Unverified Commit 631fd9fd authored by xiaoting's avatar xiaoting Committed by GitHub
Browse files

Merge branch 'dygraph' into dygraph_doc

parents 8520dd1e 90b968d5
......@@ -5,7 +5,7 @@ Global:
print_batch_step: 10
save_model_dir: ./output/rec/r34_vd_none_bilstm_ctc/
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
......@@ -13,7 +13,7 @@ Global:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
......@@ -21,7 +21,6 @@ Global:
infer_mode: False
use_space_char: False
Optimizer:
name: Adam
beta1: 0.9
......@@ -71,7 +70,7 @@ Train:
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 8
......
Global:
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/r34_vd_none_none_ctc/
save_epoch_step: 3
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
max_text_length: 25
infer_mode: False
use_space_char: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.0005
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: Rosetta
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: reshape
Head:
name: CTCHead
fc_decay: 0.0004
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDateSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 8
Eval:
dataset:
name: LMDBDateSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 4
......@@ -5,7 +5,7 @@ Global:
print_batch_step: 10
save_model_dir: ./output/rec/r34_vd_tps_bilstm_ctc/
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
......@@ -13,7 +13,7 @@ Global:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path:
character_type: en
......@@ -21,7 +21,6 @@ Global:
infer_mode: False
use_space_char: False
Optimizer:
name: Adam
beta1: 0.9
......@@ -34,7 +33,7 @@ Optimizer:
Architecture:
model_type: rec
algorithm: CRNN
algorithm: STARNet
Transform:
name: TPS
num_fiducial: 20
......
......@@ -81,7 +81,8 @@ cv::Mat Classifier::Run(cv::Mat &img) {
void Classifier::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
......
......@@ -18,7 +18,8 @@ namespace PaddleOCR {
void DBDetector::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
......
......@@ -103,7 +103,8 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
......
English | [简体中文](README_cn.md)
## Introduction
Many users hope package the PaddleOCR service into a docker image, so that it can be quickly released and used in the docker or k8s environment.
This page provides some standardized code to achieve this goal. You can quickly publish the PaddleOCR project into a callable Restful API service through the following steps. (At present, the deployment based on the HubServing mode is implemented first, and author plans to increase the deployment of the PaddleServing mode in the futrue)
## 1. Prerequisites
You need to install the following basic components first:
a. Docker
b. Graphics driver and CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03+ can skip this)
d. cuDNN 7.6+(GPU)
## 2. Build Image
a. Goto Dockerfile directory(ps:Need to distinguish between cpu and gpu version, the following takes cpu as an example, gpu version needs to replace the keyword)
```
cd deploy/docker/hubserving/cpu
```
c. Build image
```
docker build -t paddleocr:cpu .
```
## 3. Start container
a. CPU version
```
sudo docker run -dp 8868:8868 --name paddle_ocr paddleocr:cpu
```
b. GPU version (base on NVIDIA Container Toolkit)
```
sudo nvidia-docker run -dp 8868:8868 --name paddle_ocr paddleocr:gpu
```
c. GPU version (Docker 19.03++)
```
sudo docker run -dp 8868:8868 --gpus all --name paddle_ocr paddleocr:gpu
```
d. Check service status(If you can see the following statement then it means completed:Successfully installed ocr_system && Running on http://0.0.0.0:8868/)
```
docker logs -f paddle_ocr
```
## 4. Test
a. Calculate the Base64 encoding of the picture to be recognized (if you just test, you can use a free online tool, like:https://freeonlinetools24.com/base64-image/)
b. Post a service request(sample request in sample_request.txt)
```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"Input image Base64 encode(need to delete the code 'data:image/jpg;base64,')\"]}" http://localhost:8868/predict/ocr_system
```
c. Get resposne(If the call is successful, the following result will be returned)
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```
[English](README.md) | 简体中文
## Docker化部署服务
在日常项目应用中,相信大家一般都会希望能通过Docker技术,把PaddleOCR服务打包成一个镜像,以便在Docker或k8s环境里,快速发布上线使用。
本文将提供一些标准化的代码来实现这样的目标。大家通过如下步骤可以把PaddleOCR项目快速发布成可调用的Restful API服务。(目前暂时先实现了基于HubServing模式的部署,后续作者计划增加PaddleServing模式的部署)
## 1.实施前提准备
需要先完成如下基本组件的安装:
a. Docker环境
b. 显卡驱动和CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03以上版本可以跳过此步)
d. cuDNN 7.6+(GPU)
## 2.制作镜像
a.切换至Dockerfile目录(注:需要区分cpu或gpu版本,下文以cpu为例,gpu版本需要替换一下关键字即可)
```
cd deploy/docker/hubserving/cpu
```
c.生成镜像
```
docker build -t paddleocr:cpu .
```
## 3.启动Docker容器
a. CPU 版本
```
sudo docker run -dp 8868:8868 --name paddle_ocr paddleocr:cpu
```
b. GPU 版本 (通过NVIDIA Container Toolkit)
```
sudo nvidia-docker run -dp 8868:8868 --name paddle_ocr paddleocr:gpu
```
c. GPU 版本 (Docker 19.03以上版本,可以直接用如下命令)
```
sudo docker run -dp 8868:8869 --gpus all --name paddle_ocr paddleocr:gpu
```
d. 检查服务运行情况(出现:Successfully installed ocr_system和Running on http://0.0.0.0:8868 等信息,表示运行成功)
```
docker logs -f paddle_ocr
```
## 4.测试服务
a. 计算待识别图片的Base64编码(如果只是测试一下效果,可以通过免费的在线工具实现,如:http://tool.chinaz.com/tools/imgtobase/)
b. 发送服务请求(可参见sample_request.txt中的值)
```
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"填入图片Base64编码(需要删除'data:image/jpg;base64,')\"]}" http://localhost:8868/predict/ocr_system
```
c. 返回结果(如果调用成功,会返回如下结果)
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```
# Version: 1.0.0
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev
# PaddleOCR base on Python3.7
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
RUN python3.7 -m pip install paddlepaddle==2.0.0rc0 -i https://mirror.baidu.com/pypi/simple
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
WORKDIR /PaddleOCR
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
RUN mkdir -p /PaddleOCR/inference/
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v1.1_det_infer to ch_ppocr_server_v1.1_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_cls_infer to ch_ppocr_mobile_v1.1_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_rec_infer to ch_ppocr_server_v1.1_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
EXPOSE 8868
CMD ["/bin/bash","-c","hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system"]
\ No newline at end of file
# Version: 1.0.0
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev
# PaddleOCR base on Python3.7
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
RUN python3.7 -m pip install paddlepaddle-gpu==2.0.0rc0 -i https://mirror.baidu.com/pypi/simple
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
WORKDIR /PaddleOCR
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
RUN mkdir -p /PaddleOCR/inference/
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v1.1_det_infer to ch_ppocr_server_v1.1_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_cls_infer to ch_ppocr_mobile_v1.1_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_rec_infer to ch_ppocr_server_v1.1_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
ADD {link} /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
EXPOSE 8868
CMD ["/bin/bash","-c","hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system"]
\ No newline at end of file
This diff is collapsed.
{
"modules_info": {
"ocr_cls": {
"init_args": {
"version": "1.0.0",
"use_gpu": true
},
"predict_args": {
}
}
},
"port": 8866,
"use_multiprocess": false,
"workers": 2
}
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys.path.insert(0, ".")
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
from tools.infer.predict_cls import TextClassifier
@moduleinfo(
name="ocr_cls",
version="1.0.0",
summary="ocr recognition service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class OCRCls(hub.Module):
def _initialize(self, use_gpu=False, enable_mkldnn=False):
"""
initialize with the necessary elements
"""
from ocr_cls.params import read_params
cfg = read_params()
cfg.use_gpu = use_gpu
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("use gpu: ", use_gpu)
print("CUDA_VISIBLE_DEVICES: ", _places)
cfg.gpu_mem = 8000
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
cfg.ir_optim = True
cfg.enable_mkldnn = enable_mkldnn
self.text_classifier = TextClassifier(cfg)
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
def predict(self, images=[], paths=[]):
"""
Get the text angle in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The result of text detection box and save path of images.
"""
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
img_list = []
for img in predicted_data:
if img is None:
continue
img_list.append(img)
rec_res_final = []
try:
img_list, cls_res, predict_time = self.text_classifier(img_list)
for dno in range(len(cls_res)):
angle, score = cls_res[dno]
rec_res_final.append({
'angle': angle,
'confidence': float(score),
})
except Exception as e:
print(e)
return [[]]
return [rec_res_final]
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.predict(images_decode, **kwargs)
return results
if __name__ == '__main__':
ocr = OCRCls()
image_path = [
'./doc/imgs_words/ch/word_1.jpg',
'./doc/imgs_words/ch/word_2.jpg',
'./doc/imgs_words/ch/word_3.jpg',
]
res = ocr.predict(paths=image_path)
print(res)
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
class Config(object):
pass
def read_params():
cfg = Config()
#params for text classifier
cfg.cls_model_dir = "./inference/ch_ppocr_mobile_v1.1_cls_infer/"
cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
return cfg
......@@ -9,7 +9,7 @@
}
}
},
"port": 8866,
"port": 8865,
"use_multiprocess": false,
"workers": 2
}
......@@ -3,20 +3,14 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
import sys
sys.path.insert(0, ".")
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
......@@ -67,9 +61,7 @@ class OCRDet(hub.Module):
images.append(img)
return images
def predict(self,
images=[],
paths=[]):
def predict(self, images=[], paths=[]):
"""
Get the text box in the predicted images.
Args:
......@@ -99,11 +91,9 @@ class OCRDet(hub.Module):
rec_res_final = []
for dno in range(len(dt_boxes)):
rec_res_final.append(
{
rec_res_final.append({
'text_region': dt_boxes[dno].astype(np.int).tolist()
}
)
})
all_results.append(rec_res_final)
return all_results
......
......@@ -13,13 +13,14 @@ def read_params():
#params for text detector
cfg.det_algorithm = "DB"
cfg.det_model_dir = "./inference/ch_det_mv3_db/"
cfg.det_max_side_len = 960
cfg.det_model_dir = "./inference/ch_ppocr_mobile_v1.1_det_infer/"
cfg.det_limit_side_len = 960
cfg.det_limit_type = 'max'
#DB parmas
cfg.det_db_thresh =0.3
cfg.det_db_box_thresh =0.5
cfg.det_db_unclip_ratio =2.0
cfg.det_db_thresh = 0.3
cfg.det_db_box_thresh = 0.5
cfg.det_db_unclip_ratio = 2.0
# #EAST parmas
# cfg.det_east_score_thresh = 0.8
......@@ -37,5 +38,6 @@ def read_params():
# cfg.use_space_char = True
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
return cfg
......@@ -3,20 +3,13 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
import sys
sys.path.insert(0, ".")
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
......@@ -67,9 +60,7 @@ class OCRRec(hub.Module):
images.append(img)
return images
def predict(self,
images=[],
paths=[]):
def predict(self, images=[], paths=[]):
"""
Get the text box in the predicted images.
Args:
......@@ -99,19 +90,16 @@ class OCRRec(hub.Module):
rec_res, predict_time = self.text_recognizer(img_list)
for dno in range(len(rec_res)):
text, score = rec_res[dno]
rec_res_final.append(
{
rec_res_final.append({
'text': text,
'confidence': float(score),
}
)
})
except Exception as e:
print(e)
return [[]]
return [rec_res_final]
@serving
def serving_method(self, images, **kwargs):
"""
......
......@@ -11,24 +11,9 @@ class Config(object):
def read_params():
cfg = Config()
# #params for text detector
# cfg.det_algorithm = "DB"
# cfg.det_model_dir = "./inference/ch_det_mv3_db/"
# cfg.det_max_side_len = 960
# #DB parmas
# cfg.det_db_thresh =0.3
# cfg.det_db_box_thresh =0.5
# cfg.det_db_unclip_ratio =2.0
# #EAST parmas
# cfg.det_east_score_thresh = 0.8
# cfg.det_east_cover_thresh = 0.1
# cfg.det_east_nms_thresh = 0.2
#params for text recognizer
cfg.rec_algorithm = "CRNN"
cfg.rec_model_dir = "./inference/ch_rec_mv3_crnn/"
cfg.rec_model_dir = "./inference/ch_ppocr_mobile_v1.1_rec_infer/"
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
......@@ -39,5 +24,6 @@ def read_params():
cfg.use_space_char = True
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
return cfg
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment