"src/include/conv_common.hpp" did not exist on "97ba755f2f93c6470e31f5e2265e8d5ccbf53e53"
Commit 7b53596c authored by WenmuZhou's avatar WenmuZhou
Browse files

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into dygraph_rc

parents 0458f0cc 0e32093f
...@@ -4,16 +4,18 @@ ...@@ -4,16 +4,18 @@
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。 PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
**近期更新** **近期更新**
- 2020.12.07 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数124个,并且计划以后每周一都会更新,欢迎大家持续关注。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941 - 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
- 2020.9.19 更新超轻量压缩ppocr_mobile_slim系列模型,整体模型3.5M(详见[PP-OCR Pipline](#PP-OCR)),适合在移动端部署使用。[模型下载](#模型下载) - 2020.9.19 更新超轻量压缩ppocr_mobile_slim系列模型,整体模型3.5M(详见[PP-OCR Pipeline](#PP-OCR)),适合在移动端部署使用。[模型下载](#模型下载)
- 2020.9.17 更新超轻量ppocr_mobile系列和通用ppocr_server系列中英文ocr模型,媲美商业效果。[模型下载](#模型下载) - 2020.9.17 更新超轻量ppocr_mobile系列和通用ppocr_server系列中英文ocr模型,媲美商业效果。[模型下载](#模型下载)
- 2020.9.17 更新[英文识别模型](./doc/doc_ch/models_list.md#英文识别模型)[多语言识别模型](doc/doc_ch/models_list.md#多语言识别模型),已支持`德语、法语、日语、韩语`,更多语种识别模型将持续更新。 - 2020.9.17 更新[英文识别模型](./doc/doc_ch/models_list.md#英文识别模型)[多语言识别模型](doc/doc_ch/models_list.md#多语言识别模型),已支持`德语、法语、日语、韩语`,更多语种识别模型将持续更新。
- 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考[FAQ](./doc/doc_ch/FAQ.md)
- 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./doc/doc_ch/whl.md) - 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./doc/doc_ch/whl.md)
- 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,[获取地址](https://aistudio.baidu.com/aistudio/education/group/info/1519) - 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,[获取地址](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [More](./doc/doc_ch/update.md) - [More](./doc/doc_ch/update.md)
## 特性 ## 特性
- PPOCR系列高质量预训练模型,准确的识别效果 - PPOCR系列高质量预训练模型,准确的识别效果
...@@ -48,15 +50,14 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -48,15 +50,14 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- 代码体验:从[快速安装](./doc/doc_ch/installation.md) 开始 - 代码体验:从[快速安装](./doc/doc_ch/installation.md) 开始
<a name="模型下载"></a> <a name="模型下载"></a>
## PP-OCR 1.1系列模型列表(9月17日更新) ## PP-OCR 2.0系列模型列表(更新
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 | | 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------ | --------------- | ----------------|---- | ---------- | -------- | | ------------ | --------------- | ----------------|---- | ---------- | -------- |
| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v1.1_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) | | 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用OCR模型(155.1M) |ch_ppocr_server_v1.1_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) | | 中英文通用OCR模型(143M) |ch_ppocr_server_v2.0_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
| 中英文超轻量压缩OCR模型(3.5M) | ch_ppocr_mobile_slim_v1.1_xx| 移动端 |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) |[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb)| [推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb)|
更多模型下载(包括多语言),可以参考[PP-OCR v1.1 系列模型下载](./doc/doc_ch/models_list.md) 更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](./doc/doc_ch/models_list.md)
## 文档教程 ## 文档教程
- [快速安装](./doc/doc_ch/installation.md) - [快速安装](./doc/doc_ch/installation.md)
...@@ -76,9 +77,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -76,9 +77,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [基于Python脚本预测引擎推理](./doc/doc_ch/inference.md) - [基于Python脚本预测引擎推理](./doc/doc_ch/inference.md)
- [基于C++预测引擎推理](./deploy/cpp_infer/readme.md) - [基于C++预测引擎推理](./deploy/cpp_infer/readme.md)
- [服务化部署](./deploy/hubserving/readme.md) - [服务化部署](./deploy/hubserving/readme.md)
- [端侧部署](./deploy/lite/readme.md) - [端侧部署](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme.md)
- [模型量化](./deploy/slim/quantization/README.md) - [模型量化](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/quantization/README.md)
- [模型裁剪](./deploy/slim/prune/README.md) - [模型裁剪](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/README.md)
- [Benchmark](./doc/doc_ch/benchmark.md) - [Benchmark](./doc/doc_ch/benchmark.md)
- 数据集 - 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md) - [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
...@@ -96,6 +97,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -96,6 +97,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [许可证书](#许可证书) - [许可证书](#许可证书)
- [贡献代码](#贡献代码) - [贡献代码](#贡献代码)
***注意:动态图端侧部署仍在开发中,目前仅支持动态图训练、python端预测,C++预测,
如果您有需要移动端部署案例或者量化裁剪,请切换到静态图分支;***
<a name="PP-OCR"></a> <a name="PP-OCR"></a>
## PP-OCR Pipline ## PP-OCR Pipline
<div align="center"> <div align="center">
...@@ -141,6 +145,7 @@ PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框 ...@@ -141,6 +145,7 @@ PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框
## 贡献代码 ## 贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。 我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档 - 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题 - 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码 - 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码
...@@ -148,3 +153,6 @@ PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框 ...@@ -148,3 +153,6 @@ PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码 - 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。 - 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。
- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。 - 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。
- 非常感谢 [lijinhan](https://github.com/lijinhan) 给PaddleOCR增加java SpringBoot 调用OCR Hubserving接口完成对OCR服务化部署的使用。
- 非常感谢 [Mejans](https://github.com/Mejans) 给PaddleOCR增加新语言奥克西坦语Occitan的字典和语料。
- 非常感谢 [Evezerest](https://github.com/Evezerest)[ninetailskim](https://github.com/ninetailskim)[edencfc](https://github.com/edencfc)[BeyondYourself](https://github.com/BeyondYourself)[1084667371](https://github.com/1084667371) 贡献了PPOCRLabel的完整代码。
This diff is collapsed.
...@@ -8,7 +8,6 @@ Global: ...@@ -8,7 +8,6 @@ Global:
# evaluation is run every 5000 iterations after the 4000th iteration # evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 1000] eval_batch_step: [0, 1000]
# if pretrained_model is saved in static mode, load_static_weights must set to True # if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True cal_metric_during_train: True
pretrained_model: pretrained_model:
checkpoints: checkpoints:
......
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_r50_vd/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0
Architecture:
type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: FPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./detection/
file_list:
- ./detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
- EastRandomCropData:
size: [ 640,640 ]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size: 16
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./detection/
file_list:
- ./detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736,1280]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','shape','polys','ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size: 1 # must be 1
num_workers: 8
\ No newline at end of file
...@@ -11,7 +11,7 @@ Global: ...@@ -11,7 +11,7 @@ Global:
load_static_weights: True load_static_weights: True
cal_metric_during_train: False cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy checkpoints:
save_inference_dir: save_inference_dir:
use_visualdl: False use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg infer_img: doc/imgs_en/img_10.jpg
......
...@@ -11,7 +11,7 @@ Global: ...@@ -11,7 +11,7 @@ Global:
load_static_weights: True load_static_weights: True
cal_metric_during_train: False cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy checkpoints:
save_inference_dir: save_inference_dir:
use_visualdl: False use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg infer_img: doc/imgs_en/img_10.jpg
......
...@@ -11,7 +11,7 @@ Global: ...@@ -11,7 +11,7 @@ Global:
load_static_weights: True load_static_weights: True
cal_metric_during_train: False cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy checkpoints:
save_inference_dir: save_inference_dir:
use_visualdl: False use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg infer_img: doc/imgs_en/img_10.jpg
......
...@@ -3,7 +3,7 @@ Global: ...@@ -3,7 +3,7 @@ Global:
epoch_num: 1200 epoch_num: 1200
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 10
save_model_dir: ./output/det_rc/det_r50_vd/ save_model_dir: ./output/det_r50_vd/
save_epoch_step: 1200 save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration # evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [5000,4000] eval_batch_step: [5000,4000]
......
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/mv3_none_bilstm_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: small
small_stride: [ 1, 2, 2, 2 ]
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/res34_none_bilstm_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8
Global: Global:
use_gpu: false use_gpu: true
epoch_num: 500 epoch_num: 72
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 10
save_model_dir: ./output/rec/res34_none_none_ctc/ save_model_dir: ./output/rec/ic15/
save_epoch_step: 500 save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration # evaluation is run every 2000 iterations
eval_batch_step: 127 eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True # if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True cal_metric_during_train: True
pretrained_model: pretrained_model:
checkpoints: checkpoints:
save_inference_dir: save_inference_dir:
use_visualdl: False use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg infer_img: doc/imgs_words_en/word_10.png
# for data or label process # for data or label process
max_text_length: 80 character_dict_path: ppocr/utils/ic15_dict.txt
character_dict_path: ppocr/utils/ppocr_keys_v1.txt character_type: ch
character_type: 'ch' max_text_length: 25
use_space_char: False
infer_mode: False infer_mode: False
use_tps: False use_space_char: False
Optimizer: Optimizer:
name: Adam name: Adam
beta1: 0.9 beta1: 0.9
beta2: 0.999 beta2: 0.999
learning_rate: lr:
lr: 0.001 learning_rate: 0.0005
regularizer: regularizer:
name: 'L2' name: 'L2'
factor: 0.00001 factor: 0
Architecture: Architecture:
type: rec model_type: rec
algorithm: CRNN algorithm: CRNN
Transform: Transform:
Backbone: Backbone:
...@@ -43,10 +40,11 @@ Architecture: ...@@ -43,10 +40,11 @@ Architecture:
layers: 34 layers: 34
Neck: Neck:
name: SequenceEncoder name: SequenceEncoder
encoder_type: reshape encoder_type: rnn
hidden_size: 256
Head: Head:
name: CTC name: CTCHead
fc_decay: 0.00001 fc_decay: 0
Loss: Loss:
name: CTCLoss name: CTCLoss
...@@ -58,46 +56,42 @@ Metric: ...@@ -58,46 +56,42 @@ Metric:
name: RecMetric name: RecMetric
main_indicator: acc main_indicator: acc
TRAIN: Train:
dataset: dataset:
name: SimpleDataSet name: SimpleDataSet
data_dir: ./rec data_dir: ./train_data/
file_list: label_file_list: ["./train_data/train_list.txt"]
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
img_mode: BGR img_mode: BGR
channel_first: False channel_first: False
- CTCLabelEncode: # Class handling label - CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg: - RecResizeImg:
image_shape: [ 3,32,320 ] image_shape: [3, 32, 100]
- keepKeys: - KeepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader: loader:
batch_size: 256
shuffle: True shuffle: True
batch_size_per_card: 256
drop_last: True drop_last: True
num_workers: 8 num_workers: 8
EVAL: Eval:
dataset: dataset:
name: SimpleDataSet name: SimpleDataSet
data_dir: ./rec data_dir: ./train_data/
file_list: label_file_list: ["./train_data/train_list.txt"]
- ./rec/val.txt
transforms: transforms:
- DecodeImage: # load image - DecodeImage: # load image
img_mode: BGR img_mode: BGR
channel_first: False channel_first: False
- CTCLabelEncode: # Class handling label - CTCLabelEncode: # Class handling label
- RecResizeImg: - RecResizeImg:
image_shape: [ 3,32,320 ] image_shape: [3, 32, 100]
- keepKeys: - KeepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader: loader:
shuffle: False shuffle: False
drop_last: False drop_last: False
batch_size: 256 batch_size_per_card: 256
num_workers: 8 num_workers: 4
*.iml
.gradle
/local.properties
/.idea/*
.DS_Store
/build
/captures
.externalNativeBuild
# 如何快速测试
### 1. 安装最新版本的Android Studio
可以从https://developer.android.com/studio 下载。本Demo使用是4.0版本Android Studio编写。
### 2. 按照NDK 20 以上版本
Demo测试的时候使用的是NDK 20b版本,20版本以上均可以支持编译成功。
如果您是初学者,可以用以下方式安装和测试NDK编译环境。
点击 File -> New ->New Project, 新建 "Native C++" project
### 3. 导入项目
点击 File->New->Import Project..., 然后跟着Android Studio的引导导入
# 获得更多支持
前往[端计算模型生成平台EasyEdge](https://ai.baidu.com/easyedge/app/open_source_demo?referrerUrl=paddlelite),获得更多开发支持:
- Demo APP:可使用手机扫码安装,方便手机端快速体验文字识别
- SDK:模型被封装为适配不同芯片硬件和操作系统SDK,包括完善的接口,方便进行二次开发
import java.security.MessageDigest
apply plugin: 'com.android.application'
android {
compileSdkVersion 29
defaultConfig {
applicationId "com.baidu.paddle.lite.demo.ocr"
minSdkVersion 23
targetSdkVersion 29
versionCode 1
versionName "1.0"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags "-std=c++11 -frtti -fexceptions -Wno-format"
arguments '-DANDROID_PLATFORM=android-23', '-DANDROID_STL=c++_shared' ,"-DANDROID_ARM_NEON=TRUE"
}
}
ndk {
// abiFilters "arm64-v8a", "armeabi-v7a"
abiFilters "arm64-v8a", "armeabi-v7a"
ldLibs "jnigraphics"
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"
}
}
}
dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'com.android.support.test:runner:1.0.2'
androidTestImplementation 'com.android.support.test.espresso:espresso-core:3.0.2'
}
def archives = [
[
'src' : 'https://paddlelite-demo.bj.bcebos.com/libs/android/paddle_lite_libs_v2_6_1.tar.gz',
'dest': 'PaddleLite'
],
[
'src' : 'https://paddlelite-demo.bj.bcebos.com/libs/android/opencv-4.2.0-android-sdk.tar.gz',
'dest': 'OpenCV'
],
[
'src' : 'https://paddleocr.bj.bcebos.com/deploy/lite/ocr_v1_for_cpu.tar.gz',
'dest' : 'src/main/assets/models/ocr_v1_for_cpu'
]
]
task downloadAndExtractArchives(type: DefaultTask) {
doFirst {
println "Downloading and extracting archives including libs and models"
}
doLast {
// Prepare cache folder for archives
String cachePath = "cache"
if (!file("${cachePath}").exists()) {
mkdir "${cachePath}"
}
archives.eachWithIndex { archive, index ->
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(archive.src.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download the target archive if not exists
boolean copyFiles = !file("${archive.dest}").exists()
if (!file("${cachePath}/${cacheName}.tar.gz").exists()) {
ant.get(src: archive.src, dest: file("${cachePath}/${cacheName}.tar.gz"))
copyFiles = true; // force to copy files from the latest archive files
}
// Extract the target archive if its dest path does not exists
if (copyFiles) {
copy {
from tarTree("${cachePath}/${cacheName}.tar.gz")
into "${archive.dest}"
}
}
}
}
}
preBuild.dependsOn downloadAndExtractArchives
\ No newline at end of file
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile
package com.baidu.paddle.lite.demo.ocr;
import android.content.Context;
import android.support.test.InstrumentationRegistry;
import android.support.test.runner.AndroidJUnit4;
import org.junit.Test;
import org.junit.runner.RunWith;
import static org.junit.Assert.*;
/**
* Instrumented test, which will execute on an Android device.
*
* @see <a href="http://d.android.com/tools/testing">Testing documentation</a>
*/
@RunWith(AndroidJUnit4.class)
public class ExampleInstrumentedTest {
@Test
public void useAppContext() {
// Context of the app under test.
Context appContext = InstrumentationRegistry.getTargetContext();
assertEquals("com.baidu.paddle.lite.demo", appContext.getPackageName());
}
}
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.baidu.paddle.lite.demo.ocr">
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.CAMERA"/>
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<!-- to test MiniActivity, change this to com.baidu.paddle.lite.demo.ocr.MiniActivity -->
<activity android:name="com.baidu.paddle.lite.demo.ocr.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
<activity
android:name="com.baidu.paddle.lite.demo.ocr.SettingsActivity"
android:label="Settings">
</activity>
<provider
android:name="androidx.core.content.FileProvider"
android:authorities="com.baidu.paddle.lite.demo.ocr.fileprovider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/file_paths"></meta-data>
</provider>
</application>
</manifest>
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment