"symphony/vscode:/vscode.git/clone" did not exist on "7294c065a7f1fbd7020a88b849f3883c740e0a50"
Commit 6ded97c7 authored by Wei-JL's avatar Wei-JL Committed by Alchemist_W
Browse files

Merge branch 'PaddlePaddle:dygraph' into dygraph

去除部分冗余代码
parents 5ce3af84 9b8f587e
...@@ -73,7 +73,7 @@ class TextRecognizer(object): ...@@ -73,7 +73,7 @@ class TextRecognizer(object):
model_precision=args.precision, model_precision=args.precision,
batch_size=args.rec_batch_num, batch_size=args.rec_batch_num,
data_shape="dynamic", data_shape="dynamic",
save_path=args.save_log_path, save_path=None, #args.save_log_path,
inference_config=self.config, inference_config=self.config,
pids=pid, pids=pid,
process_name=None, process_name=None,
...@@ -81,7 +81,8 @@ class TextRecognizer(object): ...@@ -81,7 +81,8 @@ class TextRecognizer(object):
time_keys=[ time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time' 'preprocess_time', 'inference_time', 'postprocess_time'
], ],
warmup=10) warmup=2,
logger=logger)
def resize_norm_img(self, img, max_wh_ratio): def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape imgC, imgH, imgW = self.rec_image_shape
...@@ -272,10 +273,10 @@ def main(args): ...@@ -272,10 +273,10 @@ def main(args):
valid_image_file_list = [] valid_image_file_list = []
img_list = [] img_list = []
# warmup 10 times # warmup 2 times
if args.warmup: if args.warmup:
img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8) img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
for i in range(10): for i in range(2):
res = text_recognizer([img]) res = text_recognizer([img])
for image_file in image_file_list: for image_file in image_file_list:
......
...@@ -24,6 +24,7 @@ from paddle import inference ...@@ -24,6 +24,7 @@ from paddle import inference
import time import time
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
def str2bool(v): def str2bool(v):
return v.lower() in ("true", "t", "1") return v.lower() in ("true", "t", "1")
...@@ -47,8 +48,8 @@ def init_args(): ...@@ -47,8 +48,8 @@ def init_args():
# DB parmas # DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5) parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--max_batch_size", type=int, default=10)
parser.add_argument("--use_dilation", type=bool, default=False) parser.add_argument("--use_dilation", type=bool, default=False)
parser.add_argument("--det_db_score_mode", type=str, default="fast") parser.add_argument("--det_db_score_mode", type=str, default="fast")
...@@ -168,46 +169,67 @@ def create_predictor(args, mode, logger): ...@@ -168,46 +169,67 @@ def create_predictor(args, mode, logger):
if mode == "det": if mode == "det":
min_input_shape = { min_input_shape = {
"x": [1, 3, 50, 50], "x": [1, 3, 50, 50],
"conv2d_92.tmp_0": [1, 96, 20, 20], "conv2d_92.tmp_0": [1, 120, 20, 20],
"conv2d_91.tmp_0": [1, 96, 10, 10], "conv2d_91.tmp_0": [1, 24, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20], "conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 96, 10, 10], "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 96, 20, 20], "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
"conv2d_124.tmp_0": [1, 96, 20, 20], "conv2d_124.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 24, 20, 20], "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 24, 20, 20], "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 24, 20, 20], "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
"elementwise_add_7": [1, 56, 2, 2], "elementwise_add_7": [1, 56, 2, 2],
"nearest_interp_v2_0.tmp_0": [1, 96, 2, 2] "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
} }
max_input_shape = { max_input_shape = {
"x": [1, 3, 2000, 2000], "x": [1, 3, 2000, 2000],
"conv2d_92.tmp_0": [1, 96, 400, 400], "conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 96, 200, 200], "conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400], "conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 96, 200, 200], "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
"conv2d_124.tmp_0": [1, 256, 400, 400], "conv2d_124.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 96, 400, 400], "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 24, 400, 400], "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 24, 400, 400], "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 24, 400, 400], "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
"elementwise_add_7": [1, 56, 400, 400], "elementwise_add_7": [1, 56, 400, 400],
"nearest_interp_v2_0.tmp_0": [1, 96, 400, 400] "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
} }
opt_input_shape = { opt_input_shape = {
"x": [1, 3, 640, 640], "x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 96, 160, 160], "conv2d_92.tmp_0": [1, 120, 160, 160],
"conv2d_91.tmp_0": [1, 96, 80, 80], "conv2d_91.tmp_0": [1, 24, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160], "conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 96, 80, 80], "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 96, 160, 160], "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
"conv2d_124.tmp_0": [1, 256, 160, 160], "conv2d_124.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 24, 160, 160], "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 24, 160, 160], "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 24, 160, 160], "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
"elementwise_add_7": [1, 56, 40, 40], "elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 96, 40, 40] "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
}
min_pact_shape = {
"nearest_interp_v2_26.tmp_0":[1,256,20,20],
"nearest_interp_v2_27.tmp_0":[1,64,20,20],
"nearest_interp_v2_28.tmp_0":[1,64,20,20],
"nearest_interp_v2_29.tmp_0":[1,64,20,20]
}
max_pact_shape = {
"nearest_interp_v2_26.tmp_0":[1,256,400,400],
"nearest_interp_v2_27.tmp_0":[1,64,400,400],
"nearest_interp_v2_28.tmp_0":[1,64,400,400],
"nearest_interp_v2_29.tmp_0":[1,64,400,400]
}
opt_pact_shape = {
"nearest_interp_v2_26.tmp_0":[1,256,160,160],
"nearest_interp_v2_27.tmp_0":[1,64,160,160],
"nearest_interp_v2_28.tmp_0":[1,64,160,160],
"nearest_interp_v2_29.tmp_0":[1,64,160,160]
} }
min_input_shape.update(min_pact_shape)
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec": elif mode == "rec":
min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]} min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]} max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment