Commit 76320bf0 authored by littletomatodonkey's avatar littletomatodonkey
Browse files

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into dev/add_thread_pred

parents e19bedf5 824ceca6
...@@ -26,8 +26,9 @@ def build_metric(config): ...@@ -26,8 +26,9 @@ def build_metric(config):
from .det_metric import DetMetric from .det_metric import DetMetric
from .rec_metric import RecMetric from .rec_metric import RecMetric
from .cls_metric import ClsMetric from .cls_metric import ClsMetric
from .e2e_metric import E2EMetric
support_dict = ['DetMetric', 'RecMetric', 'ClsMetric'] support_dict = ['DetMetric', 'RecMetric', 'ClsMetric', 'E2EMetric']
config = copy.deepcopy(config) config = copy.deepcopy(config)
module_name = config.pop('name') module_name = config.pop('name')
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__all__ = ['E2EMetric']
from ppocr.utils.e2e_metric.Deteval import get_socre, combine_results
from ppocr.utils.e2e_utils.extract_textpoint import get_dict
class E2EMetric(object):
def __init__(self,
character_dict_path,
main_indicator='f_score_e2e',
**kwargs):
self.label_list = get_dict(character_dict_path)
self.max_index = len(self.label_list)
self.main_indicator = main_indicator
self.reset()
def __call__(self, preds, batch, **kwargs):
temp_gt_polyons_batch = batch[2]
temp_gt_strs_batch = batch[3]
ignore_tags_batch = batch[4]
gt_polyons_batch = []
gt_strs_batch = []
temp_gt_polyons_batch = temp_gt_polyons_batch[0].tolist()
for temp_list in temp_gt_polyons_batch:
t = []
for index in temp_list:
if index[0] != -1 and index[1] != -1:
t.append(index)
gt_polyons_batch.append(t)
temp_gt_strs_batch = temp_gt_strs_batch[0].tolist()
for temp_list in temp_gt_strs_batch:
t = ""
for index in temp_list:
if index < self.max_index:
t += self.label_list[index]
gt_strs_batch.append(t)
for pred, gt_polyons, gt_strs, ignore_tags in zip(
[preds], [gt_polyons_batch], [gt_strs_batch], ignore_tags_batch):
# prepare gt
gt_info_list = [{
'points': gt_polyon,
'text': gt_str,
'ignore': ignore_tag
} for gt_polyon, gt_str, ignore_tag in
zip(gt_polyons, gt_strs, ignore_tags)]
# prepare det
e2e_info_list = [{
'points': det_polyon,
'text': pred_str
} for det_polyon, pred_str in zip(pred['points'], pred['strs'])]
result = get_socre(gt_info_list, e2e_info_list)
self.results.append(result)
def get_metric(self):
metircs = combine_results(self.results)
self.reset()
return metircs
def reset(self):
self.results = [] # clear results
...@@ -150,7 +150,7 @@ class DetectionIoUEvaluator(object): ...@@ -150,7 +150,7 @@ class DetectionIoUEvaluator(object):
pairs.append({'gt': gtNum, 'det': detNum}) pairs.append({'gt': gtNum, 'det': detNum})
detMatchedNums.append(detNum) detMatchedNums.append(detNum)
evaluationLog += "Match GT #" + \ evaluationLog += "Match GT #" + \
str(gtNum) + " with Det #" + str(detNum) + "\n" str(gtNum) + " with Det #" + str(detNum) + "\n"
numGtCare = (len(gtPols) - len(gtDontCarePolsNum)) numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
numDetCare = (len(detPols) - len(detDontCarePolsNum)) numDetCare = (len(detPols) - len(detDontCarePolsNum))
...@@ -162,7 +162,7 @@ class DetectionIoUEvaluator(object): ...@@ -162,7 +162,7 @@ class DetectionIoUEvaluator(object):
precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare
hmean = 0 if (precision + recall) == 0 else 2.0 * \ hmean = 0 if (precision + recall) == 0 else 2.0 * \
precision * recall / (precision + recall) precision * recall / (precision + recall)
matchedSum += detMatched matchedSum += detMatched
numGlobalCareGt += numGtCare numGlobalCareGt += numGtCare
...@@ -200,7 +200,8 @@ class DetectionIoUEvaluator(object): ...@@ -200,7 +200,8 @@ class DetectionIoUEvaluator(object):
methodPrecision = 0 if numGlobalCareDet == 0 else float( methodPrecision = 0 if numGlobalCareDet == 0 else float(
matchedSum) / numGlobalCareDet matchedSum) / numGlobalCareDet
methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \ methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \
methodRecall * methodPrecision / (methodRecall + methodPrecision) methodRecall * methodPrecision / (
methodRecall + methodPrecision)
# print(methodRecall, methodPrecision, methodHmean) # print(methodRecall, methodPrecision, methodHmean)
# sys.exit(-1) # sys.exit(-1)
methodMetrics = { methodMetrics = {
......
...@@ -26,6 +26,9 @@ def build_backbone(config, model_type): ...@@ -26,6 +26,9 @@ def build_backbone(config, model_type):
from .rec_resnet_vd import ResNet from .rec_resnet_vd import ResNet
from .rec_resnet_fpn import ResNetFPN from .rec_resnet_fpn import ResNetFPN
support_dict = ['MobileNetV3', 'ResNet', 'ResNetFPN'] support_dict = ['MobileNetV3', 'ResNet', 'ResNetFPN']
elif model_type == 'e2e':
from .e2e_resnet_vd_pg import ResNet
support_dict = ['ResNet']
else: else:
raise NotImplementedError raise NotImplementedError
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
__all__ = ["ResNet"]
class ConvBNLayer(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None, ):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels * 4,
kernel_size=1,
stride=stride,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv2)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels,
stride,
shortcut=True,
if_first=False,
name=None):
super(BasicBlock, self).__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2a")
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
if not shortcut:
self.short = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
is_vd_mode=False if if_first else True,
name=name + "_branch1")
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=conv1)
y = F.relu(y)
return y
class ResNet(nn.Layer):
def __init__(self, in_channels=3, layers=50, **kwargs):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [18, 34, 50, 101, 152, 200]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
# depth = [3, 4, 6, 3]
depth = [3, 4, 6, 3, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_channels = [64, 256, 512, 1024,
2048] if layers >= 50 else [64, 64, 128, 256]
num_filters = [64, 128, 256, 512, 512]
self.conv1_1 = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=7,
stride=2,
act='relu',
name="conv1_1")
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.stages = []
self.out_channels = [3, 64]
# num_filters = [64, 128, 256, 512, 512]
if layers >= 50:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block] * 4,
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(bottleneck_block)
self.out_channels.append(num_filters[block] * 4)
self.stages.append(nn.Sequential(*block_list))
else:
for block in range(len(depth)):
block_list = []
shortcut = False
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
basic_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BasicBlock(
in_channels=num_channels[block]
if i == 0 else num_filters[block],
out_channels=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
if_first=block == i == 0,
name=conv_name))
shortcut = True
block_list.append(basic_block)
self.out_channels.append(num_filters[block])
self.stages.append(nn.Sequential(*block_list))
def forward(self, inputs):
out = [inputs]
y = self.conv1_1(inputs)
out.append(y)
y = self.pool2d_max(y)
for block in self.stages:
y = block(y)
out.append(y)
return out
...@@ -20,6 +20,7 @@ def build_head(config): ...@@ -20,6 +20,7 @@ def build_head(config):
from .det_db_head import DBHead from .det_db_head import DBHead
from .det_east_head import EASTHead from .det_east_head import EASTHead
from .det_sast_head import SASTHead from .det_sast_head import SASTHead
from .e2e_pg_head import PGHead
# rec head # rec head
from .rec_ctc_head import CTCHead from .rec_ctc_head import CTCHead
...@@ -30,8 +31,8 @@ def build_head(config): ...@@ -30,8 +31,8 @@ def build_head(config):
from .cls_head import ClsHead from .cls_head import ClsHead
support_dict = [ support_dict = [
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead', 'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead',
'SRNHead' 'SRNHead', 'PGHead']
]
module_name = config.pop('name') module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format( assert module_name in support_dict, Exception('head only support {}'.format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance",
use_global_stats=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class PGHead(nn.Layer):
"""
"""
def __init__(self, in_channels, **kwargs):
super(PGHead, self).__init__()
self.conv_f_score1 = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_score{}".format(1))
self.conv_f_score2 = ConvBNLayer(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
act='relu',
name="conv_f_score{}".format(2))
self.conv_f_score3 = ConvBNLayer(
in_channels=64,
out_channels=128,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_score{}".format(3))
self.conv1 = nn.Conv2D(
in_channels=128,
out_channels=1,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=ParamAttr(name="conv_f_score{}".format(4)),
bias_attr=False)
self.conv_f_boder1 = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_boder{}".format(1))
self.conv_f_boder2 = ConvBNLayer(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
act='relu',
name="conv_f_boder{}".format(2))
self.conv_f_boder3 = ConvBNLayer(
in_channels=64,
out_channels=128,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_boder{}".format(3))
self.conv2 = nn.Conv2D(
in_channels=128,
out_channels=4,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=ParamAttr(name="conv_f_boder{}".format(4)),
bias_attr=False)
self.conv_f_char1 = ConvBNLayer(
in_channels=in_channels,
out_channels=128,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_char{}".format(1))
self.conv_f_char2 = ConvBNLayer(
in_channels=128,
out_channels=128,
kernel_size=3,
stride=1,
padding=1,
act='relu',
name="conv_f_char{}".format(2))
self.conv_f_char3 = ConvBNLayer(
in_channels=128,
out_channels=256,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_char{}".format(3))
self.conv_f_char4 = ConvBNLayer(
in_channels=256,
out_channels=256,
kernel_size=3,
stride=1,
padding=1,
act='relu',
name="conv_f_char{}".format(4))
self.conv_f_char5 = ConvBNLayer(
in_channels=256,
out_channels=256,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_char{}".format(5))
self.conv3 = nn.Conv2D(
in_channels=256,
out_channels=37,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=ParamAttr(name="conv_f_char{}".format(6)),
bias_attr=False)
self.conv_f_direc1 = ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_direc{}".format(1))
self.conv_f_direc2 = ConvBNLayer(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
act='relu',
name="conv_f_direc{}".format(2))
self.conv_f_direc3 = ConvBNLayer(
in_channels=64,
out_channels=128,
kernel_size=1,
stride=1,
padding=0,
act='relu',
name="conv_f_direc{}".format(3))
self.conv4 = nn.Conv2D(
in_channels=128,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
groups=1,
weight_attr=ParamAttr(name="conv_f_direc{}".format(4)),
bias_attr=False)
def forward(self, x):
f_score = self.conv_f_score1(x)
f_score = self.conv_f_score2(f_score)
f_score = self.conv_f_score3(f_score)
f_score = self.conv1(f_score)
f_score = F.sigmoid(f_score)
# f_border
f_border = self.conv_f_boder1(x)
f_border = self.conv_f_boder2(f_border)
f_border = self.conv_f_boder3(f_border)
f_border = self.conv2(f_border)
f_char = self.conv_f_char1(x)
f_char = self.conv_f_char2(f_char)
f_char = self.conv_f_char3(f_char)
f_char = self.conv_f_char4(f_char)
f_char = self.conv_f_char5(f_char)
f_char = self.conv3(f_char)
f_direction = self.conv_f_direc1(x)
f_direction = self.conv_f_direc2(f_direction)
f_direction = self.conv_f_direc3(f_direction)
f_direction = self.conv4(f_direction)
predicts = {}
predicts['f_score'] = f_score
predicts['f_border'] = f_border
predicts['f_char'] = f_char
predicts['f_direction'] = f_direction
return predicts
...@@ -14,12 +14,14 @@ ...@@ -14,12 +14,14 @@
__all__ = ['build_neck'] __all__ = ['build_neck']
def build_neck(config): def build_neck(config):
from .db_fpn import DBFPN from .db_fpn import DBFPN
from .east_fpn import EASTFPN from .east_fpn import EASTFPN
from .sast_fpn import SASTFPN from .sast_fpn import SASTFPN
from .rnn import SequenceEncoder from .rnn import SequenceEncoder
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder'] from .pg_fpn import PGFPN
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN']
module_name = config.pop('name') module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format( assert module_name in support_dict, Exception('neck only support {}'.format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.is_vd_mode = is_vd_mode
self._pool2d_avg = nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self._conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
self._batch_norm = nn.BatchNorm(
out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
use_global_stats=False)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class DeConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=4,
stride=2,
padding=1,
groups=1,
if_act=True,
act=None,
name=None):
super(DeConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.deconv = nn.Conv2DTranspose(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance",
use_global_stats=False)
def forward(self, x):
x = self.deconv(x)
x = self.bn(x)
return x
class PGFPN(nn.Layer):
def __init__(self, in_channels, **kwargs):
super(PGFPN, self).__init__()
num_inputs = [2048, 2048, 1024, 512, 256]
num_outputs = [256, 256, 192, 192, 128]
self.out_channels = 128
self.conv_bn_layer_1 = ConvBNLayer(
in_channels=3,
out_channels=32,
kernel_size=3,
stride=1,
act=None,
name='FPN_d1')
self.conv_bn_layer_2 = ConvBNLayer(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
act=None,
name='FPN_d2')
self.conv_bn_layer_3 = ConvBNLayer(
in_channels=256,
out_channels=128,
kernel_size=3,
stride=1,
act=None,
name='FPN_d3')
self.conv_bn_layer_4 = ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=2,
act=None,
name='FPN_d4')
self.conv_bn_layer_5 = ConvBNLayer(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name='FPN_d5')
self.conv_bn_layer_6 = ConvBNLayer(
in_channels=64,
out_channels=128,
kernel_size=3,
stride=2,
act=None,
name='FPN_d6')
self.conv_bn_layer_7 = ConvBNLayer(
in_channels=128,
out_channels=128,
kernel_size=3,
stride=1,
act='relu',
name='FPN_d7')
self.conv_bn_layer_8 = ConvBNLayer(
in_channels=128,
out_channels=128,
kernel_size=1,
stride=1,
act=None,
name='FPN_d8')
self.conv_h0 = ConvBNLayer(
in_channels=num_inputs[0],
out_channels=num_outputs[0],
kernel_size=1,
stride=1,
act=None,
name="conv_h{}".format(0))
self.conv_h1 = ConvBNLayer(
in_channels=num_inputs[1],
out_channels=num_outputs[1],
kernel_size=1,
stride=1,
act=None,
name="conv_h{}".format(1))
self.conv_h2 = ConvBNLayer(
in_channels=num_inputs[2],
out_channels=num_outputs[2],
kernel_size=1,
stride=1,
act=None,
name="conv_h{}".format(2))
self.conv_h3 = ConvBNLayer(
in_channels=num_inputs[3],
out_channels=num_outputs[3],
kernel_size=1,
stride=1,
act=None,
name="conv_h{}".format(3))
self.conv_h4 = ConvBNLayer(
in_channels=num_inputs[4],
out_channels=num_outputs[4],
kernel_size=1,
stride=1,
act=None,
name="conv_h{}".format(4))
self.dconv0 = DeConvBNLayer(
in_channels=num_outputs[0],
out_channels=num_outputs[0 + 1],
name="dconv_{}".format(0))
self.dconv1 = DeConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[1 + 1],
act=None,
name="dconv_{}".format(1))
self.dconv2 = DeConvBNLayer(
in_channels=num_outputs[2],
out_channels=num_outputs[2 + 1],
act=None,
name="dconv_{}".format(2))
self.dconv3 = DeConvBNLayer(
in_channels=num_outputs[3],
out_channels=num_outputs[3 + 1],
act=None,
name="dconv_{}".format(3))
self.conv_g1 = ConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[1],
kernel_size=3,
stride=1,
act='relu',
name="conv_g{}".format(1))
self.conv_g2 = ConvBNLayer(
in_channels=num_outputs[2],
out_channels=num_outputs[2],
kernel_size=3,
stride=1,
act='relu',
name="conv_g{}".format(2))
self.conv_g3 = ConvBNLayer(
in_channels=num_outputs[3],
out_channels=num_outputs[3],
kernel_size=3,
stride=1,
act='relu',
name="conv_g{}".format(3))
self.conv_g4 = ConvBNLayer(
in_channels=num_outputs[4],
out_channels=num_outputs[4],
kernel_size=3,
stride=1,
act='relu',
name="conv_g{}".format(4))
self.convf = ConvBNLayer(
in_channels=num_outputs[4],
out_channels=num_outputs[4],
kernel_size=1,
stride=1,
act=None,
name="conv_f{}".format(4))
def forward(self, x):
c0, c1, c2, c3, c4, c5, c6 = x
# FPN_Down_Fusion
f = [c0, c1, c2]
g = [None, None, None]
h = [None, None, None]
h[0] = self.conv_bn_layer_1(f[0])
h[1] = self.conv_bn_layer_2(f[1])
h[2] = self.conv_bn_layer_3(f[2])
g[0] = self.conv_bn_layer_4(h[0])
g[1] = paddle.add(g[0], h[1])
g[1] = F.relu(g[1])
g[1] = self.conv_bn_layer_5(g[1])
g[1] = self.conv_bn_layer_6(g[1])
g[2] = paddle.add(g[1], h[2])
g[2] = F.relu(g[2])
g[2] = self.conv_bn_layer_7(g[2])
f_down = self.conv_bn_layer_8(g[2])
# FPN UP Fusion
f1 = [c6, c5, c4, c3, c2]
g = [None, None, None, None, None]
h = [None, None, None, None, None]
h[0] = self.conv_h0(f1[0])
h[1] = self.conv_h1(f1[1])
h[2] = self.conv_h2(f1[2])
h[3] = self.conv_h3(f1[3])
h[4] = self.conv_h4(f1[4])
g[0] = self.dconv0(h[0])
g[1] = paddle.add(g[0], h[1])
g[1] = F.relu(g[1])
g[1] = self.conv_g1(g[1])
g[1] = self.dconv1(g[1])
g[2] = paddle.add(g[1], h[2])
g[2] = F.relu(g[2])
g[2] = self.conv_g2(g[2])
g[2] = self.dconv2(g[2])
g[3] = paddle.add(g[2], h[3])
g[3] = F.relu(g[3])
g[3] = self.conv_g3(g[3])
g[3] = self.dconv3(g[3])
g[4] = paddle.add(x=g[3], y=h[4])
g[4] = F.relu(g[4])
g[4] = self.conv_g4(g[4])
f_up = self.convf(g[4])
f_common = paddle.add(f_down, f_up)
f_common = F.relu(f_common)
return f_common
...@@ -28,10 +28,11 @@ def build_post_process(config, global_config=None): ...@@ -28,10 +28,11 @@ def build_post_process(config, global_config=None):
from .sast_postprocess import SASTPostProcess from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode
from .cls_postprocess import ClsPostProcess from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess
support_dict = [ support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode', 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode' 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess'
] ]
config = copy.deepcopy(config) config = copy.deepcopy(config)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
from ppocr.utils.e2e_utils.extract_textpoint import *
from ppocr.utils.e2e_utils.visual import *
import paddle
class PGPostProcess(object):
"""
The post process for PGNet.
"""
def __init__(self, character_dict_path, valid_set, score_thresh, **kwargs):
self.Lexicon_Table = get_dict(character_dict_path)
self.valid_set = valid_set
self.score_thresh = score_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def __call__(self, outs_dict, shape_list):
p_score = outs_dict['f_score']
p_border = outs_dict['f_border']
p_char = outs_dict['f_char']
p_direction = outs_dict['f_direction']
if isinstance(p_score, paddle.Tensor):
p_score = p_score[0].numpy()
p_border = p_border[0].numpy()
p_direction = p_direction[0].numpy()
p_char = p_char[0].numpy()
else:
p_score = p_score[0]
p_border = p_border[0]
p_direction = p_direction[0]
p_char = p_char[0]
src_h, src_w, ratio_h, ratio_w = shape_list[0]
is_curved = self.valid_set == "totaltext"
instance_yxs_list = generate_pivot_list(
p_score,
p_char,
p_direction,
score_thresh=self.score_thresh,
is_backbone=True,
is_curved=is_curved)
p_char = paddle.to_tensor(np.expand_dims(p_char, axis=0))
char_seq_idx_set = []
for i in range(len(instance_yxs_list)):
gather_info_lod = paddle.to_tensor(instance_yxs_list[i])
f_char_map = paddle.transpose(p_char, [0, 2, 3, 1])
feature_seq = paddle.gather_nd(f_char_map, gather_info_lod)
feature_seq = np.expand_dims(feature_seq.numpy(), axis=0)
feature_len = [len(feature_seq[0])]
featyre_seq = paddle.to_tensor(feature_seq)
feature_len = np.array([feature_len]).astype(np.int64)
length = paddle.to_tensor(feature_len)
seq_pred = paddle.fluid.layers.ctc_greedy_decoder(
input=featyre_seq, blank=36, input_length=length)
seq_pred_str = seq_pred[0].numpy().tolist()[0]
seq_len = seq_pred[1].numpy()[0][0]
temp_t = []
for c in seq_pred_str[:seq_len]:
temp_t.append(c)
char_seq_idx_set.append(temp_t)
seq_strs = []
for char_idx_set in char_seq_idx_set:
pr_str = ''.join([self.Lexicon_Table[pos] for pos in char_idx_set])
seq_strs.append(pr_str)
poly_list = []
keep_str_list = []
all_point_list = []
all_point_pair_list = []
for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
if len(yx_center_line) == 1:
yx_center_line.append(yx_center_line[-1])
offset_expand = 1.0
if self.valid_set == 'totaltext':
offset_expand = 1.2
point_pair_list = []
for batch_id, y, x in yx_center_line:
offset = p_border[:, y, x].reshape(2, 2)
if offset_expand != 1.0:
offset_length = np.linalg.norm(
offset, axis=1, keepdims=True)
expand_length = np.clip(
offset_length * (offset_expand - 1),
a_min=0.5,
a_max=3.0)
offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal
ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
[ratio_w, ratio_h]).reshape(-1, 2)
point_pair_list.append(point_pair)
all_point_list.append([
int(round(x * 4.0 / ratio_w)),
int(round(y * 4.0 / ratio_h))
])
all_point_pair_list.append(point_pair.round().astype(np.int32)
.tolist())
detected_poly, pair_length_info = point_pair2poly(point_pair_list)
detected_poly = expand_poly_along_width(
detected_poly, shrink_ratio_of_width=0.2)
detected_poly[:, 0] = np.clip(
detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(
detected_poly[:, 1], a_min=0, a_max=src_h)
if len(keep_str) < 2:
continue
keep_str_list.append(keep_str)
if self.valid_set == 'partvgg':
middle_point = len(detected_poly) // 2
detected_poly = detected_poly[
[0, middle_point - 1, middle_point, -1], :]
poly_list.append(detected_poly)
elif self.valid_set == 'totaltext':
poly_list.append(detected_poly)
else:
print('--> Not supported format.')
exit(-1)
data = {
'points': poly_list,
'strs': keep_str_list,
}
return data
...@@ -18,6 +18,7 @@ from __future__ import print_function ...@@ -18,6 +18,7 @@ from __future__ import print_function
import os import os
import sys import sys
__dir__ = os.path.dirname(__file__) __dir__ = os.path.dirname(__file__)
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..')) sys.path.append(os.path.join(__dir__, '..'))
...@@ -49,12 +50,12 @@ class SASTPostProcess(object): ...@@ -49,12 +50,12 @@ class SASTPostProcess(object):
self.shrink_ratio_of_width = shrink_ratio_of_width self.shrink_ratio_of_width = shrink_ratio_of_width
self.expand_scale = expand_scale self.expand_scale = expand_scale
self.tcl_map_thresh = tcl_map_thresh self.tcl_map_thresh = tcl_map_thresh
# c++ la-nms is faster, but only support python 3.5 # c++ la-nms is faster, but only support python 3.5
self.is_python35 = False self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5: if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True self.is_python35 = True
def point_pair2poly(self, point_pair_list): def point_pair2poly(self, point_pair_list):
""" """
Transfer vertical point_pairs into poly point in clockwise. Transfer vertical point_pairs into poly point in clockwise.
...@@ -66,31 +67,42 @@ class SASTPostProcess(object): ...@@ -66,31 +67,42 @@ class SASTPostProcess(object):
point_list[idx] = point_pair[0] point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1] point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2) return np.array(point_list).reshape(-1, 2)
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.): def shrink_quad_along_width(self,
quad,
begin_width_ratio=0.,
end_width_ratio=1.):
""" """
Generate shrink_quad_along_width. Generate shrink_quad_along_width.
""" """
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32) ratio_pair = np.array(
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]]) return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3): def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
""" """
expand poly along width. expand poly along width.
""" """
point_num = poly.shape[0] point_num = poly.shape[0]
left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32) left_quad = np.array(
[poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \ left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
(np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6) (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0) left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio,
right_quad = np.array([poly[point_num // 2 - 2], poly[point_num // 2 - 1], 1.0)
poly[point_num // 2], poly[point_num // 2 + 1]], dtype=np.float32) right_quad = np.array(
[
poly[point_num // 2 - 2], poly[point_num // 2 - 1],
poly[point_num // 2], poly[point_num // 2 + 1]
],
dtype=np.float32)
right_ratio = 1.0 + \ right_ratio = 1.0 + \
shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \ shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
(np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6) (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio) right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0,
right_ratio)
poly[0] = left_quad_expand[0] poly[0] = left_quad_expand[0]
poly[-1] = left_quad_expand[-1] poly[-1] = left_quad_expand[-1]
poly[point_num // 2 - 1] = right_quad_expand[1] poly[point_num // 2 - 1] = right_quad_expand[1]
...@@ -100,7 +112,7 @@ class SASTPostProcess(object): ...@@ -100,7 +112,7 @@ class SASTPostProcess(object):
def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map): def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
"""Restore quad.""" """Restore quad."""
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh) xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
xy_text = xy_text[:, ::-1] # (n, 2) xy_text = xy_text[:, ::-1] # (n, 2)
# Sort the text boxes via the y axis # Sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 1])] xy_text = xy_text[np.argsort(xy_text[:, 1])]
...@@ -112,7 +124,7 @@ class SASTPostProcess(object): ...@@ -112,7 +124,7 @@ class SASTPostProcess(object):
point_num = int(tvo_map.shape[-1] / 2) point_num = int(tvo_map.shape[-1] / 2)
assert point_num == 4 assert point_num == 4
tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :] tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2) xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
quads = xy_text_tile - tvo_map quads = xy_text_tile - tvo_map
return scores, quads, xy_text return scores, quads, xy_text
...@@ -121,14 +133,12 @@ class SASTPostProcess(object): ...@@ -121,14 +133,12 @@ class SASTPostProcess(object):
""" """
compute area of a quad. compute area of a quad.
""" """
edge = [ edge = [(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]), (quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
(quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]), (quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
(quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]), (quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])]
(quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])
]
return np.sum(edge) / 2. return np.sum(edge) / 2.
def nms(self, dets): def nms(self, dets):
if self.is_python35: if self.is_python35:
import lanms import lanms
...@@ -141,7 +151,7 @@ class SASTPostProcess(object): ...@@ -141,7 +151,7 @@ class SASTPostProcess(object):
""" """
Cluster pixels in tcl_map based on quads. Cluster pixels in tcl_map based on quads.
""" """
instance_count = quads.shape[0] + 1 # contain background instance_count = quads.shape[0] + 1 # contain background
instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32) instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
if instance_count == 1: if instance_count == 1:
return instance_count, instance_label_map return instance_count, instance_label_map
...@@ -149,18 +159,19 @@ class SASTPostProcess(object): ...@@ -149,18 +159,19 @@ class SASTPostProcess(object):
# predict text center # predict text center
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh) xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
n = xy_text.shape[0] n = xy_text.shape[0]
xy_text = xy_text[:, ::-1] # (n, 2) xy_text = xy_text[:, ::-1] # (n, 2)
tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2) tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
pred_tc = xy_text - tco pred_tc = xy_text - tco
# get gt text center # get gt text center
m = quads.shape[0] m = quads.shape[0]
gt_tc = np.mean(quads, axis=1) # (m, 2) gt_tc = np.mean(quads, axis=1) # (m, 2)
pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2) pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :],
gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2) (1, m, 1)) # (n, m, 2)
dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m) gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,) dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
return instance_count, instance_label_map return instance_count, instance_label_map
...@@ -169,26 +180,47 @@ class SASTPostProcess(object): ...@@ -169,26 +180,47 @@ class SASTPostProcess(object):
""" """
Estimate sample points number. Estimate sample points number.
""" """
eh = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])) / 2.0 eh = (np.linalg.norm(quad[0] - quad[3]) +
ew = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0 np.linalg.norm(quad[1] - quad[2])) / 2.0
ew = (np.linalg.norm(quad[0] - quad[1]) +
np.linalg.norm(quad[2] - quad[3])) / 2.0
dense_sample_pts_num = max(2, int(ew)) dense_sample_pts_num = max(2, int(ew))
dense_xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, dense_sample_pts_num, dense_xy_center_line = xy_text[np.linspace(
endpoint=True, dtype=np.float32).astype(np.int32)] 0,
xy_text.shape[0] - 1,
dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1] dense_sample_pts_num,
estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1)) endpoint=True,
dtype=np.float32).astype(np.int32)]
dense_xy_center_line_diff = dense_xy_center_line[
1:] - dense_xy_center_line[:-1]
estimate_arc_len = np.sum(
np.linalg.norm(
dense_xy_center_line_diff, axis=1))
sample_pts_num = max(2, int(estimate_arc_len / eh)) sample_pts_num = max(2, int(estimate_arc_len / eh))
return sample_pts_num return sample_pts_num
def detect_sast(self, tcl_map, tvo_map, tbo_map, tco_map, ratio_w, ratio_h, src_w, src_h, def detect_sast(self,
shrink_ratio_of_width=0.3, tcl_map_thresh=0.5, offset_expand=1.0, out_strid=4.0): tcl_map,
tvo_map,
tbo_map,
tco_map,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=0.3,
tcl_map_thresh=0.5,
offset_expand=1.0,
out_strid=4.0):
""" """
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
""" """
# restore quad # restore quad
scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map) scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh,
tvo_map)
dets = np.hstack((quads, scores)).astype(np.float32, copy=False) dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
dets = self.nms(dets) dets = self.nms(dets)
if dets.shape[0] == 0: if dets.shape[0] == 0:
...@@ -202,7 +234,8 @@ class SASTPostProcess(object): ...@@ -202,7 +234,8 @@ class SASTPostProcess(object):
# instance segmentation # instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8) # instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count, instance_label_map = self.cluster_by_quads_tco(tcl_map, tcl_map_thresh, quads, tco_map) instance_count, instance_label_map = self.cluster_by_quads_tco(
tcl_map, tcl_map_thresh, quads, tco_map)
# restore single poly with tcl instance. # restore single poly with tcl instance.
poly_list = [] poly_list = []
...@@ -212,10 +245,10 @@ class SASTPostProcess(object): ...@@ -212,10 +245,10 @@ class SASTPostProcess(object):
q_area = quad_areas[instance_idx - 1] q_area = quad_areas[instance_idx - 1]
if q_area < 5: if q_area < 5:
continue continue
# #
len1 = float(np.linalg.norm(quad[0] -quad[1])) len1 = float(np.linalg.norm(quad[0] - quad[1]))
len2 = float(np.linalg.norm(quad[1] -quad[2])) len2 = float(np.linalg.norm(quad[1] - quad[2]))
min_len = min(len1, len2) min_len = min(len1, len2)
if min_len < 3: if min_len < 3:
continue continue
...@@ -225,16 +258,18 @@ class SASTPostProcess(object): ...@@ -225,16 +258,18 @@ class SASTPostProcess(object):
continue continue
# filter low confidence instance # filter low confidence instance
xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0] xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1: if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05: # if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue continue
# sort xy_text # sort xy_text
left_center_pt = np.array([[(quad[0, 0] + quad[-1, 0]) / 2.0, left_center_pt = np.array(
(quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2) [[(quad[0, 0] + quad[-1, 0]) / 2.0,
right_center_pt = np.array([[(quad[1, 0] + quad[2, 0]) / 2.0, (quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
(quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2) right_center_pt = np.array(
[[(quad[1, 0] + quad[2, 0]) / 2.0,
(quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / \ proj_unit_vec = (right_center_pt - left_center_pt) / \
(np.linalg.norm(right_center_pt - left_center_pt) + 1e-6) (np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
proj_value = np.sum(xy_text * proj_unit_vec, axis=1) proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
...@@ -245,33 +280,45 @@ class SASTPostProcess(object): ...@@ -245,33 +280,45 @@ class SASTPostProcess(object):
sample_pts_num = self.estimate_sample_pts_num(quad, xy_text) sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
else: else:
sample_pts_num = self.sample_pts_num sample_pts_num = self.sample_pts_num
xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, sample_pts_num, xy_center_line = xy_text[np.linspace(
endpoint=True, dtype=np.float32).astype(np.int32)] 0,
xy_text.shape[0] - 1,
sample_pts_num,
endpoint=True,
dtype=np.float32).astype(np.int32)]
point_pair_list = [] point_pair_list = []
for x, y in xy_center_line: for x, y in xy_center_line:
# get corresponding offset # get corresponding offset
offset = tbo_map[y, x, :].reshape(2, 2) offset = tbo_map[y, x, :].reshape(2, 2)
if offset_expand != 1.0: if offset_expand != 1.0:
offset_length = np.linalg.norm(offset, axis=1, keepdims=True) offset_length = np.linalg.norm(
expand_length = np.clip(offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0) offset, axis=1, keepdims=True)
expand_length = np.clip(
offset_length * (offset_expand - 1),
a_min=0.5,
a_max=3.0)
offset_detal = offset / offset_length * expand_length offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal offset = offset + offset_detal
# original point # original point
ori_yx = np.array([y, x], dtype=np.float32) ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (ori_yx + offset)[:, ::-1]* out_strid / np.array([ratio_w, ratio_h]).reshape(-1, 2) point_pair = (ori_yx + offset)[:, ::-1] * out_strid / np.array(
[ratio_w, ratio_h]).reshape(-1, 2)
point_pair_list.append(point_pair) point_pair_list.append(point_pair)
# ndarry: (x, 2), expand poly along width # ndarry: (x, 2), expand poly along width
detected_poly = self.point_pair2poly(point_pair_list) detected_poly = self.point_pair2poly(point_pair_list)
detected_poly = self.expand_poly_along_width(detected_poly, shrink_ratio_of_width) detected_poly = self.expand_poly_along_width(detected_poly,
detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w) shrink_ratio_of_width)
detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h) detected_poly[:, 0] = np.clip(
detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(
detected_poly[:, 1], a_min=0, a_max=src_h)
poly_list.append(detected_poly) poly_list.append(detected_poly)
return poly_list return poly_list
def __call__(self, outs_dict, shape_list): def __call__(self, outs_dict, shape_list):
score_list = outs_dict['f_score'] score_list = outs_dict['f_score']
border_list = outs_dict['f_border'] border_list = outs_dict['f_border']
tvo_list = outs_dict['f_tvo'] tvo_list = outs_dict['f_tvo']
...@@ -281,20 +328,28 @@ class SASTPostProcess(object): ...@@ -281,20 +328,28 @@ class SASTPostProcess(object):
border_list = border_list.numpy() border_list = border_list.numpy()
tvo_list = tvo_list.numpy() tvo_list = tvo_list.numpy()
tco_list = tco_list.numpy() tco_list = tco_list.numpy()
img_num = len(shape_list) img_num = len(shape_list)
poly_lists = [] poly_lists = []
for ino in range(img_num): for ino in range(img_num):
p_score = score_list[ino].transpose((1,2,0)) p_score = score_list[ino].transpose((1, 2, 0))
p_border = border_list[ino].transpose((1,2,0)) p_border = border_list[ino].transpose((1, 2, 0))
p_tvo = tvo_list[ino].transpose((1,2,0)) p_tvo = tvo_list[ino].transpose((1, 2, 0))
p_tco = tco_list[ino].transpose((1,2,0)) p_tco = tco_list[ino].transpose((1, 2, 0))
src_h, src_w, ratio_h, ratio_w = shape_list[ino] src_h, src_w, ratio_h, ratio_w = shape_list[ino]
poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h, poly_list = self.detect_sast(
shrink_ratio_of_width=self.shrink_ratio_of_width, p_score,
tcl_map_thresh=self.tcl_map_thresh, offset_expand=self.expand_scale) p_tvo,
p_border,
p_tco,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=self.shrink_ratio_of_width,
tcl_map_thresh=self.tcl_map_thresh,
offset_expand=self.expand_scale)
poly_lists.append({'points': np.array(poly_list)}) poly_lists.append({'points': np.array(poly_list)})
return poly_lists return poly_lists
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
ء
آ
أ
ؤ
إ
ئ
ا
ب
ة
ت
ث
ج
ح
خ
د
ذ
ر
ز
س
ش
ص
ض
ط
ظ
ع
غ
ف
ق
ك
ل
م
ن
ه
و
ى
ي
ً
ٌ
ٍ
َ
ُ
ِ
ّ
ْ
ٓ
ٔ
ٰ
ٱ
ٹ
پ
چ
ڈ
ڑ
ژ
ک
ڭ
گ
ں
ھ
ۀ
ہ
ۂ
ۃ
ۆ
ۇ
ۈ
ۋ
ی
ې
ے
ۓ
ە
١
٢
٣
٤
٥
٦
٧
٨
٩
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
Ё
Є
І
Ј
Љ
Ў
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Ъ
Ы
Ь
Э
Ю
Я
а
б
в
г
д
е
ж
з
и
й
к
л
м
н
о
п
р
с
т
у
ф
х
ц
ч
ш
щ
ъ
ы
ь
э
ю
я
ё
ђ
є
і
ј
љ
њ
ћ
ў
џ
Ґ
ґ
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
ि
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
]
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
}
¡
£
§
ª
«
­
°
²
³
´
µ
·
º
»
¿
À
Á
Â
Ä
Å
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ò
Ó
Ô
Õ
Ö
Ú
Ü
Ý
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ñ
ò
ó
ô
õ
ö
ø
ù
ú
û
ü
ý
ą
Ć
ć
Č
č
Đ
đ
ę
ı
Ł
ł
ō
Œ
œ
Š
š
Ÿ
Ž
ž
ʒ
β
δ
ε
з
This diff is collapsed.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from shapely.geometry import Polygon
"""
:param det_x: [1, N] Xs of detection's vertices
:param det_y: [1, N] Ys of detection's vertices
:param gt_x: [1, N] Xs of groundtruth's vertices
:param gt_y: [1, N] Ys of groundtruth's vertices
##############
All the calculation of 'AREA' in this script is handled by:
1) First generating a binary mask with the polygon area filled up with 1's
2) Summing up all the 1's
"""
def area(x, y):
polygon = Polygon(np.stack([x, y], axis=1))
return float(polygon.area)
def approx_area_of_intersection(det_x, det_y, gt_x, gt_y):
"""
This helper determine if both polygons are intersecting with each others with an approximation method.
Area of intersection represented by the minimum bounding rectangular [xmin, ymin, xmax, ymax]
"""
det_ymax = np.max(det_y)
det_xmax = np.max(det_x)
det_ymin = np.min(det_y)
det_xmin = np.min(det_x)
gt_ymax = np.max(gt_y)
gt_xmax = np.max(gt_x)
gt_ymin = np.min(gt_y)
gt_xmin = np.min(gt_x)
all_min_ymax = np.minimum(det_ymax, gt_ymax)
all_max_ymin = np.maximum(det_ymin, gt_ymin)
intersect_heights = np.maximum(0.0, (all_min_ymax - all_max_ymin))
all_min_xmax = np.minimum(det_xmax, gt_xmax)
all_max_xmin = np.maximum(det_xmin, gt_xmin)
intersect_widths = np.maximum(0.0, (all_min_xmax - all_max_xmin))
return intersect_heights * intersect_widths
def area_of_intersection(det_x, det_y, gt_x, gt_y):
p1 = Polygon(np.stack([det_x, det_y], axis=1)).buffer(0)
p2 = Polygon(np.stack([gt_x, gt_y], axis=1)).buffer(0)
return float(p1.intersection(p2).area)
def area_of_union(det_x, det_y, gt_x, gt_y):
p1 = Polygon(np.stack([det_x, det_y], axis=1)).buffer(0)
p2 = Polygon(np.stack([gt_x, gt_y], axis=1)).buffer(0)
return float(p1.union(p2).area)
def iou(det_x, det_y, gt_x, gt_y):
return area_of_intersection(det_x, det_y, gt_x, gt_y) / (
area_of_union(det_x, det_y, gt_x, gt_y) + 1.0)
def iod(det_x, det_y, gt_x, gt_y):
"""
This helper determine the fraction of intersection area over detection area
"""
return area_of_intersection(det_x, det_y, gt_x, gt_y) / (
area(det_x, det_y) + 1.0)
import paddle
import numpy as np
import copy
def org_tcl_rois(batch_size, pos_lists, pos_masks, label_lists, tcl_bs):
"""
"""
pos_lists_, pos_masks_, label_lists_ = [], [], []
img_bs = batch_size
ngpu = int(batch_size / img_bs)
img_ids = np.array(pos_lists, dtype=np.int32)[:, 0, 0].copy()
pos_lists_split, pos_masks_split, label_lists_split = [], [], []
for i in range(ngpu):
pos_lists_split.append([])
pos_masks_split.append([])
label_lists_split.append([])
for i in range(img_ids.shape[0]):
img_id = img_ids[i]
gpu_id = int(img_id / img_bs)
img_id = img_id % img_bs
pos_list = pos_lists[i].copy()
pos_list[:, 0] = img_id
pos_lists_split[gpu_id].append(pos_list)
pos_masks_split[gpu_id].append(pos_masks[i].copy())
label_lists_split[gpu_id].append(copy.deepcopy(label_lists[i]))
# repeat or delete
for i in range(ngpu):
vp_len = len(pos_lists_split[i])
if vp_len <= tcl_bs:
for j in range(0, tcl_bs - vp_len):
pos_list = pos_lists_split[i][j].copy()
pos_lists_split[i].append(pos_list)
pos_mask = pos_masks_split[i][j].copy()
pos_masks_split[i].append(pos_mask)
label_list = copy.deepcopy(label_lists_split[i][j])
label_lists_split[i].append(label_list)
else:
for j in range(0, vp_len - tcl_bs):
c_len = len(pos_lists_split[i])
pop_id = np.random.permutation(c_len)[0]
pos_lists_split[i].pop(pop_id)
pos_masks_split[i].pop(pop_id)
label_lists_split[i].pop(pop_id)
# merge
for i in range(ngpu):
pos_lists_.extend(pos_lists_split[i])
pos_masks_.extend(pos_masks_split[i])
label_lists_.extend(label_lists_split[i])
return pos_lists_, pos_masks_, label_lists_
def pre_process(label_list, pos_list, pos_mask, max_text_length, max_text_nums,
pad_num, tcl_bs):
label_list = label_list.numpy()
batch, _, _, _ = label_list.shape
pos_list = pos_list.numpy()
pos_mask = pos_mask.numpy()
pos_list_t = []
pos_mask_t = []
label_list_t = []
for i in range(batch):
for j in range(max_text_nums):
if pos_mask[i, j].any():
pos_list_t.append(pos_list[i][j])
pos_mask_t.append(pos_mask[i][j])
label_list_t.append(label_list[i][j])
pos_list, pos_mask, label_list = org_tcl_rois(batch, pos_list_t, pos_mask_t,
label_list_t, tcl_bs)
label = []
tt = [l.tolist() for l in label_list]
for i in range(tcl_bs):
k = 0
for j in range(max_text_length):
if tt[i][j][0] != pad_num:
k += 1
else:
break
label.append(k)
label = paddle.to_tensor(label)
label = paddle.cast(label, dtype='int64')
pos_list = paddle.to_tensor(pos_list)
pos_mask = paddle.to_tensor(pos_mask)
label_list = paddle.squeeze(paddle.to_tensor(label_list), axis=2)
label_list = paddle.cast(label_list, dtype='int32')
return pos_list, pos_mask, label_list, label
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment