Unverified Commit 551731db authored by andyjpaddle's avatar andyjpaddle Committed by GitHub
Browse files

Merge branch 'PaddlePaddle:dygraph' into dygraph

parents 4cdad758 29f5ef46
......@@ -56,7 +56,7 @@ class DetOp(Op):
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
det_out = fetch_dict["sigmoid_0.tmp_0"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
......
......@@ -55,7 +55,7 @@ class DetOp(Op):
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
det_out = fetch_dict["sigmoid_0.tmp_0"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
]
......
[English](../doc_en/PP-OCRv3_introduction_en.md) | 简体中文
# PP-OCR
# PP-OCRv3
- [1. 简介](#1)
- [2. 特性](#2)
- [3. benchmark](#3)
- [2. 检测优化](#2)
- [3. 识别优化](#3)
- [4. 端到端评估](#4)
<a name="1"></a>
## 1. 简介
PP-OCR是PaddleOCR自研的实用的超轻量OCR系统。在实现[前沿算法](algorithm.md)的基础上,考虑精度与速度的平衡,进行**模型瘦身****深度优化**,使其尽可能满足产业落地需求
PP-OCRv3在PP-OCRv2的基础上进一步升级。检测模型仍然基于DB算法,优化策略采用了带残差注意力机制的FPN结构RSEFPN、增大感受野的PAN结构LKPAN、基于DML训练的更优的教师模型;识别模型将base模型从CRNN替换成了IJCAI 2022论文[SVTR](),并采用SVTR轻量化、带指导训练CTC、数据增广策略RecConAug、自监督训练的更好的预训练模型、无标签数据的使用进行模型加速和效果提升。更多细节请参考PP-OCRv3[技术报告](./PP-OCRv3_introduction.md)
#### PP-OCR
PP-OCR是一个两阶段的OCR系统,其中文本检测算法选用[DB](algorithm_det_db.md),文本识别算法选用[CRNN](algorithm_rec_crnn.md),并在检测和识别模块之间添加[文本方向分类器](angle_class.md),以应对不同方向的文本识别。
PP-OCRv2系统pipeline如下:
PP-OCRv3系统pipeline如下:
<div align="center">
<img src="../ppocrv2_framework.jpg" width="800">
<img src="../ppocrv3_framework.png" width="800">
</div>
PP-OCR系统在持续迭代优化,目前已发布PP-OCR、PP-OCRv2、PP-OCRv3三个版本:
PP-OCR从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941
## PP-OCRv3策略简介
### PP-OCRv3文本检测模型优化策略
<a name="2"></a>
## 2. 检测优化
PP-OCRv3采用PP-OCRv2的[CML](https://arxiv.org/pdf/2109.03144.pdf)蒸馏策略,在蒸馏的student模型、teacher模型精度提升,CML蒸馏策略上分别做了优化。
......@@ -44,10 +33,11 @@ RSEFPN的网络结构如下图所示,RSEFPN在PP-OCRv2的FPN基础上,将FPN
<img src=".././ppocr_v3/RSEFPN.png" width="800">
</div>
RSEFPN将PP-OCR检测模型的精度hmean从81.3%提升到84.5%。模型大小从3M变为3.6M。
- 在蒸馏的teacher模型精度提升方面,提出了LKPAN结构替换PP-OCRv2的FPN结构,并且使用ResNet50作为Backbone,更大的模型带来更多的精度提升。另外,对teacher模型使用[DML](https://arxiv.org/abs/1706.00384)蒸馏策略进一步提升teacher模型的精度。最终teacher的模型指标hmean从83.2%提升到了86.0%。
*注:PP-OCRv2的FPN通道数仅为96和24,如果直接用SE模块代替FPN的卷积会导致精度下降,RSEConv引入残差结构可以防止训练中包含重要特征的通道被抑制。*
- 在蒸馏的teacher模型精度提升方面,提出了LKPAN结构替换PP-OCRv2的FPN结构,并且使用ResNet50作为Backbone,更大的模型带来更多的精度提升。另外,对teacher模型使用[DML](https://arxiv.org/abs/1706.00384)蒸馏策略进一步提升teacher模型的精度。最终teacher的模型指标相比ppocr_server_v2.0从83.2%提升到了86.0%。
*注:[PP-OCRv2的FPN结构](https://github.com/PaddlePaddle/PaddleOCR/blob/77acb3bfe51c8a46c684527f73cd218cefedb4a3/ppocr/modeling/necks/db_fpn.py#L107)对DB算法FPN结构做了轻量级设计*
......@@ -57,7 +47,7 @@ LKPAN的网络结构如下图所示:
<img src="../ppocr_v3/LKPAN.png" width="800">
</div>
LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级[PAN](https://arxiv.org/pdf/1803.01534.pdf)结构。在LKPAN的path augmentation中,使用kernel size为`9*9`的卷积;更大的kernel size意味着更大的感受野,更容易检测大字体的文字以及极端长宽比的文字。LKPAN将base检测模型的精度hmean从81.3%提升到84.9%。
LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级[PAN](https://arxiv.org/pdf/1803.01534.pdf)结构。在LKPAN的path augmentation中,使用kernel size为`9*9`的卷积;更大的kernel size意味着更大的感受野,更容易检测大字体的文字以及极端长宽比的文字。LKPAN将PP-OCR检测模型的精度hmean从81.3%提升到84.9%。
*注:LKPAN相比RSEFPN有更多的精度提升,但是考虑到模型大小和预测速度等因素,在student模型中使用RSEFPN。*
......@@ -71,23 +61,70 @@ LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级[PAN](https://a
|1|PP-OCRV2|3M|83.3%|117ms|
|2|0 + RESFPN|3.6M|84.5%|124ms|
|3|0 + LKPAN|4.6M|84.9%|156ms|
|4|teacher |124M|83.2%|-|
|5|teacher + DML + LKPAN|124M|86.0%|-|
|4|ppocr_server_v2.0 |124M|83.2%||171ms|
|5|teacher + DML + LKPAN|124M|86.0%|396ms|
|6|0 + 2 + 5 + CML|3.6M|85.4%|124ms|
<a name="2"></a>
## 2. 特性
<a name="3"></a>
## 3. 识别优化
- 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
- 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用PP-OCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
- 支持中英文数字组合识别、竖排文本识别、长文本识别
- 支持多语言识别:韩语、日语、德语、法语等约80种语言
[SVTR](https://arxiv.org/abs/2205.00159) 证明了强大的单视觉模型(无需序列模型)即可高效准确完成文本识别任务,在中英文数据上均有优秀的表现。经过实验验证,SVTR_Tiny在自建的 [中文数据集上](https://arxiv.org/abs/2109.03144) ,识别精度可以提升10.7%,网络结构如下所示:
<img src="../ppocr_v3/svtr_tiny.jpg" width=800>
<a name="3"></a>
## 3. benchmark
由于 MKLDNN 加速库支持的模型结构有限,SVTR 在CPU+MKLDNN上相比PP-OCRv2慢了10倍。
PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时。通过分析发现,SVTR_Tiny结构的主要耗时模块为Mixing Block,因此我们对 SVTR_Tiny 的结构进行了一系列优化(详细速度数据请参考下方消融实验表格):
1. 将SVTR网络前半部分替换为PP-LCNet的前三个stage,保留4个 Global Mixing Block ,精度为76%,加速69%,网络结构如下所示:
<img src="../ppocr_v3/svtr_g4.png" width=800>
2. 将4个 Global Attenntion Block 减小到2个,精度为72.9%,加速69%,网络结构如下所示:
<img src="../ppocr_v3/svtr_g2.png" width=800>
3. 实验发现 Global Attention 的预测速度与输入其特征的shape有关,因此后移Global Mixing Block的位置到池化层之后,精度下降为71.9%,速度超越 CNN-base 的PP-OCRv2 22%,网络结构如下所示:
<img src="../ppocr_v3/ppocr_v3.png" width=800>
为了提升模型精度同时不引入额外推理成本,PP-OCRv3参考GTC策略,使用Attention监督CTC训练,预测时完全去除Attention模块,在推理阶段不增加任何耗时, 精度提升3.8%,训练流程如下所示:
<img src="../ppocr_v3/GTC.png" width=800>
在训练策略方面,PP-OCRv3参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了文本方向任务,训练了适用于文本识别的预训练模型,加速模型收敛过程,精度提升了0.6%; 使用UDML蒸馏策略,进一步提升精度1.5%,训练流程所示:
<img src="../ppocr_v3/SSL.png" width="300"> <img src="../ppocr_v3/UDML.png" width="500">
数据增强方面:
1. 基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,设计了 RecConAug 数据增强方法,增强数据多样性,精度提升0.5%,增强可视化效果如下所示:
<img src="../ppocr_v3/recconaug.png" width=800>
2. 使用训练好的 SVTR_large 预测 120W 的 lsvt 无标注数据,取出其中得分大于0.95的数据,共得到81W识别数据加入到PP-OCRv3的训练数据中,精度提升1%。
总体来讲PP-OCRv3识别从网络结构、训练策略、数据增强三个方向做了进一步优化:
- 网络结构上:考虑[SVTR](https://arxiv.org/abs/2205.00159) 在中英文效果上的优越性,采用SVTR_Tiny作为base,选取Global Mixing Block和卷积组合提取特征,并将Global Mixing Block位置后移进行加速; 参考 [GTC](https://arxiv.org/pdf/2002.01276.pdf) 策略,使用注意力机制模块指导CTC训练,定位和识别字符,提升不规则文本的识别精度。
- 训练策略上:参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了方向分类前序任务,获取更优预训练模型,加速模型收敛过程,提升精度; 使用UDML蒸馏策略、监督attention、ctc两个分支得到更优模型。
- 数据增强上:基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,改进得到 RecConAug 数据增广方法,支持随机结合任意多张图片,提升训练数据的上下文信息丰富度,增强模型鲁棒性;使用 SVTR_large 预测无标签数据,向训练集中补充81w高质量真实数据。
基于上述策略,PP-OCRv3识别模型相比PP-OCRv2,在速度可比的情况下,精度进一步提升4.5%。 具体消融实验如下所示:
实验细节:
| id | 策略 | 模型大小 | 精度 | 速度(cpu + mkldnn)|
|-----|-----|--------|----| --- |
| 01 | PP-OCRv2 | 8M | 69.3% | 8.54ms |
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
| 03 | LCNet_SVTR_G4 | 9.2M | 76% | 30ms |
| 04 | LCNet_SVTR_G2 | 13M | 72.98% | 9.37ms |
| 05 | PP-OCRv3 | 12M | 71.9% | 6.6ms |
| 06 | + large input_shape | 12M | 73.98% | 7.6ms |
| 06 | + GTC | 12M | 75.8% | 7.6ms |
| 07 | + RecConAug | 12M | 76.3% | 7.6ms |
| 08 | + SSL pretrain | 12M | 76.9% | 7.6ms |
| 09 | + UDML | 12M | 78.4% | 7.6ms |
| 10 | + unlabeled data | 12M | 79.4% | 7.6ms |
注: 测试速度时,实验01-05输入图片尺寸均为(3,32,320),06-10输入图片尺寸均为(3,48,320)
关于PP-OCR系列模型之间的性能对比,请查看[benchmark](./benchmark.md)文档。
<a name="4"></a>
## 4. 端到端评估
......@@ -81,7 +81,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv3_rec_slim |【最新】slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml)| 4.9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/ch/ch_PP-OCRv3_rec_slim_train.tar) / [slim模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.nb) |
|ch_PP-OCRv3_rec_slim |【最新】slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml)| 4.9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_train.tar) / [slim模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.nb) |
|ch_PP-OCRv3_rec|【最新】原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml)| 12.4M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
|ch_PP-OCRv2_rec_slim| slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec| 原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec_distillation.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec_distillation.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
......@@ -96,7 +96,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|en_PP-OCRv3_rec_slim |【最新】slim量化版超轻量模型,支持英文、数字识别 | [en_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml)| - |[推理模型(coming soon)](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.tar) / [训练模型(coming soon)](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_train.tar) / [slim模型(coming soon)](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.nb) |
|en_PP-OCRv3_rec_slim |【最新】slim量化版超轻量模型,支持英文、数字识别 | [en_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml)| - |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_train.tar) / [slim模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.nb) |
|ch_PP-OCRv3_rec |【最新】原始超轻量模型,支持英文、数字识别|[en_PP-OCRv3_rec.yml](../../configs/rec/en_PP-OCRv3/en_PP-OCRv3_rec.yml)| 9.6M | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| 2.7M | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
......@@ -107,18 +107,17 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|字典文件|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- |--- | --- |
| french_mobile_v2.0_rec | ppocr/utils/dict/french_dict.txt |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
| german_mobile_v2.0_rec | ppocr/utils/dict/german_dict.txt |德文识别|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
| korean_mobile_v2.0_rec | ppocr/utils/dict/korean_dict.txt |韩文识别|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
| japan_mobile_v2.0_rec | ppocr/utils/dict/japan_dict.txt |日文识别|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
| chinese_cht_mobile_v2.0_rec | ppocr/utils/dict/chinese_cht_dict.txt | 中文繁体识别|rec_chinese_cht_lite_train.yml|5.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
| te_mobile_v2.0_rec | ppocr/utils/dict/te_dict.txt | 泰卢固文识别|rec_te_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
| ka_mobile_v2.0_rec | ppocr/utils/dict/ka_dict.txt |卡纳达文识别|rec_ka_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
| ta_mobile_v2.0_rec | ppocr/utils/dict/ta_dict.txt |泰米尔文识别|rec_ta_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
| latin_mobile_v2.0_rec | ppocr/utils/dict/latin_dict.txt | 拉丁文识别 | [rec_latin_lite_train.yml](../../configs/rec/multi_language/rec_latin_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_train.tar) |
| arabic_mobile_v2.0_rec | ppocr/utils/dict/arabic_dict.txt | 阿拉伯字母 | [rec_arabic_lite_train.yml](../../configs/rec/multi_language/rec_arabic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_train.tar) |
| cyrillic_mobile_v2.0_rec | ppocr/utils/dict/cyrillic_dict.txt | 斯拉夫字母 | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
| devanagari_mobile_v2.0_rec | ppocr/utils/dict/devanagari_dict.txt |梵文字母 | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
| korean_PP-OCRv3_rec | ppocr/utils/dict/korean_dict.txt |韩文识别|[korean_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/korean_PP-OCRv3_rec.yml)|11M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_train.tar) |
| japan_PP-OCRv3_rec | ppocr/utils/dict/japan_dict.txt |日文识别|[japan_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/japan_PP-OCRv3_rec.yml)|11M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_train.tar) |
| chinese_cht_PP-OCRv3_rec | ppocr/utils/dict/chinese_cht_dict.txt | 中文繁体识别|[chinese_cht_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/chinese_cht_PP-OCRv3_rec.yml)|12M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_train.tar) |
| te_PP-OCRv3_rec | ppocr/utils/dict/te_dict.txt | 泰卢固文识别|[te_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/te_PP-OCRv3_rec.yml)|9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_train.tar) |
| ka_PP-OCRv3_rec | ppocr/utils/dict/ka_dict.txt |卡纳达文识别|[ka_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/ka_PP-OCRv3_rec.yml)|9.9M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_train.tar) |
| ta_PP-OCRv3_rec | ppocr/utils/dict/ta_dict.txt |泰米尔文识别|[ta_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/ta_PP-OCRv3_rec.yml)|9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_train.tar) |
| latin_PP-OCRv3_rec | ppocr/utils/dict/latin_dict.txt | 拉丁文识别 | [latin_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/latin_PP-OCRv3_rec.yml) |9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_ppocr_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_ppocr_PP-OCRv3_rec_train.tar) |
| arabic_PP-OCRv3_rec | ppocr/utils/dict/arabic_dict.txt | 阿拉伯字母 | [arabic_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/rec_arabic_lite_train.yml) |9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_ppocr_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_ppocr_PP-OCRv3_rec_train.tar) |
| cyrillic_PP-OCRv3_rec | ppocr/utils/dict/cyrillic_dict.txt | 斯拉夫字母 | [cyrillic_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/cyrillic_PP-OCRv3_rec.yml) |9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_ppocr_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_ppocr_PP-OCRv3_rec_train.tar) |
| devanagari_PP-OCRv3_rec | ppocr/utils/dict/devanagari_dict.txt |梵文字母 | [devanagari_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/devanagari_PP-OCRv3_rec.yml) |9.6M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_ppocr_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_ppocr_PP-OCRv3_rec_train.tar) |
更多支持语种请参考: [多语言模型](./multi_languages.md)
......
......@@ -34,48 +34,23 @@ PP-OCR从骨干网络选择和调整、预测头部的设计、数据增强、
#### PP-OCRv2
PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和[Enhanced CTC loss](./doc/doc_ch/enhanced_ctc_loss.md)损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)
PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和[Enhanced CTC loss](./enhanced_ctc_loss.md)损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)
#### PP-OCRv3
PP-OCRv3在PP-OCRv2的基础上进一步升级。
PP-OCRv3文本检测从网络结构、蒸馏训练策略两个方向做了进一步优化:
- 网络结构改进:提出两种改进后的FPN网络结构,RSEFPN,LKPAN,分别从channel attention、更大感受野的角度优化FPN中的特征,优化FPN提取的特征。
- 蒸馏训练策略:首先,以resnet50作为backbone,改进后的LKPAN网络结构作为FPN,使用DML自蒸馏策略得到精度更高的teacher模型;然后,student模型FPN部分采用RSEFPN,采用PPOCRV2提出的CML蒸馏方法蒸馏,在训练过程中,动态调整CML蒸馏teacher loss的占比。
|序号|策略|模型大小|hmean|Intel Gold 6148CPU+mkldnn预测耗时|
|-|-|-|-|-|
|0|ppocr_mobile|3M|81.3|117ms|
|1|PPOCRV2|3M|83.3|117ms|
|2|teacher DML|124M|86.0|-|
|3|1 + 2 + RESFPN|3.6M|85.4|124ms|
|4|1 + 2 + LKPAN|4.6M|86.0|156ms|
PP-OCRv3识别从网络结构、训练策略、数据增强三个方向做了进一步优化:
- 网络结构上:使用[SVTR](todo:add_link)中的 Transformer block 替换LSTM,提升模型精度和预测速度;
- 训练策略上:参考 [GTC](https://arxiv.org/pdf/2002.01276.pdf) 策略,使用注意力机制模块指导CTC训练,定位和识别字符,提升不规则文本的识别精度;设计方向分类前序任务,获取更优预训练模型,加速模型收敛过程,提升精度。
- 数据增强上:使用[RecConAug](todo:add_link)数据增广方法,随机结合图片,提升训练数据的上下文信息丰富度,增强模型鲁棒性。
基于上述策略,PP-OCRv3识别模型相比上一版本,速度加速30%,精度进一步提升4.5%。 具体消融实验:
| id | 策略 | 模型大小 | 精度 | CPU+mkldnn 预测耗时 |
|-----|-----|--------|----|------------|
| 01 | PP-OCRv2 | 8M | 69.3% | 26ms |
| 02 | SVTR_tiny | 19M | 80.1% | - |
| 03 | LCNet_SVTR_G6 | 8.2M | 76% | - |
| 04 | LCNet_SVTR_G1 | - | - | - |
| 05 | PP-OCRv3 | 12M | 71.9% | 19ms |
| 06 | + GTC | 12M | 75.8% | 19ms |
| 07 | + RecConAug | 12M | 76.3% | 19ms |
| 08 | + SSL pretrain | 12M | 76.9% | 19ms |
| 09 | + UDML | 12M | 78.4% | 19ms |
| 10 | + unlabeled data | 12M | 79.4% | 19ms |
PP-OCRv3在PP-OCRv2的基础上进一步升级。检测模型仍然基于DB算法,优化策略采用了带残差注意力机制的FPN结构RSEFPN、增大感受野的PAN结构LKPAN、基于DML训练的更优的教师模型;识别模型将base模型从CRNN替换成了IJCAI 2022论文[SVTR](https://arxiv.org/abs/2205.00159),并采用SVTR轻量化、带指导训练CTC、数据增广策略RecConAug、自监督训练的更好的预训练模型、无标签数据的使用进行模型加速和效果提升。更多细节请参考PP-OCRv3[技术报告](./PP-OCRv3_introduction.md)
PP-OCRv3系统pipeline如下:
<div align="center">
<img src="../ppocrv3_framework.png" width="800">
</div>
<a name="2"></a>
## 2. 特性
- 超轻量PP-OCRv3系列:检测(3.6M)+ 方向分类器(1.4M)+ 识别(12M)= 17.0M
- 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
- 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用PP-OCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
......
English | [简体中文](../doc_ch/PP-OCRv3_introduction.md)
......@@ -36,6 +36,7 @@ Take rec_chinese_lite_train_v2.0.yml as an example
| pretrained_model | Set the path of the pre-trained model | ./pretrain_models/CRNN/best_accuracy | \ |
| checkpoints | set model parameter path | None | Used to load parameters after interruption to continue training|
| use_visualdl | Set whether to enable visualdl for visual log display | False | [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) |
| use_wandb | Set whether to enable W&B for visual log display | False | [Documentation](https://docs.wandb.ai/)
| infer_img | Set inference image path or folder path | ./infer_img | \||
| character_dict_path | Set dictionary path | ./ppocr/utils/ppocr_keys_v1.txt | If the character_dict_path is None, model can only recognize number and lower letters |
| max_text_length | Set the maximum length of text | 25 | \ |
......@@ -66,7 +67,7 @@ In PaddleOCR, the network is divided into four stages: Transform, Backbone, Neck
| :---------------------: | :---------------------: | :--------------: | :--------------------: |
| model_type | Network Type | rec | Currently support`rec`,`det`,`cls` |
| algorithm | Model name | CRNN | See [algorithm_overview](./algorithm_overview_en.md) for the support list |
| **Transform** | Set the transformation method | - | Currently only recognition algorithms are supported, see [ppocr/modeling/transforms](../../ppocr/modeling/transforms) for details |
| **Transform** | Set the transformation method | - | Currently only recognition algorithms are supported, see [ppocr/modeling/transform](../../ppocr/modeling/transforms) for details |
| name | Transformation class name | TPS | Currently supports `TPS` |
| num_fiducial | Number of TPS control points | 20 | Ten on the top and bottom |
| loc_lr | Localization network learning rate | 0.1 | \ |
......@@ -130,6 +131,17 @@ In PaddleOCR, the network is divided into four stages: Transform, Backbone, Neck
| drop_last | Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size | True | \ |
| num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ |
### Weights & Biases ([W&B](../../ppocr/utils/loggers/wandb_logger.py))
| Parameter | Use | Defaults | Note |
| :---------------------: | :---------------------: | :--------------: | :--------------------: |
| project | Project to which the run is to be logged | uncategorized | \
| name | Alias/Name of the run | Randomly generated by wandb | \
| id | ID of the run | Randomly generated by wandb | \
| entity | User or team to which the run is being logged | The logged in user | \
| save_dir | local directory in which all the models and other data is saved | wandb | \
| config | model configuration | None | \
<a name="3-multilingual-config-file-generation"></a>
## 3. Multilingual Config File Generation
......
## Logging metrics and models
PaddleOCR comes with two metric logging tools integrated directly into the training API: [VisualDL](https://readthedocs.org/projects/visualdl/) and [Weights & Biases](https://docs.wandb.ai/).
### VisualDL
VisualDL is a visualization analysis tool of PaddlePaddle. The integration allows all training metrics to be logged to a VisualDL dashboard. To use it, add the following line to the `Global` section of the config yaml file -
```
Global:
use_visualdl: True
```
To see the visualizations run the following command in your terminal
```shell
visualdl --logdir <save_model_dir>
```
Now open `localhost:8040` in your browser of choice!
### Weights & Biases
W&B is a MLOps tool that can be used for experiment tracking, dataset/model versioning, visualizing results and collaborating with colleagues. A W&B logger is integrated directly into PaddleOCR and to use it, first you need to install the `wandb` sdk and login to your wandb account.
```shell
pip install wandb
wandb login
```
If you do not have a wandb account, you can make one [here](https://wandb.ai/site).
To visualize and track your model training add the following flag to your config yaml file under the `Global` section -
```
Global:
use_wandb: True
```
To add more arguments to the `WandbLogger` listed [here](./config_en.md) add the header `wandb` to the yaml file and add the arguments under it -
```
wandb:
project: my_project
entity: my_team
```
These config variables from the yaml file are used to instantiate the `WandbLogger` object with the project name, entity name (the logged in user by default), directory to store metadata (`./wandb` by default) and more. During the training process, the `log_metrics` function is called to log training and evaluation metrics at the training and evaluation steps respectively from the rank 0 process only.
At every model saving step, the WandbLogger, logs the model using the `log_model` function along with relavant metadata and tags showing the epoch in which the model is saved, the model is best or not and so on.
All the logging mentioned above is integrated into the `program.train` function and will generate dashboards like this -
![W&B Dashboard](../imgs_en/wandb_metrics.png)
![W&B Models](../imgs_en/wandb_models.png)
For more advanced usage to log images, audios, videos or any other form of data, you can use `WandbLogger().run.log`. More examples on how to log different kinds of data are available [here](https://docs.wandb.ai/examples).
To view the dashboard, the link to the dashboard is printed to the console at the beginning and end of every training job and you can also access it by logging into your W&B account on your browser.
### Using Multiple Loggers
Both VisualDL and W&B can also be used simultaneously by just setting both the aforementioned flags to True.
\ No newline at end of file
......@@ -32,24 +32,18 @@ PP-OCR system is in continuous optimization. At present, PP-OCR and PP-OCRv2 hav
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (https://arxiv.org/abs/2109.03144).
[3] PP-OCRv3 is further upgraded on the basis of PP-OCRv2.
PP-OCRv3 text detection has been further optimized from the two directions of network structure and distillation training strategy:
- Network structure improvement: Two improved FPN network structures, RSEFPN and LKPAN, are proposed to optimize the features in the FPN from the perspective of channel attention and a larger receptive field, and optimize the features extracted by the FPN.
- Distillation training strategy: First, use resnet50 as the backbone, the improved LKPAN network structure as the FPN, and use the DML self-distillation strategy to obtain a teacher model with higher accuracy; then, the FPN part of the student model adopts RSEFPN, and adopts the CML distillation method proposed by PPOCRV2, during the training process, dynamically adjust the proportion of CML distillation teacher loss.
[3] PP-OCRv3 is further upgraded on the basis of PP-OCRv2. The detection model is still based on DB algorithm, and the optimization strategies include a newly proposed FPN structure with residual attention mechanism named with RSEFPN, a PAN structure with enlarged receptive field named with LKPAN, and better teacher model based on DML training; The recognition model replaces the base model from CRNN with IJCAI 2022 paper [SVTR](https://arxiv.org/abs/2205.00159), and adopts lightweight SVTR, guided training of CTC, data augmentation strategy RecConAug, better pre-trained model by self-supervised training, and the use of unlabeled data to accelerate the model and improve the effect. For more details, please refer to PP-OCRv3 [technical report](./PP-OCRv3_introduction_en.md).
|Index|Method|Model SIze|Hmean|CPU inference time|
|-|-|-|-|-|
|0|ppocr_mobile|3M|81.3|117ms|
|1|PPOCRV2|3M|83.3|117ms|
|2|teacher DML|124M|86.0|-|
|3|1 + 2 + RESFPN|3.6M|85.4|124ms|
|4|1 + 2 + LKPAN|4.6M|86.0|156ms|
PP-OCRv3 pipeline is as follows:
*note: CPU inference time refers to the average inference time on an Intel Gold 6148CPU with mkldnn enabled.*
<div align="center">
<img src="../ppocrv3_framework.png" width="800">
</div>
<a name="2"></a>
## 2. Features
- Ultra lightweight PP-OCRv3 series models: detection (3.6M) + direction classifier (1.4M) + recognition 12M) = 17.0M
- Ultra lightweight PP-OCRv2 series models: detection (3.1M) + direction classifier (1.4M) + recognition 8.5M) = 13.0M
- Ultra lightweight PP-OCR mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
- General PP-OCR server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
......
doc/features.png

1.15 MB | W: | H:

doc/features.png

1.36 MB | W: | H:

doc/features.png
doc/features.png
doc/features.png
doc/features.png
  • 2-up
  • Swipe
  • Onion skin
doc/features_en.png

1.19 MB | W: | H:

doc/features_en.png

1.41 MB | W: | H:

doc/features_en.png
doc/features_en.png
doc/features_en.png
doc/features_en.png
  • 2-up
  • Swipe
  • Onion skin
doc/ppocr_v3/LKPAN.png

126 KB | W: | H:

doc/ppocr_v3/LKPAN.png

130 KB | W: | H:

doc/ppocr_v3/LKPAN.png
doc/ppocr_v3/LKPAN.png
doc/ppocr_v3/LKPAN.png
doc/ppocr_v3/LKPAN.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment