Commit 55d71902 authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'origin/dygraph' into dygraph

parents 1d03fd33 10b7e706
......@@ -2,38 +2,38 @@
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==52, NR==66{print}' $FILENAME)
dataline=$(awk 'NR==1, NR==16{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser cpp inference model
use_opencv=$(func_parser_value "${lines[1]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[2]}")
cpp_infer_is_quant=$(func_parser_value "${lines[3]}")
model_name=$(func_parser_value "${lines[1]}")
use_opencv=$(func_parser_value "${lines[2]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[3]}")
cpp_infer_is_quant=$(func_parser_value "${lines[4]}")
# parser cpp inference
inference_cmd=$(func_parser_value "${lines[4]}")
cpp_use_gpu_key=$(func_parser_key "${lines[5]}")
cpp_use_gpu_list=$(func_parser_value "${lines[5]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[6]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[7]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[7]}")
cpp_batch_size_key=$(func_parser_key "${lines[8]}")
cpp_batch_size_list=$(func_parser_value "${lines[8]}")
cpp_use_trt_key=$(func_parser_key "${lines[9]}")
cpp_use_trt_list=$(func_parser_value "${lines[9]}")
cpp_precision_key=$(func_parser_key "${lines[10]}")
cpp_precision_list=$(func_parser_value "${lines[10]}")
cpp_infer_model_key=$(func_parser_key "${lines[11]}")
cpp_image_dir_key=$(func_parser_key "${lines[12]}")
cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
cpp_infer_key1=$(func_parser_key "${lines[13]}")
cpp_infer_value1=$(func_parser_value "${lines[13]}")
cpp_benchmark_key=$(func_parser_key "${lines[14]}")
cpp_benchmark_value=$(func_parser_value "${lines[14]}")
inference_cmd=$(func_parser_value "${lines[5]}")
cpp_use_gpu_key=$(func_parser_key "${lines[6]}")
cpp_use_gpu_list=$(func_parser_value "${lines[6]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[7]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[7]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[8]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[8]}")
cpp_batch_size_key=$(func_parser_key "${lines[9]}")
cpp_batch_size_list=$(func_parser_value "${lines[9]}")
cpp_use_trt_key=$(func_parser_key "${lines[10]}")
cpp_use_trt_list=$(func_parser_value "${lines[10]}")
cpp_precision_key=$(func_parser_key "${lines[11]}")
cpp_precision_list=$(func_parser_value "${lines[11]}")
cpp_infer_model_key=$(func_parser_key "${lines[12]}")
cpp_image_dir_key=$(func_parser_key "${lines[13]}")
cpp_infer_img_dir=$(func_parser_value "${lines[13]}")
cpp_infer_key1=$(func_parser_key "${lines[14]}")
cpp_infer_value1=$(func_parser_value "${lines[14]}")
cpp_benchmark_key=$(func_parser_key "${lines[15]}")
cpp_benchmark_value=$(func_parser_value "${lines[15]}")
LOG_PATH="./test_tipc/output"
mkdir -p ${LOG_PATH}
......
#!/bin/bash
source test_tipc/common_func.sh
source test_tipc/test_train_inference_python.sh
FILENAME=$1
# MODE be one of ['whole_infer']
MODE=$2
dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
infer_model_dir_list=$(func_parser_value "${lines[3]}")
infer_export_list=$(func_parser_value "${lines[4]}")
infer_is_quant=$(func_parser_value "${lines[5]}")
# parser inference
inference_py=$(func_parser_value "${lines[6]}")
use_gpu_key=$(func_parser_key "${lines[7]}")
use_gpu_list=$(func_parser_value "${lines[7]}")
use_mkldnn_key=$(func_parser_key "${lines[8]}")
use_mkldnn_list=$(func_parser_value "${lines[8]}")
cpu_threads_key=$(func_parser_key "${lines[9]}")
cpu_threads_list=$(func_parser_value "${lines[9]}")
batch_size_key=$(func_parser_key "${lines[10]}")
batch_size_list=$(func_parser_value "${lines[10]}")
use_trt_key=$(func_parser_key "${lines[11]}")
use_trt_list=$(func_parser_value "${lines[11]}")
precision_key=$(func_parser_key "${lines[12]}")
precision_list=$(func_parser_value "${lines[12]}")
infer_model_key=$(func_parser_key "${lines[13]}")
image_dir_key=$(func_parser_key "${lines[14]}")
infer_img_dir=$(func_parser_value "${lines[14]}")
save_log_key=$(func_parser_key "${lines[15]}")
benchmark_key=$(func_parser_key "${lines[16]}")
benchmark_value=$(func_parser_value "${lines[16]}")
infer_key1=$(func_parser_key "${lines[17]}")
infer_value1=$(func_parser_value "${lines[17]}")
LOG_PATH="./test_tipc/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
if [ ${MODE} = "whole_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
# set CUDA_VISIBLE_DEVICES
eval $env
export Count=0
IFS="|"
infer_run_exports=(${infer_export_list})
infer_quant_flag=(${infer_is_quant})
for infer_model in ${infer_model_dir_list[*]}; do
# run export
if [ ${infer_run_exports[Count]} != "null" ];then
save_infer_dir=$(dirname $infer_model)
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
status_check $status_export "${export_cmd}" "${status_log}"
else
save_infer_dir=${infer_model}
fi
#run inference
is_quant=${infer_quant_flag[Count]}
if [ ${MODE} = "klquant_infer" ]; then
is_quant="True"
fi
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
fi
......@@ -3,8 +3,7 @@ source ./common_func.sh
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
FILENAME=$1
dataline=$(awk 'NR==102, NR==111{print}' $FILENAME)
echo $dataline
dataline=$(cat $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
......@@ -12,13 +11,14 @@ lines=(${dataline})
# parser lite inference
lite_inference_cmd=$(func_parser_value "${lines[1]}")
lite_model_dir_list=$(func_parser_value "${lines[2]}")
lite_cpu_threads_list=$(func_parser_value "${lines[3]}")
lite_batch_size_list=$(func_parser_value "${lines[4]}")
lite_power_mode_list=$(func_parser_value "${lines[5]}")
lite_infer_img_dir_list=$(func_parser_value "${lines[6]}")
lite_config_dir=$(func_parser_value "${lines[7]}")
lite_rec_dict_dir=$(func_parser_value "${lines[8]}")
lite_benchmark_value=$(func_parser_value "${lines[9]}")
runtime_device=$(func_parser_value "${lines[3]}")
lite_cpu_threads_list=$(func_parser_value "${lines[4]}")
lite_batch_size_list=$(func_parser_value "${lines[5]}")
lite_infer_img_dir_list=$(func_parser_value "${lines[8]}")
lite_config_dir=$(func_parser_value "${lines[9]}")
lite_rec_dict_dir=$(func_parser_value "${lines[10]}")
lite_benchmark_value=$(func_parser_value "${lines[11]}")
LOG_PATH="./output"
mkdir -p ${LOG_PATH}
......@@ -37,25 +37,16 @@ function func_lite(){
else
precision="FP32"
fi
is_single_img=$(echo $_img_dir | grep -E ".jpg|.jpeg|.png|.JPEG|.JPG")
if [[ "$is_single_img" != "" ]]; then
single_img="True"
else
single_img="False"
fi
# lite inference
for num_threads in ${lite_cpu_threads_list[*]}; do
for power_mode in ${lite_power_mode_list[*]}; do
for batchsize in ${lite_batch_size_list[*]}; do
model_name=$(echo $lite_model | awk -F "/" '{print $NF}')
_save_log_path="${_log_path}/lite_${model_name}_precision_${precision}_batchsize_${batchsize}_threads_${num_threads}_powermode_${power_mode}_singleimg_${single_img}.log"
command="${_script} ${lite_model} ${precision} ${num_threads} ${batchsize} ${power_mode} ${_img_dir} ${_config} ${lite_benchmark_value} > ${_save_log_path} 2>&1"
_save_log_path="${_log_path}/lite_${_lite_model}_runtime_device_${runtime_device}_precision_${precision}_batchsize_${batchsize}_threads_${num_threads}.log"
command="${_script} ${_lite_model} ${runtime_device} ${precision} ${num_threads} ${batchsize} ${_img_dir} ${_config} ${lite_benchmark_value} > ${_save_log_path} 2>&1"
eval ${command}
status_check $? "${command}" "${status_log}"
done
done
done
}
......@@ -64,6 +55,6 @@ IFS="|"
for lite_model in ${lite_model_dir_list[*]}; do
#run lite inference
for img_dir in ${lite_infer_img_dir_list[*]}; do
func_lite "${lite_inference_cmd}" "${lite_model}" "${LOG_PATH}" "${img_dir}" "${lite_config_dir}"
func_lite "${lite_inference_cmd}" "${lite_model}_opt.nb" "${LOG_PATH}" "${img_dir}" "${lite_config_dir}"
done
done
......@@ -11,31 +11,33 @@ python=$(func_parser_value "${lines[2]}")
# parser params
dataline=$(awk 'NR==111, NR==123{print}' $FILENAME)
dataline=$(awk 'NR==1, NR==12{print}' $FILENAME)
IFS=$'\n'
lines=(${dataline})
# parser paddle2onnx
padlle2onnx_cmd=$(func_parser_value "${lines[1]}")
infer_model_dir_key=$(func_parser_key "${lines[2]}")
infer_model_dir_value=$(func_parser_value "${lines[2]}")
model_filename_key=$(func_parser_key "${lines[3]}")
model_filename_value=$(func_parser_value "${lines[3]}")
params_filename_key=$(func_parser_key "${lines[4]}")
params_filename_value=$(func_parser_value "${lines[4]}")
save_file_key=$(func_parser_key "${lines[5]}")
save_file_value=$(func_parser_value "${lines[5]}")
opset_version_key=$(func_parser_key "${lines[6]}")
opset_version_value=$(func_parser_value "${lines[6]}")
enable_onnx_checker_key=$(func_parser_key "${lines[7]}")
enable_onnx_checker_value=$(func_parser_value "${lines[7]}")
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
padlle2onnx_cmd=$(func_parser_value "${lines[3]}")
infer_model_dir_key=$(func_parser_key "${lines[4]}")
infer_model_dir_value=$(func_parser_value "${lines[4]}")
model_filename_key=$(func_parser_key "${lines[5]}")
model_filename_value=$(func_parser_value "${lines[5]}")
params_filename_key=$(func_parser_key "${lines[6]}")
params_filename_value=$(func_parser_value "${lines[6]}")
save_file_key=$(func_parser_key "${lines[7]}")
save_file_value=$(func_parser_value "${lines[7]}")
opset_version_key=$(func_parser_key "${lines[8]}")
opset_version_value=$(func_parser_value "${lines[8]}")
enable_onnx_checker_key=$(func_parser_key "${lines[9]}")
enable_onnx_checker_value=$(func_parser_value "${lines[9]}")
# parser onnx inference
inference_py=$(func_parser_value "${lines[8]}")
use_gpu_key=$(func_parser_key "${lines[9]}")
use_gpu_value=$(func_parser_value "${lines[9]}")
det_model_key=$(func_parser_key "${lines[10]}")
image_dir_key=$(func_parser_key "${lines[11]}")
image_dir_value=$(func_parser_value "${lines[11]}")
inference_py=$(func_parser_value "${lines[10]}")
use_gpu_key=$(func_parser_key "${lines[11]}")
use_gpu_value=$(func_parser_value "${lines[11]}")
det_model_key=$(func_parser_key "${lines[12]}")
image_dir_key=$(func_parser_key "${lines[13]}")
image_dir_value=$(func_parser_value "${lines[13]}")
LOG_PATH="./test_tipc/output"
......
......@@ -2,7 +2,7 @@
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==67, NR==84{print}' $FILENAME)
dataline=$(awk 'NR==1, NR==18{print}' $FILENAME)
# parser params
IFS=$'\n'
......
......@@ -244,7 +244,7 @@ else
export Count=0
USE_GPU_KEY=(${train_use_gpu_value})
for gpu in ${gpu_list[*]}; do
use_gpu=${USE_GPU_KEY[Count]}
train_use_gpu=${USE_GPU_KEY[Count]}
Count=$(($Count + 1))
ips=""
if [ ${gpu} = "-1" ];then
......@@ -302,11 +302,20 @@ else
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
if [ ${#ips} -le 26 ];then
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
nodes=1
else
IFS=","
ips_array=(${ips})
IFS="|"
nodes=${#ips_array[@]}
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
fi
# load pretrain from norm training if current trainer is pact or fpgm trainer
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
set_pretrain="${load_norm_train_model}"
fi
......@@ -325,7 +334,7 @@ else
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ]; then
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -27,7 +27,7 @@ from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import print_dict
import tools.program as program
......@@ -60,7 +60,7 @@ def main():
else:
model_type = None
best_model_dict = load_dygraph_params(config, model, logger, None)
best_model_dict = load_model(config, model)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
......
......@@ -27,7 +27,7 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import print_dict
import tools.program as program
......@@ -57,7 +57,7 @@ def main():
model = build_model(config['Architecture'])
best_model_dict = load_dygraph_params(config, model, logger, None)
best_model_dict = load_model(config, model)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
......
......@@ -26,7 +26,7 @@ from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
......@@ -107,7 +107,7 @@ def main():
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
init_model(config, model)
load_model(config, model)
model.eval()
save_path = config["Global"]["save_inference_dir"]
......
......@@ -17,7 +17,7 @@ import os
import sys
import cv2
import numpy as np
import json
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
......@@ -205,7 +205,7 @@ def create_predictor(args, mode, logger):
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
}
max_input_shape = {
"x": [1, 3, 2000, 2000],
"x": [1, 3, 1280, 1280],
"conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
......@@ -255,16 +255,16 @@ def create_predictor(args, mode, logger):
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1024]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else:
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 1000, 1000]}
opt_input_shape = {"x": [1, 3, 500, 500]}
max_input_shape = {"x": [1, 3, 512, 512]}
opt_input_shape = {"x": [1, 3, 256, 256]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
......@@ -601,5 +601,12 @@ def get_rotate_crop_image(img, points):
return dst_img
def check_gpu(use_gpu):
if use_gpu and not paddle.is_compiled_with_cuda():
use_gpu = False
return use_gpu
if __name__ == '__main__':
pass
......@@ -32,7 +32,7 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
......@@ -47,7 +47,7 @@ def main():
# build model
model = build_model(config['Architecture'])
init_model(config, model)
load_model(config, model)
# create data ops
transforms = []
......
......@@ -34,7 +34,7 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
......@@ -59,7 +59,7 @@ def main():
# build model
model = build_model(config['Architecture'])
_ = load_dygraph_params(config, model, logger, None)
load_model(config, model)
# build post process
post_process_class = build_post_process(config['PostProcess'])
......
......@@ -34,7 +34,7 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
......@@ -68,7 +68,7 @@ def main():
# build model
model = build_model(config['Architecture'])
init_model(config, model)
load_model(config, model)
# build post process
post_process_class = build_post_process(config['PostProcess'],
......
......@@ -33,7 +33,7 @@ import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
......@@ -58,7 +58,7 @@ def main():
model = build_model(config['Architecture'])
init_model(config, model)
load_model(config, model)
# create data ops
transforms = []
......@@ -75,9 +75,7 @@ def main():
'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
]
elif config['Architecture']['algorithm'] == "SAR":
op[op_name]['keep_keys'] = [
'image', 'valid_ratio'
]
op[op_name]['keep_keys'] = ['image', 'valid_ratio']
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
......
......@@ -34,11 +34,12 @@ from paddle.jit import to_static
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
import cv2
def main(config, device, logger, vdl_writer):
global_config = config['Global']
......@@ -53,7 +54,7 @@ def main(config, device, logger, vdl_writer):
model = build_model(config['Architecture'])
init_model(config, model, logger)
load_model(config, model)
# create data ops
transforms = []
......@@ -104,4 +105,3 @@ def main(config, device, logger, vdl_writer):
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main(config, device, logger, vdl_writer)
......@@ -35,7 +35,7 @@ from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
import tools.program as program
dist.get_world_size()
......@@ -97,7 +97,7 @@ def main(config, device, logger, vdl_writer):
# build metric
eval_class = build_metric(config['Metric'])
# load pretrain model
pre_best_model_dict = load_dygraph_params(config, model, logger, optimizer)
pre_best_model_dict = load_model(config, model, optimizer)
logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
if valid_dataloader is not None:
logger.info('valid dataloader has {} iters'.format(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment