception as e: except Exception as e:
self.logger.error( self.logger.error(
"When parsing line {}, error happened with msg: {}".format( "When parsing line {}, error happened with msg: {}".format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import random
from paddle.io import Dataset
import json
from .imaug import transform, create_operators
class PubTabDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(PubTabDataSet, self).__init__()
self.logger = logger
global_config = config['Global']
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
label_file_path = dataset_config.pop('label_file_path')
self.data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle']
self.do_hard_select = False
if 'hard_select' in loader_config:
self.do_hard_select = loader_config['hard_select']
self.hard_prob = loader_config['hard_prob']
if self.do_hard_select:
self.img_select_prob = self.load_hard_select_prob()
self.table_select_type = None
if 'table_select_type' in loader_config:
self.table_select_type = loader_config['table_select_type']
self.table_select_prob = loader_config['table_select_prob']
self.seed = seed
logger.info("Initialize indexs of datasets:%s" % label_file_path)
with open(label_file_path, "rb") as f:
self.data_lines = f.readlines()
self.data_idx_order_list = list(range(len(self.data_lines)))
if mode.lower() == "train":
self.shuffle_data_random()
self.ops = create_operators(dataset_config['transforms'], global_config)
def shuffle_data_random(self):
if self.do_shuffle:
random.seed(self.seed)
random.shuffle(self.data_lines)
return
def __getitem__(self, idx):
try:
data_line = self.data_lines[idx]
data_line = data_line.decode('utf-8').strip("\n")
info = json.loads(data_line)
file_name = info['filename']
select_flag = True
if self.do_hard_select:
prob = self.img_select_prob[file_name]
if prob < random.uniform(0, 1):
select_flag = False
if self.table_select_type:
structure = info['html']['structure']['tokens'].copy()
structure_str = ''.join(structure)
table_type = "simple"
if 'colspan' in structure_str or 'rowspan' in structure_str:
table_type = "complex"
if table_type == "complex":
if self.table_select_prob < random.uniform(0, 1):
select_flag = False
if select_flag:
cells = info['html']['cells'].copy()
structure = info['html']['structure'].copy()
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'cells': cells, 'structure':structure}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
outs = transform(data, self.ops)
else:
outs = None
except Exception as e:
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data_line, e))
outs = None
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return len(self.data_idx_order_list)
...@@ -15,7 +15,6 @@ import numpy as np ...@@ -15,7 +15,6 @@ import numpy as np
import os import os
import random import random
from paddle.io import Dataset from paddle.io import Dataset
from .imaug import transform, create_operators from .imaug import transform, create_operators
...@@ -69,6 +68,36 @@ class SimpleDataSet(Dataset): ...@@ -69,6 +68,36 @@ class SimpleDataSet(Dataset):
random.shuffle(self.data_lines) random.shuffle(self.data_lines)
return return
def get_ext_data(self):
ext_data_num = 0
for op in self.ops:
if hasattr(op, 'ext_data_num'):
ext_data_num = getattr(op, 'ext_data_num')
break
load_data_ops = self.ops[:2]
ext_data = []
while len(ext_data) < ext_data_num:
file_idx = self.data_idx_order_list[np.random.randint(self.__len__(
))]
data_line = self.data_lines[file_idx]
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
continue
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
data = transform(data, load_data_ops)
if data is None:
continue
ext_data.append(data)
return ext_data
def __getitem__(self, idx): def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx] file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx] data_line = self.data_lines[file_idx]
...@@ -84,6 +113,7 @@ class SimpleDataSet(Dataset): ...@@ -84,6 +113,7 @@ class SimpleDataSet(Dataset):
with open(data['img_path'], 'rb') as f: with open(data['img_path'], 'rb') as f:
img = f.read() img = f.read()
data['image'] = img data['image'] = img
data['ext_data'] = self.get_ext_data()
outs = transform(data, self.ops) outs = transform(data, self.ops)
except Exception as e: except Exception as e:
self.logger.error( self.logger.error(
......
...@@ -13,33 +13,46 @@ ...@@ -13,33 +13,46 @@
# limitations under the License. # limitations under the License.
import copy import copy
import paddle
import paddle.nn as nn
# det loss
from .det_db_loss import DBLoss
from .det_east_loss import EASTLoss
from .det_sast_loss import SASTLoss
from .det_pse_loss import PSELoss
def build_loss(config): # rec loss
# det loss from .rec_ctc_loss import CTCLoss
from .det_db_loss import DBLoss from .rec_att_loss import AttentionLoss
from .det_east_loss import EASTLoss from .rec_srn_loss import SRNLoss
from .det_sast_loss import SASTLoss from .rec_nrtr_loss import NRTRLoss
from .rec_sar_loss import SARLoss
from .rec_aster_loss import AsterLoss
# cls loss
from .cls_loss import ClsLoss
# e2e loss
from .e2e_pg_loss import PGLoss
from .kie_sdmgr_loss import SDMGRLoss
# rec loss # basic loss function
from .rec_ctc_loss import CTCLoss from .basic_loss import DistanceLoss
from .rec_att_loss import AttentionLoss
from .rec_srn_loss import SRNLoss
# cls loss # combined loss function
from .cls_loss import ClsLoss from .combined_loss import CombinedLoss
# e2e loss # table loss
from .e2e_pg_loss import PGLoss from .table_att_loss import TableAttentionLoss
# kie loss
from .kie_sdmgr_loss import SDMGRLoss
def build_loss(config):
support_dict = [ support_dict = [
'DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss', 'AttentionLoss', 'DBLoss', 'PSELoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss',
'SRNLoss', 'PGLoss', 'SDMGRLoss' 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss', 'NRTRLoss',
'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
module_name = config.pop('name') module_name = config.pop('name')
assert module_name in support_dict, Exception('loss only support {}'.format( assert module_name in support_dict, Exception('loss only support {}'.format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
class ACELoss(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
self.loss_func = nn.CrossEntropyLoss(
weight=None,
ignore_index=0,
reduction='none',
soft_label=True,
axis=-1)
def __call__(self, predicts, batch):
if isinstance(predicts, (list, tuple)):
predicts = predicts[-1]
B, N = predicts.shape[:2]
div = paddle.to_tensor([N]).astype('float32')
predicts = nn.functional.softmax(predicts, axis=-1)
aggregation_preds = paddle.sum(predicts, axis=1)
aggregation_preds = paddle.divide(aggregation_preds, div)
length = batch[2].astype("float32")
batch = batch[3].astype("float32")
batch[:, 0] = paddle.subtract(div, length)
batch = paddle.divide(batch, div)
loss = self.loss_func(aggregation_preds, batch)
return {"loss_ace": loss}
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss
class CELoss(nn.Layer):
def __init__(self, epsilon=None):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
def _labelsmoothing(self, target, class_num):
if target.shape[-1] != class_num:
one_hot_target = F.one_hot(target, class_num)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
return soft_target
def forward(self, x, label):
loss_dict = {}
if self.epsilon is not None:
class_num = x.shape[-1]
label = self._labelsmoothing(label, class_num)
x = -F.log_softmax(x, axis=-1)
loss = paddle.sum(x * label, axis=-1)
else:
if label.shape[-1] == x.shape[-1]:
label = F.softmax(label, axis=-1)
soft_label = True
else:
soft_label = False
loss = F.cross_entropy(x, label=label, soft_label=soft_label)
return loss
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None:
return loss
else:
loss = paddle.sum(loss, axis=[1, 2])
return loss
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
def __init__(self, act=None, use_log=False):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
if act == "softmax":
self.act = nn.Softmax(axis=-1)
elif act == "sigmoid":
self.act = nn.Sigmoid()
else:
self.act = None
self.use_log = use_log
self.jskl_loss = KLJSLoss(mode="js")
def forward(self, out1, out2):
if self.act is not None:
out1 = self.act(out1)
out2 = self.act(out2)
if self.use_log:
# for recognition distillation, log is needed for feature map
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (F.kl_div(
log_out1, out2, reduction='batchmean') + F.kl_div(
log_out2, out1, reduction='batchmean')) / 2.0
else:
# for detection distillation log is not needed
loss = self.jskl_loss(out1, out2)
return loss
class DistanceLoss(nn.Layer):
"""
DistanceLoss:
mode: loss mode
"""
def __init__(self, mode="l2", **kargs):
super().__init__()
assert mode in ["l1", "l2", "smooth_l1"]
if mode == "l1":
self.loss_func = nn.L1Loss(**kargs)
elif mode == "l2":
self.loss_func = nn.MSELoss(**kargs)
elif mode == "smooth_l1":
self.loss_func = nn.SmoothL1Loss(**kargs)
def forward(self, x, y):
return self.loss_func(x, y)
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pickle
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class CenterLoss(nn.Layer):
"""
Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
"""
def __init__(self,
num_classes=6625,
feat_dim=96,
init_center=False,
center_file_path=None):
super().__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.centers = paddle.randn(
shape=[self.num_classes, self.feat_dim]).astype(
"float64") #random center
if init_center:
assert os.path.exists(
center_file_path
), f"center path({center_file_path}) must exist when init_center is set as True."
with open(center_file_path, 'rb') as f:
char_dict = pickle.load(f)
for key in char_dict.keys():
self.centers[key] = paddle.to_tensor(char_dict[key])
def __call__(self, predicts, batch):
assert isinstance(predicts, (list, tuple))
features, predicts = predicts
feats_reshape = paddle.reshape(
features, [-1, features.shape[-1]]).astype("float64")
label = paddle.argmax(predicts, axis=2)
label = paddle.reshape(label, [label.shape[0] * label.shape[1]])
batch_size = feats_reshape.shape[0]
#calc feat * feat
dist1 = paddle.sum(paddle.square(feats_reshape), axis=1, keepdim=True)
dist1 = paddle.expand(dist1, [batch_size, self.num_classes])
#dist2 of centers
dist2 = paddle.sum(paddle.square(self.centers), axis=1,
keepdim=True) #num_classes
dist2 = paddle.expand(dist2,
[self.num_classes, batch_size]).astype("float64")
dist2 = paddle.transpose(dist2, [1, 0])
#first x * x + y * y
distmat = paddle.add(dist1, dist2)
tmp = paddle.matmul(feats_reshape,
paddle.transpose(self.centers, [1, 0]))
distmat = distmat - 2.0 * tmp
#generate the mask
classes = paddle.arange(self.num_classes).astype("int64")
label = paddle.expand(
paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
mask = paddle.equal(
paddle.expand(classes, [batch_size, self.num_classes]),
label).astype("float64") #get mask
dist = paddle.multiply(distmat, mask)
loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
return {'loss_center': loss}
...@@ -24,7 +24,7 @@ class ClsLoss(nn.Layer): ...@@ -24,7 +24,7 @@ class ClsLoss(nn.Layer):
super(ClsLoss, self).__init__() super(ClsLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(reduction='mean') self.loss_func = nn.CrossEntropyLoss(reduction='mean')
def __call__(self, predicts, batch): def forward(self, predicts, batch):
label = batch[1] label = batch[1].astype("int64")
loss = self.loss_func(input=predicts, label=label) loss = self.loss_func(input=predicts, label=label)
return {'loss': loss} return {'loss': loss}
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from .rec_ctc_loss import CTCLoss
from .center_loss import CenterLoss
from .ace_loss import ACELoss
from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
class CombinedLoss(nn.Layer):
"""
CombinedLoss:
a combionation of loss function
"""
def __init__(self, loss_config_list=None):
super().__init__()
self.loss_func = []
self.loss_weight = []
assert isinstance(loss_config_list, list), (
'operator config should be a list')
for config in loss_config_list:
assert isinstance(config,
dict) and len(config) == 1, "yaml format error"
name = list(config)[0]
param = config[name]
assert "weight" in param, "weight must be in param, but param just contains {}".format(
param.keys())
self.loss_weight.append(param.pop("weight"))
self.loss_func.append(eval(name)(**param))
def forward(self, input, batch, **kargs):
loss_dict = {}
loss_all = 0.
for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch, **kargs)
if isinstance(loss, paddle.Tensor):
loss = {"loss_{}_{}".format(str(loss), idx): loss}
weight = self.loss_weight[idx]
loss = {key: loss[key] * weight for key in loss}
if "loss" in loss:
loss_all += loss["loss"]
else:
loss_all += paddle.add_n(list(loss.values()))
loss_dict.update(loss)
loss_dict["loss"] = loss_all
return loss_dict
...@@ -75,12 +75,6 @@ class BalanceLoss(nn.Layer): ...@@ -75,12 +75,6 @@ class BalanceLoss(nn.Layer):
mask (variable): masked maps. mask (variable): masked maps.
return: (variable) balanced loss return: (variable) balanced loss
""" """
# if self.main_loss_type in ['DiceLoss']:
# # For the loss that returns to scalar value, perform ohem on the mask
# mask = ohem_batch(pred, gt, mask, self.negative_ratio)
# loss = self.loss(pred, gt, mask)
# return loss
positive = gt * mask positive = gt * mask
negative = (1 - gt) * mask negative = (1 - gt) * mask
...@@ -153,53 +147,4 @@ class BCELoss(nn.Layer): ...@@ -153,53 +147,4 @@ class BCELoss(nn.Layer):
def forward(self, input, label, mask=None, weight=None, name=None): def forward(self, input, label, mask=None, weight=None, name=None):
loss = F.binary_cross_entropy(input, label, reduction=self.reduction) loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
return loss return loss
\ No newline at end of file
def ohem_single(score, gt_text, training_mask, ohem_ratio):
pos_num = (int)(np.sum(gt_text > 0.5)) - (
int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_num = (int)(np.sum(gt_text <= 0.5))
neg_num = (int)(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = score[gt_text <= 0.5]
# 将负样本得分从高到低排序
neg_score_sorted = np.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
# 选出 得分高的 负样本 和正样本 的 mask
selected_mask = ((score >= threshold) |
(gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
def ohem_batch(scores, gt_texts, training_masks, ohem_ratio):
scores = scores.numpy()
gt_texts = gt_texts.numpy()
training_masks = training_masks.numpy()
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
i, :, :], ohem_ratio))
selected_masks = np.concatenate(selected_masks, 0)
selected_masks = paddle.to_tensor(selected_masks)
return selected_masks
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from paddle.nn import functional as F
import numpy as np
from ppocr.utils.iou import iou
class PSELoss(nn.Layer):
def __init__(self,
alpha,
ohem_ratio=3,
kernel_sample_mask='pred',
reduction='sum',
eps=1e-6,
**kwargs):
"""Implement PSE Loss.
"""
super(PSELoss, self).__init__()
assert reduction in ['sum', 'mean', 'none']
self.alpha = alpha
self.ohem_ratio = ohem_ratio
self.kernel_sample_mask = kernel_sample_mask
self.reduction = reduction
self.eps = eps
def forward(self, outputs, labels):
predicts = outputs['maps']
predicts = F.interpolate(predicts, scale_factor=4)
texts = predicts[:, 0, :, :]
kernels = predicts[:, 1:, :, :]
gt_texts, gt_kernels, training_masks = labels[1:]
# text loss
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
iou_text = iou((texts > 0).astype('int64'),
gt_texts,
training_masks,
reduce=False)
losses = dict(loss_text=loss_text, iou_text=iou_text)
# kernel loss
loss_kernels = []
if self.kernel_sample_mask == 'gt':
selected_masks = gt_texts * training_masks
elif self.kernel_sample_mask == 'pred':
selected_masks = (
F.sigmoid(texts) > 0.5).astype('float32') * training_masks
for i in range(kernels.shape[1]):
kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
selected_masks)
loss_kernels.append(loss_kernel_i)
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
gt_kernels[:, -1, :, :],
training_masks * gt_texts,
reduce=False)
losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
losses['loss'] = loss
if self.reduction == 'sum':
losses = {x: paddle.sum(v) for x, v in losses.items()}
elif self.reduction == 'mean':
losses = {x: paddle.mean(v) for x, v in losses.items()}
return losses
def dice_loss(self, input, target, mask):
input = F.sigmoid(input)
input = input.reshape([input.shape[0], -1])
target = target.reshape([target.shape[0], -1])
mask = mask.reshape([mask.shape[0], -1])
input = input * mask
target = target * mask
a = paddle.sum(input * target, 1)
b = paddle.sum(input * input, 1) + self.eps
c = paddle.sum(target * target, 1) + self.eps
d = (2 * a) / (b + c)
return 1 - d
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
paddle.sum(
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
.astype('float32')))
if pos_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32')
return selected_mask
neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
neg_num = int(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.view(
1, selected_mask.shape[0],
selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = paddle.masked_select(score, gt_text <= 0.5)
neg_score_sorted = paddle.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = paddle.logical_and(
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
(training_mask > 0.5))
selected_mask = selected_mask.reshape(
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
'float32')
return selected_mask
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
training_masks[i, :, :], ohem_ratio))
selected_masks = paddle.concat(selected_masks, 0).astype('float32')
return selected_masks
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
import numpy as np
import cv2
from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
from .basic_loss import DistanceLoss
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
def _sum_loss(loss_dict):
if "loss" in loss_dict.keys():
return loss_dict
else:
loss_dict["loss"] = 0.
for k, value in loss_dict.items():
if k == "loss":
continue
else:
loss_dict["loss"] += value
return loss_dict
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self,
model_name_pairs=[],
act=None,
use_log=False,
key=None,
maps_name=None,
name="dml"):
super().__init__(act=act, use_log=use_log)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
self.name = name
self.maps_name = self._check_maps_name(maps_name)
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(
model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
def _check_maps_name(self, maps_name):
if maps_name is None:
return None
elif type(maps_name) == str:
return [maps_name]
elif type(maps_name) == list:
return [maps_name]
else:
return None
def _slice_out(self, outs):
new_outs = {}
for k in self.maps_name:
if k == "thrink_maps":
new_outs[k] = outs[:, 0, :, :]
elif k == "threshold_maps":
new_outs[k] = outs[:, 1, :, :]
elif k == "binary_maps":
new_outs[k] = outs[:, 2, :, :]
else:
continue
return new_outs
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
if self.maps_name is None:
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
else:
outs1 = self._slice_out(out1)
outs2 = self._slice_out(out2)
for _c, k in enumerate(outs1.keys()):
loss = super().forward(outs1[k], outs2[k])
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}_{}".format(key, pair[
0], pair[1], self.maps_name, idx)] = loss[key]
else:
loss_dict["{}_{}_{}".format(self.name, self.maps_name[
_c], idx)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationCTCLoss(CTCLoss):
def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
super().__init__()
self.model_name_list = model_name_list
self.key = key
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}".format(self.name, model_name,
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
return loss_dict
class DistillationDBLoss(DBLoss):
def __init__(self,
model_name_list=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="db",
**kwargs):
super().__init__()
self.model_name_list = model_name_list
self.name = name
self.key = None
def forward(self, predicts, batch):
loss_dict = {}
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss.keys():
if key == "loss":
continue
name = "{}_{}_{}".format(self.name, model_name, key)
loss_dict[name] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDilaDBLoss(DBLoss):
def __init__(self,
model_name_pairs=[],
key=None,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="dila_dbloss"):
super().__init__()
self.model_name_pairs = model_name_pairs
self.name = name
self.key = key
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
stu_outs = predicts[pair[0]]
tch_outs = predicts[pair[1]]
if self.key is not None:
stu_preds = stu_outs[self.key]
tch_preds = tch_outs[self.key]
stu_shrink_maps = stu_preds[:, 0, :, :]
stu_binary_maps = stu_preds[:, 2, :, :]
# dilation to teacher prediction
dilation_w = np.array([[1, 1], [1, 1]])
th_shrink_maps = tch_preds[:, 0, :, :]
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
for i in range(th_shrink_maps.shape[0]):
dilate_maps[i] = cv2.dilate(
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
th_shrink_maps = paddle.to_tensor(dilate_maps)
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
1:]
# calculate the shrink map loss
bce_loss = self.alpha * self.bce_loss(
stu_shrink_maps, th_shrink_maps, label_shrink_mask)
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
label_shrink_mask)
# k = f"{self.name}_{pair[0]}_{pair[1]}"
k = "{}_{}_{}".format(self.name, pair[0], pair[1])
loss_dict[k] = bce_loss + loss_binary_maps
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_distance",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + "_l2"
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
key]
else:
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
idx)] = loss
return loss_dict
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class CosineEmbeddingLoss(nn.Layer):
def __init__(self, margin=0.):
super(CosineEmbeddingLoss, self).__init__()
self.margin = margin
self.epsilon = 1e-12
def forward(self, x1, x2, target):
similarity = paddle.fluid.layers.reduce_sum(
x1 * x2, dim=-1) / (paddle.norm(
x1, axis=-1) * paddle.norm(
x2, axis=-1) + self.epsilon)
one_list = paddle.full_like(target, fill_value=1)
out = paddle.fluid.layers.reduce_mean(
paddle.where(
paddle.equal(target, one_list), 1. - similarity,
paddle.maximum(
paddle.zeros_like(similarity), similarity - self.margin)))
return out
class AsterLoss(nn.Layer):
def __init__(self,
weight=None,
size_average=True,
ignore_index=-100,
sequence_normalize=False,
sample_normalize=True,
**kwargs):
super(AsterLoss, self).__init__()
self.weight = weight
self.size_average = size_average
self.ignore_index = ignore_index
self.sequence_normalize = sequence_normalize
self.sample_normalize = sample_normalize
self.loss_sem = CosineEmbeddingLoss()
self.is_cosin_loss = True
self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none')
def forward(self, predicts, batch):
targets = batch[1].astype("int64")
label_lengths = batch[2].astype('int64')
sem_target = batch[3].astype('float32')
embedding_vectors = predicts['embedding_vectors']
rec_pred = predicts['rec_pred']
if not self.is_cosin_loss:
sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target))
else:
label_target = paddle.ones([embedding_vectors.shape[0]])
sem_loss = paddle.sum(
self.loss_sem(embedding_vectors, sem_target, label_target))
# rec loss
batch_size, def_max_length = targets.shape[0], targets.shape[1]
mask = paddle.zeros([batch_size, def_max_length])
for i in range(batch_size):
mask[i, :label_lengths[i]] = 1
mask = paddle.cast(mask, "float32")
max_length = max(label_lengths)
assert max_length == rec_pred.shape[1]
targets = targets[:, :max_length]
mask = mask[:, :max_length]
rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]])
input = nn.functional.log_softmax(rec_pred, axis=1)
targets = paddle.reshape(targets, [-1, 1])
mask = paddle.reshape(mask, [-1, 1])
output = -paddle.index_sample(input, index=targets) * mask
output = paddle.sum(output)
if self.sequence_normalize:
output = output / paddle.sum(mask)
if self.sample_normalize:
output = output / batch_size
loss = output + sem_loss * 0.1
return {'loss': loss}
...@@ -21,16 +21,24 @@ from paddle import nn ...@@ -21,16 +21,24 @@ from paddle import nn
class CTCLoss(nn.Layer): class CTCLoss(nn.Layer):
def __init__(self, **kwargs): def __init__(self, use_focal_loss=False, **kwargs):
super(CTCLoss, self).__init__() super(CTCLoss, self).__init__()
self.loss_func = nn.CTCLoss(blank=0, reduction='none') self.loss_func = nn.CTCLoss(blank=0, reduction='none')
self.use_focal_loss = use_focal_loss
def __call__(self, predicts, batch): def forward(self, predicts, batch):
if isinstance(predicts, (list, tuple)):
predicts = predicts[-1]
predicts = predicts.transpose((1, 0, 2)) predicts = predicts.transpose((1, 0, 2))
N, B, _ = predicts.shape N, B, _ = predicts.shape
preds_lengths = paddle.to_tensor([N] * B, dtype='int64') preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
labels = batch[1].astype("int32") labels = batch[1].astype("int32")
label_lengths = batch[2].astype('int64') label_lengths = batch[2].astype('int64')
loss = self.loss_func(predicts, labels, preds_lengths, label_lengths) loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
if self.use_focal_loss:
weight = paddle.exp(-loss)
weight = paddle.subtract(paddle.to_tensor([1.0]), weight)
weight = paddle.square(weight) * self.focal_loss_alpha
loss = paddle.multiply(loss, weight)
loss = loss.mean() # sum loss = loss.mean() # sum
return {'loss': loss} return {'loss': loss}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment