Commit 4b214948 authored by zhiminzhang0830's avatar zhiminzhang0830
Browse files

Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into new_branch

parents 917606b4 6e607a0f
......@@ -13,6 +13,7 @@ import android.graphics.BitmapFactory;
import android.graphics.drawable.BitmapDrawable;
import android.media.ExifInterface;
import android.content.res.AssetManager;
import android.media.FaceDetector;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
......@@ -27,7 +28,9 @@ import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.CheckBox;
import android.widget.ImageView;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.Toast;
......@@ -68,23 +71,24 @@ public class MainActivity extends AppCompatActivity {
protected ImageView ivInputImage;
protected TextView tvOutputResult;
protected TextView tvInferenceTime;
protected CheckBox cbOpencl;
protected Spinner spRunMode;
// Model settings of object detection
// Model settings of ocr
protected String modelPath = "";
protected String labelPath = "";
protected String imagePath = "";
protected int cpuThreadNum = 1;
protected String cpuPowerMode = "";
protected String inputColorFormat = "";
protected long[] inputShape = new long[]{};
protected float[] inputMean = new float[]{};
protected float[] inputStd = new float[]{};
protected int detLongSize = 960;
protected float scoreThreshold = 0.1f;
private String currentPhotoPath;
private AssetManager assetManager =null;
private AssetManager assetManager = null;
protected Predictor predictor = new Predictor();
private Bitmap cur_predict_image = null;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
......@@ -98,10 +102,12 @@ public class MainActivity extends AppCompatActivity {
// Setup the UI components
tvInputSetting = findViewById(R.id.tv_input_setting);
cbOpencl = findViewById(R.id.cb_opencl);
tvStatus = findViewById(R.id.tv_model_img_status);
ivInputImage = findViewById(R.id.iv_input_image);
tvInferenceTime = findViewById(R.id.tv_inference_time);
tvOutputResult = findViewById(R.id.tv_output_result);
spRunMode = findViewById(R.id.sp_run_mode);
tvInputSetting.setMovementMethod(ScrollingMovementMethod.getInstance());
tvOutputResult.setMovementMethod(ScrollingMovementMethod.getInstance());
......@@ -111,26 +117,26 @@ public class MainActivity extends AppCompatActivity {
public void handleMessage(Message msg) {
switch (msg.what) {
case RESPONSE_LOAD_MODEL_SUCCESSED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
if (pbLoadModel != null && pbLoadModel.isShowing()) {
pbLoadModel.dismiss();
}
onLoadModelSuccessed();
break;
case RESPONSE_LOAD_MODEL_FAILED:
if(pbLoadModel!=null && pbLoadModel.isShowing()){
if (pbLoadModel != null && pbLoadModel.isShowing()) {
pbLoadModel.dismiss();
}
Toast.makeText(MainActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
onLoadModelFailed();
break;
case RESPONSE_RUN_MODEL_SUCCESSED:
if(pbRunModel!=null && pbRunModel.isShowing()){
if (pbRunModel != null && pbRunModel.isShowing()) {
pbRunModel.dismiss();
}
onRunModelSuccessed();
break;
case RESPONSE_RUN_MODEL_FAILED:
if(pbRunModel!=null && pbRunModel.isShowing()){
if (pbRunModel != null && pbRunModel.isShowing()) {
pbRunModel.dismiss();
}
Toast.makeText(MainActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
......@@ -175,71 +181,47 @@ public class MainActivity extends AppCompatActivity {
super.onResume();
SharedPreferences sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
boolean settingsChanged = false;
boolean model_settingsChanged = false;
String model_path = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
String label_path = sharedPreferences.getString(getString(R.string.LABEL_PATH_KEY),
getString(R.string.LABEL_PATH_DEFAULT));
String image_path = sharedPreferences.getString(getString(R.string.IMAGE_PATH_KEY),
getString(R.string.IMAGE_PATH_DEFAULT));
settingsChanged |= !model_path.equalsIgnoreCase(modelPath);
model_settingsChanged |= !model_path.equalsIgnoreCase(modelPath);
settingsChanged |= !label_path.equalsIgnoreCase(labelPath);
settingsChanged |= !image_path.equalsIgnoreCase(imagePath);
int cpu_thread_num = Integer.parseInt(sharedPreferences.getString(getString(R.string.CPU_THREAD_NUM_KEY),
getString(R.string.CPU_THREAD_NUM_DEFAULT)));
settingsChanged |= cpu_thread_num != cpuThreadNum;
model_settingsChanged |= cpu_thread_num != cpuThreadNum;
String cpu_power_mode =
sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
settingsChanged |= !cpu_power_mode.equalsIgnoreCase(cpuPowerMode);
String input_color_format =
sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
settingsChanged |= !input_color_format.equalsIgnoreCase(inputColorFormat);
long[] input_shape =
Utils.parseLongsFromString(sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT)), ",");
float[] input_mean =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT)), ",");
float[] input_std =
Utils.parseFloatsFromString(sharedPreferences.getString(getString(R.string.INPUT_STD_KEY)
, getString(R.string.INPUT_STD_DEFAULT)), ",");
settingsChanged |= input_shape.length != inputShape.length;
settingsChanged |= input_mean.length != inputMean.length;
settingsChanged |= input_std.length != inputStd.length;
if (!settingsChanged) {
for (int i = 0; i < input_shape.length; i++) {
settingsChanged |= input_shape[i] != inputShape[i];
}
for (int i = 0; i < input_mean.length; i++) {
settingsChanged |= input_mean[i] != inputMean[i];
}
for (int i = 0; i < input_std.length; i++) {
settingsChanged |= input_std[i] != inputStd[i];
}
}
model_settingsChanged |= !cpu_power_mode.equalsIgnoreCase(cpuPowerMode);
int det_long_size = Integer.parseInt(sharedPreferences.getString(getString(R.string.DET_LONG_SIZE_KEY),
getString(R.string.DET_LONG_SIZE_DEFAULT)));
settingsChanged |= det_long_size != detLongSize;
float score_threshold =
Float.parseFloat(sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT)));
settingsChanged |= scoreThreshold != score_threshold;
if (settingsChanged) {
modelPath = model_path;
labelPath = label_path;
imagePath = image_path;
detLongSize = det_long_size;
scoreThreshold = score_threshold;
set_img();
}
if (model_settingsChanged) {
modelPath = model_path;
cpuThreadNum = cpu_thread_num;
cpuPowerMode = cpu_power_mode;
inputColorFormat = input_color_format;
inputShape = input_shape;
inputMean = input_mean;
inputStd = input_std;
scoreThreshold = score_threshold;
// Update UI
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\n" + "CPU" +
" Thread Num: " + Integer.toString(cpuThreadNum) + "\n" + "CPU Power Mode: " + cpuPowerMode);
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\nOPENCL: " + cbOpencl.isChecked() + "\nCPU Thread Num: " + cpuThreadNum + "\nCPU Power Mode: " + cpuPowerMode);
tvInputSetting.scrollTo(0, 0);
// Reload model if configure has been changed
// loadModel();
set_img();
loadModel();
}
}
......@@ -254,20 +236,28 @@ public class MainActivity extends AppCompatActivity {
}
public boolean onLoadModel() {
return predictor.init(MainActivity.this, modelPath, labelPath, cpuThreadNum,
if (predictor.isLoaded()) {
predictor.releaseModel();
}
return predictor.init(MainActivity.this, modelPath, labelPath, cbOpencl.isChecked() ? 1 : 0, cpuThreadNum,
cpuPowerMode,
inputColorFormat,
inputShape, inputMean,
inputStd, scoreThreshold);
detLongSize, scoreThreshold);
}
public boolean onRunModel() {
return predictor.isLoaded() && predictor.runModel();
String run_mode = spRunMode.getSelectedItem().toString();
int run_det = run_mode.contains("检测") ? 1 : 0;
int run_cls = run_mode.contains("分类") ? 1 : 0;
int run_rec = run_mode.contains("识别") ? 1 : 0;
return predictor.isLoaded() && predictor.runModel(run_det, run_cls, run_rec);
}
public void onLoadModelSuccessed() {
// Load test image from path and run model
tvInputSetting.setText("Model: " + modelPath.substring(modelPath.lastIndexOf("/") + 1) + "\nOPENCL: " + cbOpencl.isChecked() + "\nCPU Thread Num: " + cpuThreadNum + "\nCPU Power Mode: " + cpuPowerMode);
tvInputSetting.scrollTo(0, 0);
tvStatus.setText("STATUS: load model successed");
}
public void onLoadModelFailed() {
......@@ -290,20 +280,13 @@ public class MainActivity extends AppCompatActivity {
tvStatus.setText("STATUS: run model failed");
}
public void onImageChanged(Bitmap image) {
// Rerun model if users pick test image from gallery or camera
if (image != null && predictor.isLoaded()) {
predictor.setInputImage(image);
runModel();
}
}
public void set_img() {
// Load test image from path and run model
try {
assetManager= getAssets();
InputStream in=assetManager.open(imagePath);
Bitmap bmp=BitmapFactory.decodeStream(in);
assetManager = getAssets();
InputStream in = assetManager.open(imagePath);
Bitmap bmp = BitmapFactory.decodeStream(in);
cur_predict_image = bmp;
ivInputImage.setImageBitmap(bmp);
} catch (IOException e) {
Toast.makeText(MainActivity.this, "Load image failed!", Toast.LENGTH_SHORT).show();
......@@ -430,7 +413,7 @@ public class MainActivity extends AppCompatActivity {
Cursor cursor = managedQuery(uri, proj, null, null, null);
cursor.moveToFirst();
if (image != null) {
// onImageChanged(image);
cur_predict_image = image;
ivInputImage.setImageBitmap(image);
}
} catch (IOException e) {
......@@ -451,7 +434,7 @@ public class MainActivity extends AppCompatActivity {
Bitmap image = BitmapFactory.decodeFile(currentPhotoPath);
image = Utils.rotateBitmap(image, orientation);
if (image != null) {
// onImageChanged(image);
cur_predict_image = image;
ivInputImage.setImageBitmap(image);
}
} else {
......@@ -464,28 +447,28 @@ public class MainActivity extends AppCompatActivity {
}
}
public void btn_load_model_click(View view) {
if (predictor.isLoaded()){
tvStatus.setText("STATUS: model has been loaded");
}else{
public void btn_reset_img_click(View view) {
ivInputImage.setImageBitmap(cur_predict_image);
}
public void cb_opencl_click(View view) {
tvStatus.setText("STATUS: load model ......");
loadModel();
}
}
public void btn_run_model_click(View view) {
Bitmap image =((BitmapDrawable)ivInputImage.getDrawable()).getBitmap();
if(image == null) {
Bitmap image = ((BitmapDrawable) ivInputImage.getDrawable()).getBitmap();
if (image == null) {
tvStatus.setText("STATUS: image is not exists");
}
else if (!predictor.isLoaded()){
} else if (!predictor.isLoaded()) {
tvStatus.setText("STATUS: model is not loaded");
}else{
} else {
tvStatus.setText("STATUS: run model ...... ");
predictor.setInputImage(image);
runModel();
}
}
public void btn_choice_img_click(View view) {
if (requestAllPermissions()) {
openGallery();
......@@ -506,4 +489,32 @@ public class MainActivity extends AppCompatActivity {
worker.quit();
super.onDestroy();
}
public int get_run_mode() {
String run_mode = spRunMode.getSelectedItem().toString();
int mode;
switch (run_mode) {
case "检测+分类+识别":
mode = 1;
break;
case "检测+识别":
mode = 2;
break;
case "识别+分类":
mode = 3;
break;
case "检测":
mode = 4;
break;
case "识别":
mode = 5;
break;
case "分类":
mode = 6;
break;
default:
mode = 1;
}
return mode;
}
}
package com.baidu.paddle.lite.demo.ocr;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.HandlerThread;
import android.os.Message;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import java.io.IOException;
import java.io.InputStream;
public class MiniActivity extends AppCompatActivity {
public static final int REQUEST_LOAD_MODEL = 0;
public static final int REQUEST_RUN_MODEL = 1;
public static final int REQUEST_UNLOAD_MODEL = 2;
public static final int RESPONSE_LOAD_MODEL_SUCCESSED = 0;
public static final int RESPONSE_LOAD_MODEL_FAILED = 1;
public static final int RESPONSE_RUN_MODEL_SUCCESSED = 2;
public static final int RESPONSE_RUN_MODEL_FAILED = 3;
private static final String TAG = "MiniActivity";
protected Handler receiver = null; // Receive messages from worker thread
protected Handler sender = null; // Send command to worker thread
protected HandlerThread worker = null; // Worker thread to load&run model
protected volatile Predictor predictor = null;
private String assetModelDirPath = "models/ocr_v2_for_cpu";
private String assetlabelFilePath = "labels/ppocr_keys_v1.txt";
private Button button;
private ImageView imageView; // image result
private TextView textView; // text result
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_mini);
Log.i(TAG, "SHOW in Logcat");
// Prepare the worker thread for mode loading and inference
worker = new HandlerThread("Predictor Worker");
worker.start();
sender = new Handler(worker.getLooper()) {
public void handleMessage(Message msg) {
switch (msg.what) {
case REQUEST_LOAD_MODEL:
// Load model and reload test image
if (!onLoadModel()) {
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(MiniActivity.this, "Load model failed!", Toast.LENGTH_SHORT).show();
}
});
}
break;
case REQUEST_RUN_MODEL:
// Run model if model is loaded
final boolean isSuccessed = onRunModel();
runOnUiThread(new Runnable() {
@Override
public void run() {
if (isSuccessed){
onRunModelSuccessed();
}else{
Toast.makeText(MiniActivity.this, "Run model failed!", Toast.LENGTH_SHORT).show();
}
}
});
break;
}
}
};
sender.sendEmptyMessage(REQUEST_LOAD_MODEL); // corresponding to REQUEST_LOAD_MODEL, to call onLoadModel()
imageView = findViewById(R.id.imageView);
textView = findViewById(R.id.sample_text);
button = findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
sender.sendEmptyMessage(REQUEST_RUN_MODEL);
}
});
}
@Override
protected void onDestroy() {
onUnloadModel();
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
worker.quitSafely();
} else {
worker.quit();
}
super.onDestroy();
}
/**
* call in onCreate, model init
*
* @return
*/
private boolean onLoadModel() {
if (predictor == null) {
predictor = new Predictor();
}
return predictor.init(this, assetModelDirPath, assetlabelFilePath);
}
/**
* init engine
* call in onCreate
*
* @return
*/
private boolean onRunModel() {
try {
String assetImagePath = "images/0.jpg";
InputStream imageStream = getAssets().open(assetImagePath);
Bitmap image = BitmapFactory.decodeStream(imageStream);
// Input is Bitmap
predictor.setInputImage(image);
return predictor.isLoaded() && predictor.runModel();
} catch (IOException e) {
e.printStackTrace();
return false;
}
}
private void onRunModelSuccessed() {
Log.i(TAG, "onRunModelSuccessed");
textView.setText(predictor.outputResult);
imageView.setImageBitmap(predictor.outputImage);
}
private void onUnloadModel() {
if (predictor != null) {
predictor.releaseModel();
}
}
}
......@@ -29,22 +29,22 @@ public class OCRPredictorNative {
public OCRPredictorNative(Config config) {
this.config = config;
loadLibrary();
nativePointer = init(config.detModelFilename, config.recModelFilename,config.clsModelFilename,
nativePointer = init(config.detModelFilename, config.recModelFilename, config.clsModelFilename, config.useOpencl,
config.cpuThreadNum, config.cpuPower);
Log.i("OCRPredictorNative", "load success " + nativePointer);
}
public ArrayList<OcrResultModel> runImage(float[] inputData, int width, int height, int channels, Bitmap originalImage) {
Log.i("OCRPredictorNative", "begin to run image " + inputData.length + " " + width + " " + height);
float[] dims = new float[]{1, channels, height, width};
float[] rawResults = forward(nativePointer, inputData, dims, originalImage);
public ArrayList<OcrResultModel> runImage(Bitmap originalImage, int max_size_len, int run_det, int run_cls, int run_rec) {
Log.i("OCRPredictorNative", "begin to run image ");
float[] rawResults = forward(nativePointer, originalImage, max_size_len, run_det, run_cls, run_rec);
ArrayList<OcrResultModel> results = postprocess(rawResults);
return results;
}
public static class Config {
public int useOpencl;
public int cpuThreadNum;
public String cpuPower;
public String detModelFilename;
......@@ -53,16 +53,16 @@ public class OCRPredictorNative {
}
public void destory(){
public void destory() {
if (nativePointer > 0) {
release(nativePointer);
nativePointer = 0;
}
}
protected native long init(String detModelPath, String recModelPath,String clsModelPath, int threadNum, String cpuMode);
protected native long init(String detModelPath, String recModelPath, String clsModelPath, int useOpencl, int threadNum, String cpuMode);
protected native float[] forward(long pointer, float[] buf, float[] ddims, Bitmap originalImage);
protected native float[] forward(long pointer, Bitmap originalImage,int max_size_len, int run_det, int run_cls, int run_rec);
protected native void release(long pointer);
......@@ -73,9 +73,9 @@ public class OCRPredictorNative {
while (begin < raw.length) {
int point_num = Math.round(raw[begin]);
int word_num = Math.round(raw[begin + 1]);
OcrResultModel model = parse(raw, begin + 2, point_num, word_num);
begin += 2 + 1 + point_num * 2 + word_num;
results.add(model);
OcrResultModel res = parse(raw, begin + 2, point_num, word_num);
begin += 2 + 1 + point_num * 2 + word_num + 2;
results.add(res);
}
return results;
......@@ -83,19 +83,22 @@ public class OCRPredictorNative {
private OcrResultModel parse(float[] raw, int begin, int pointNum, int wordNum) {
int current = begin;
OcrResultModel model = new OcrResultModel();
model.setConfidence(raw[current]);
OcrResultModel res = new OcrResultModel();
res.setConfidence(raw[current]);
current++;
for (int i = 0; i < pointNum; i++) {
model.addPoints(Math.round(raw[current + i * 2]), Math.round(raw[current + i * 2 + 1]));
res.addPoints(Math.round(raw[current + i * 2]), Math.round(raw[current + i * 2 + 1]));
}
current += (pointNum * 2);
for (int i = 0; i < wordNum; i++) {
int index = Math.round(raw[current + i]);
model.addWordIndex(index);
res.addWordIndex(index);
}
current += wordNum;
res.setClsIdx(raw[current]);
res.setClsConfidence(raw[current + 1]);
Log.i("OCRPredictorNative", "word finished " + wordNum);
return model;
return res;
}
......
......@@ -10,6 +10,9 @@ public class OcrResultModel {
private List<Integer> wordIndex;
private String label;
private float confidence;
private float cls_idx;
private String cls_label;
private float cls_confidence;
public OcrResultModel() {
super();
......@@ -49,4 +52,28 @@ public class OcrResultModel {
public void setConfidence(float confidence) {
this.confidence = confidence;
}
public float getClsIdx() {
return cls_idx;
}
public void setClsIdx(float idx) {
this.cls_idx = idx;
}
public String getClsLabel() {
return cls_label;
}
public void setClsLabel(String label) {
this.cls_label = label;
}
public float getClsConfidence() {
return cls_confidence;
}
public void setClsConfidence(float confidence) {
this.cls_confidence = confidence;
}
}
......@@ -31,23 +31,19 @@ public class Predictor {
protected float inferenceTime = 0;
// Only for object detection
protected Vector<String> wordLabels = new Vector<String>();
protected String inputColorFormat = "BGR";
protected long[] inputShape = new long[]{1, 3, 960};
protected float[] inputMean = new float[]{0.485f, 0.456f, 0.406f};
protected float[] inputStd = new float[]{1.0f / 0.229f, 1.0f / 0.224f, 1.0f / 0.225f};
protected int detLongSize = 960;
protected float scoreThreshold = 0.1f;
protected Bitmap inputImage = null;
protected Bitmap outputImage = null;
protected volatile String outputResult = "";
protected float preprocessTime = 0;
protected float postprocessTime = 0;
public Predictor() {
}
public boolean init(Context appCtx, String modelPath, String labelPath) {
isLoaded = loadModel(appCtx, modelPath, cpuThreadNum, cpuPowerMode);
public boolean init(Context appCtx, String modelPath, String labelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode) {
isLoaded = loadModel(appCtx, modelPath, useOpencl, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
......@@ -56,49 +52,18 @@ public class Predictor {
}
public boolean init(Context appCtx, String modelPath, String labelPath, int cpuThreadNum, String cpuPowerMode,
String inputColorFormat,
long[] inputShape, float[] inputMean,
float[] inputStd, float scoreThreshold) {
if (inputShape.length != 3) {
Log.e(TAG, "Size of input shape should be: 3");
return false;
}
if (inputMean.length != inputShape[1]) {
Log.e(TAG, "Size of input mean should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputStd.length != inputShape[1]) {
Log.e(TAG, "Size of input std should be: " + Long.toString(inputShape[1]));
return false;
}
if (inputShape[0] != 1) {
Log.e(TAG, "Only one batch is supported in the image classification demo, you can use any batch size in " +
"your Apps!");
return false;
}
if (inputShape[1] != 1 && inputShape[1] != 3) {
Log.e(TAG, "Only one/three channels are supported in the image classification demo, you can use any " +
"channel size in your Apps!");
return false;
}
if (!inputColorFormat.equalsIgnoreCase("BGR")) {
Log.e(TAG, "Only BGR color format is supported.");
return false;
}
boolean isLoaded = init(appCtx, modelPath, labelPath);
public boolean init(Context appCtx, String modelPath, String labelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode,
int detLongSize, float scoreThreshold) {
boolean isLoaded = init(appCtx, modelPath, labelPath, useOpencl, cpuThreadNum, cpuPowerMode);
if (!isLoaded) {
return false;
}
this.inputColorFormat = inputColorFormat;
this.inputShape = inputShape;
this.inputMean = inputMean;
this.inputStd = inputStd;
this.detLongSize = detLongSize;
this.scoreThreshold = scoreThreshold;
return true;
}
protected boolean loadModel(Context appCtx, String modelPath, int cpuThreadNum, String cpuPowerMode) {
protected boolean loadModel(Context appCtx, String modelPath, int useOpencl, int cpuThreadNum, String cpuPowerMode) {
// Release model if exists
releaseModel();
......@@ -118,12 +83,13 @@ public class Predictor {
}
OCRPredictorNative.Config config = new OCRPredictorNative.Config();
config.useOpencl = useOpencl;
config.cpuThreadNum = cpuThreadNum;
config.detModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_det_opt.nb";
config.recModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_rec_opt.nb";
config.clsModelFilename = realPath + File.separator + "ch_ppocr_mobile_v2.0_cls_opt.nb";
Log.e("Predictor", "model path" + config.detModelFilename + " ; " + config.recModelFilename + ";" + config.clsModelFilename);
config.cpuPower = cpuPowerMode;
config.detModelFilename = realPath + File.separator + "det_db.nb";
config.recModelFilename = realPath + File.separator + "rec_crnn.nb";
config.clsModelFilename = realPath + File.separator + "cls.nb";
Log.i("Predictor", "model path" + config.detModelFilename + " ; " + config.recModelFilename + ";" + config.clsModelFilename);
paddlePredictor = new OCRPredictorNative(config);
this.cpuThreadNum = cpuThreadNum;
......@@ -170,82 +136,29 @@ public class Predictor {
}
public boolean runModel() {
public boolean runModel(int run_det, int run_cls, int run_rec) {
if (inputImage == null || !isLoaded()) {
return false;
}
// Pre-process image, and feed input tensor with pre-processed data
Bitmap scaleImage = Utils.resizeWithStep(inputImage, Long.valueOf(inputShape[2]).intValue(), 32);
Date start = new Date();
int channels = (int) inputShape[1];
int width = scaleImage.getWidth();
int height = scaleImage.getHeight();
float[] inputData = new float[channels * width * height];
if (channels == 3) {
int[] channelIdx = null;
if (inputColorFormat.equalsIgnoreCase("RGB")) {
channelIdx = new int[]{0, 1, 2};
} else if (inputColorFormat.equalsIgnoreCase("BGR")) {
channelIdx = new int[]{2, 1, 0};
} else {
Log.i(TAG, "Unknown color format " + inputColorFormat + ", only RGB and BGR color format is " +
"supported!");
return false;
}
int[] channelStride = new int[]{width * height, width * height * 2};
int[] pixels=new int[width*height];
scaleImage.getPixels(pixels,0,scaleImage.getWidth(),0,0,scaleImage.getWidth(),scaleImage.getHeight());
for (int i = 0; i < pixels.length; i++) {
int color = pixels[i];
float[] rgb = new float[]{(float) red(color) / 255.0f, (float) green(color) / 255.0f,
(float) blue(color) / 255.0f};
inputData[i] = (rgb[channelIdx[0]] - inputMean[0]) / inputStd[0];
inputData[i + channelStride[0]] = (rgb[channelIdx[1]] - inputMean[1]) / inputStd[1];
inputData[i+ channelStride[1]] = (rgb[channelIdx[2]] - inputMean[2]) / inputStd[2];
}
} else if (channels == 1) {
int[] pixels=new int[width*height];
scaleImage.getPixels(pixels,0,scaleImage.getWidth(),0,0,scaleImage.getWidth(),scaleImage.getHeight());
for (int i = 0; i < pixels.length; i++) {
int color = pixels[i];
float gray = (float) (red(color) + green(color) + blue(color)) / 3.0f / 255.0f;
inputData[i] = (gray - inputMean[0]) / inputStd[0];
}
} else {
Log.i(TAG, "Unsupported channel size " + Integer.toString(channels) + ", only channel 1 and 3 is " +
"supported!");
return false;
}
float[] pixels = inputData;
Log.i(TAG, "pixels " + pixels[0] + " " + pixels[1] + " " + pixels[2] + " " + pixels[3]
+ " " + pixels[pixels.length / 2] + " " + pixels[pixels.length / 2 + 1] + " " + pixels[pixels.length - 2] + " " + pixels[pixels.length - 1]);
Date end = new Date();
preprocessTime = (float) (end.getTime() - start.getTime());
// Warm up
for (int i = 0; i < warmupIterNum; i++) {
paddlePredictor.runImage(inputData, width, height, channels, inputImage);
paddlePredictor.runImage(inputImage, detLongSize, run_det, run_cls, run_rec);
}
warmupIterNum = 0; // do not need warm
// Run inference
start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputData, width, height, channels, inputImage);
end = new Date();
Date start = new Date();
ArrayList<OcrResultModel> results = paddlePredictor.runImage(inputImage, detLongSize, run_det, run_cls, run_rec);
Date end = new Date();
inferenceTime = (end.getTime() - start.getTime()) / (float) inferIterNum;
results = postprocess(results);
Log.i(TAG, "[stat] Preprocess Time: " + preprocessTime
+ " ; Inference Time: " + inferenceTime + " ;Box Size " + results.size());
Log.i(TAG, "[stat] Inference Time: " + inferenceTime + " ;Box Size " + results.size());
drawResults(results);
return true;
}
public boolean isLoaded() {
return paddlePredictor != null && isLoaded;
}
......@@ -282,10 +195,6 @@ public class Predictor {
return outputResult;
}
public float preprocessTime() {
return preprocessTime;
}
public float postprocessTime() {
return postprocessTime;
}
......@@ -310,6 +219,7 @@ public class Predictor {
}
}
r.setLabel(word.toString());
r.setClsLabel(r.getClsIdx() == 1 ? "180" : "0");
}
return results;
}
......@@ -319,14 +229,22 @@ public class Predictor {
for (int i = 0; i < results.size(); i++) {
OcrResultModel result = results.get(i);
StringBuilder sb = new StringBuilder("");
sb.append(result.getLabel());
sb.append(" ").append(result.getConfidence());
sb.append("; Points: ");
if(result.getPoints().size()>0){
sb.append("Det: ");
for (Point p : result.getPoints()) {
sb.append("(").append(p.x).append(",").append(p.y).append(") ");
}
}
if(result.getLabel().length() > 0){
sb.append("\n Rec: ").append(result.getLabel());
sb.append(",").append(result.getConfidence());
}
if(result.getClsIdx()!=-1){
sb.append(" Cls: ").append(result.getClsLabel());
sb.append(",").append(result.getClsConfidence());
}
Log.i(TAG, sb.toString()); // show LOG in Logcat panel
outputResultSb.append(i + 1).append(": ").append(result.getLabel()).append("\n");
outputResultSb.append(i + 1).append(": ").append(sb.toString()).append("\n");
}
outputResult = outputResultSb.toString();
outputImage = inputImage;
......@@ -344,6 +262,9 @@ public class Predictor {
for (OcrResultModel result : results) {
Path path = new Path();
List<Point> points = result.getPoints();
if(points.size()==0){
continue;
}
path.moveTo(points.get(0).x, points.get(0).y);
for (int i = points.size() - 1; i >= 0; i--) {
Point p = points.get(i);
......
......@@ -20,16 +20,13 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
ListPreference etImagePath = null;
ListPreference lpCPUThreadNum = null;
ListPreference lpCPUPowerMode = null;
ListPreference lpInputColorFormat = null;
EditTextPreference etInputShape = null;
EditTextPreference etInputMean = null;
EditTextPreference etInputStd = null;
EditTextPreference etDetLongSize = null;
EditTextPreference etScoreThreshold = null;
List<String> preInstalledModelPaths = null;
List<String> preInstalledLabelPaths = null;
List<String> preInstalledImagePaths = null;
List<String> preInstalledInputShapes = null;
List<String> preInstalledDetLongSizes = null;
List<String> preInstalledCPUThreadNums = null;
List<String> preInstalledCPUPowerModes = null;
List<String> preInstalledInputColorFormats = null;
......@@ -50,7 +47,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
preInstalledModelPaths = new ArrayList<String>();
preInstalledLabelPaths = new ArrayList<String>();
preInstalledImagePaths = new ArrayList<String>();
preInstalledInputShapes = new ArrayList<String>();
preInstalledDetLongSizes = new ArrayList<String>();
preInstalledCPUThreadNums = new ArrayList<String>();
preInstalledCPUPowerModes = new ArrayList<String>();
preInstalledInputColorFormats = new ArrayList<String>();
......@@ -63,10 +60,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
preInstalledImagePaths.add(getString(R.string.IMAGE_PATH_DEFAULT));
preInstalledCPUThreadNums.add(getString(R.string.CPU_THREAD_NUM_DEFAULT));
preInstalledCPUPowerModes.add(getString(R.string.CPU_POWER_MODE_DEFAULT));
preInstalledInputColorFormats.add(getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
preInstalledInputShapes.add(getString(R.string.INPUT_SHAPE_DEFAULT));
preInstalledInputMeans.add(getString(R.string.INPUT_MEAN_DEFAULT));
preInstalledInputStds.add(getString(R.string.INPUT_STD_DEFAULT));
preInstalledDetLongSizes.add(getString(R.string.DET_LONG_SIZE_DEFAULT));
preInstalledScoreThresholds.add(getString(R.string.SCORE_THRESHOLD_DEFAULT));
// Setup UI components
......@@ -89,11 +83,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
(ListPreference) findPreference(getString(R.string.CPU_THREAD_NUM_KEY));
lpCPUPowerMode =
(ListPreference) findPreference(getString(R.string.CPU_POWER_MODE_KEY));
lpInputColorFormat =
(ListPreference) findPreference(getString(R.string.INPUT_COLOR_FORMAT_KEY));
etInputShape = (EditTextPreference) findPreference(getString(R.string.INPUT_SHAPE_KEY));
etInputMean = (EditTextPreference) findPreference(getString(R.string.INPUT_MEAN_KEY));
etInputStd = (EditTextPreference) findPreference(getString(R.string.INPUT_STD_KEY));
etDetLongSize = (EditTextPreference) findPreference(getString(R.string.DET_LONG_SIZE_KEY));
etScoreThreshold = (EditTextPreference) findPreference(getString(R.string.SCORE_THRESHOLD_KEY));
}
......@@ -112,11 +102,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
editor.putString(getString(R.string.IMAGE_PATH_KEY), preInstalledImagePaths.get(modelIdx));
editor.putString(getString(R.string.CPU_THREAD_NUM_KEY), preInstalledCPUThreadNums.get(modelIdx));
editor.putString(getString(R.string.CPU_POWER_MODE_KEY), preInstalledCPUPowerModes.get(modelIdx));
editor.putString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
preInstalledInputColorFormats.get(modelIdx));
editor.putString(getString(R.string.INPUT_SHAPE_KEY), preInstalledInputShapes.get(modelIdx));
editor.putString(getString(R.string.INPUT_MEAN_KEY), preInstalledInputMeans.get(modelIdx));
editor.putString(getString(R.string.INPUT_STD_KEY), preInstalledInputStds.get(modelIdx));
editor.putString(getString(R.string.DET_LONG_SIZE_KEY), preInstalledDetLongSizes.get(modelIdx));
editor.putString(getString(R.string.SCORE_THRESHOLD_KEY),
preInstalledScoreThresholds.get(modelIdx));
editor.apply();
......@@ -129,10 +115,7 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
etImagePath.setEnabled(enableCustomSettings);
lpCPUThreadNum.setEnabled(enableCustomSettings);
lpCPUPowerMode.setEnabled(enableCustomSettings);
lpInputColorFormat.setEnabled(enableCustomSettings);
etInputShape.setEnabled(enableCustomSettings);
etInputMean.setEnabled(enableCustomSettings);
etInputStd.setEnabled(enableCustomSettings);
etDetLongSize.setEnabled(enableCustomSettings);
etScoreThreshold.setEnabled(enableCustomSettings);
modelPath = sharedPreferences.getString(getString(R.string.MODEL_PATH_KEY),
getString(R.string.MODEL_PATH_DEFAULT));
......@@ -144,14 +127,8 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
getString(R.string.CPU_THREAD_NUM_DEFAULT));
String cpuPowerMode = sharedPreferences.getString(getString(R.string.CPU_POWER_MODE_KEY),
getString(R.string.CPU_POWER_MODE_DEFAULT));
String inputColorFormat = sharedPreferences.getString(getString(R.string.INPUT_COLOR_FORMAT_KEY),
getString(R.string.INPUT_COLOR_FORMAT_DEFAULT));
String inputShape = sharedPreferences.getString(getString(R.string.INPUT_SHAPE_KEY),
getString(R.string.INPUT_SHAPE_DEFAULT));
String inputMean = sharedPreferences.getString(getString(R.string.INPUT_MEAN_KEY),
getString(R.string.INPUT_MEAN_DEFAULT));
String inputStd = sharedPreferences.getString(getString(R.string.INPUT_STD_KEY),
getString(R.string.INPUT_STD_DEFAULT));
String detLongSize = sharedPreferences.getString(getString(R.string.DET_LONG_SIZE_KEY),
getString(R.string.DET_LONG_SIZE_DEFAULT));
String scoreThreshold = sharedPreferences.getString(getString(R.string.SCORE_THRESHOLD_KEY),
getString(R.string.SCORE_THRESHOLD_DEFAULT));
etModelPath.setSummary(modelPath);
......@@ -164,14 +141,8 @@ public class SettingsActivity extends AppCompatPreferenceActivity implements Sha
lpCPUThreadNum.setSummary(cpuThreadNum);
lpCPUPowerMode.setValue(cpuPowerMode);
lpCPUPowerMode.setSummary(cpuPowerMode);
lpInputColorFormat.setValue(inputColorFormat);
lpInputColorFormat.setSummary(inputColorFormat);
etInputShape.setSummary(inputShape);
etInputShape.setText(inputShape);
etInputMean.setSummary(inputMean);
etInputMean.setText(inputMean);
etInputStd.setSummary(inputStd);
etInputStd.setText(inputStd);
etDetLongSize.setSummary(detLongSize);
etDetLongSize.setText(detLongSize);
etScoreThreshold.setText(scoreThreshold);
etScoreThreshold.setSummary(scoreThreshold);
}
......
......@@ -23,13 +23,7 @@
android:layout_height="wrap_content"
android:orientation="horizontal">
<Button
android:id="@+id/btn_load_model"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_load_model_click"
android:text="加载模型" />
<Button
android:id="@+id/btn_run_model"
android:layout_width="0dp"
......@@ -52,7 +46,45 @@
android:onClick="btn_choice_img_click"
android:text="选取图片" />
<Button
android:id="@+id/btn_reset_img"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="btn_reset_img_click"
android:text="清空绘图" />
</LinearLayout>
<LinearLayout
android:id="@+id/run_mode_layout"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">
<CheckBox
android:id="@+id/cb_opencl"
android:layout_width="0dp"
android:layout_weight="1"
android:layout_height="wrap_content"
android:text="开启OPENCL"
android:onClick="cb_opencl_click"
android:visibility="gone"/>
<TextView
android:layout_width="0dp"
android:layout_weight="0.5"
android:layout_height="wrap_content"
android:text="运行模式:"/>
<Spinner
android:id="@+id/sp_run_mode"
android:layout_width="0dp"
android:layout_weight="1.5"
android:layout_height="wrap_content"
android:entries="@array/run_Model"
/>
</LinearLayout>
<TextView
android:id="@+id/tv_input_setting"
android:layout_width="wrap_content"
......@@ -60,7 +92,7 @@
android:scrollbars="vertical"
android:layout_marginLeft="12dp"
android:layout_marginRight="12dp"
android:layout_marginTop="10dp"
android:layout_marginTop="5dp"
android:layout_marginBottom="5dp"
android:lineSpacingExtra="4dp"
android:singleLine="false"
......
<?xml version="1.0" encoding="utf-8"?>
<!-- for MiniActivity Use Only -->
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintLeft_toRightOf="parent"
tools:context=".MainActivity">
<TextView
android:id="@+id/sample_text"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/imageView"
android:scrollbars="vertical"
/>
<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingTop="20dp"
android:paddingBottom="20dp"
app:layout_constraintBottom_toTopOf="@id/imageView"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:srcCompat="@tools:sample/avatars" />
<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="4dp"
android:text="Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
tools:layout_editor_absoluteX="161dp" />
</androidx.constraintlayout.widget.ConstraintLayout>
\ No newline at end of file
<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="image_name_entries">
<item>0.jpg</item>
<item>90.jpg</item>
<item>180.jpg</item>
<item>270.jpg</item>
<item>det_0.jpg</item>
<item>det_90.jpg</item>
<item>det_180.jpg</item>
<item>det_270.jpg</item>
<item>rec_0.jpg</item>
<item>rec_0_180.jpg</item>
<item>rec_1.jpg</item>
<item>rec_1_180.jpg</item>
</string-array>
<string-array name="image_name_values">
<item>images/0.jpg</item>
<item>images/90.jpg</item>
<item>images/180.jpg</item>
<item>images/270.jpg</item>
<item>images/det_0.jpg</item>
<item>images/det_90.jpg</item>
<item>images/det_180.jpg</item>
<item>images/det_270.jpg</item>
<item>images/rec_0.jpg</item>
<item>images/rec_0_180.jpg</item>
<item>images/rec_1.jpg</item>
<item>images/rec_1_180.jpg</item>
</string-array>
<string-array name="cpu_thread_num_entries">
<item>1 threads</item>
......@@ -48,4 +56,12 @@
<item>BGR</item>
<item>RGB</item>
</string-array>
<string-array name="run_Model">
<item>检测+分类+识别</item>
<item>检测+识别</item>
<item>分类+识别</item>
<item>检测</item>
<item>识别</item>
<item>分类</item>
</string-array>
</resources>
\ No newline at end of file
<resources>
<string name="app_name">OCR Chinese</string>
<string name="app_name">PaddleOCR</string>
<string name="CHOOSE_PRE_INSTALLED_MODEL_KEY">CHOOSE_PRE_INSTALLED_MODEL_KEY</string>
<string name="ENABLE_CUSTOM_SETTINGS_KEY">ENABLE_CUSTOM_SETTINGS_KEY</string>
<string name="MODEL_PATH_KEY">MODEL_PATH_KEY</string>
......@@ -7,20 +7,14 @@
<string name="IMAGE_PATH_KEY">IMAGE_PATH_KEY</string>
<string name="CPU_THREAD_NUM_KEY">CPU_THREAD_NUM_KEY</string>
<string name="CPU_POWER_MODE_KEY">CPU_POWER_MODE_KEY</string>
<string name="INPUT_COLOR_FORMAT_KEY">INPUT_COLOR_FORMAT_KEY</string>
<string name="INPUT_SHAPE_KEY">INPUT_SHAPE_KEY</string>
<string name="INPUT_MEAN_KEY">INPUT_MEAN_KEY</string>
<string name="INPUT_STD_KEY">INPUT_STD_KEY</string>
<string name="DET_LONG_SIZE_KEY">DET_LONG_SIZE_KEY</string>
<string name="SCORE_THRESHOLD_KEY">SCORE_THRESHOLD_KEY</string>
<string name="MODEL_PATH_DEFAULT">models/ocr_v2_for_cpu</string>
<string name="MODEL_PATH_DEFAULT">models/ch_PP-OCRv2</string>
<string name="LABEL_PATH_DEFAULT">labels/ppocr_keys_v1.txt</string>
<string name="IMAGE_PATH_DEFAULT">images/0.jpg</string>
<string name="IMAGE_PATH_DEFAULT">images/det_0.jpg</string>
<string name="CPU_THREAD_NUM_DEFAULT">4</string>
<string name="CPU_POWER_MODE_DEFAULT">LITE_POWER_HIGH</string>
<string name="INPUT_COLOR_FORMAT_DEFAULT">BGR</string>
<string name="INPUT_SHAPE_DEFAULT">1,3,960</string>
<string name="INPUT_MEAN_DEFAULT">0.485, 0.456, 0.406</string>
<string name="INPUT_STD_DEFAULT">0.229,0.224,0.225</string>
<string name="DET_LONG_SIZE_DEFAULT">960</string>
<string name="SCORE_THRESHOLD_DEFAULT">0.1</string>
</resources>
......@@ -47,26 +47,10 @@
android:entryValues="@array/cpu_power_mode_values"/>
</PreferenceCategory>
<PreferenceCategory android:title="Input Settings">
<ListPreference
android:defaultValue="@string/INPUT_COLOR_FORMAT_DEFAULT"
android:key="@string/INPUT_COLOR_FORMAT_KEY"
android:negativeButtonText="@null"
android:positiveButtonText="@null"
android:title="Input Color Format: BGR or RGB"
android:entries="@array/input_color_format_entries"
android:entryValues="@array/input_color_format_values"/>
<EditTextPreference
android:key="@string/INPUT_SHAPE_KEY"
android:defaultValue="@string/INPUT_SHAPE_DEFAULT"
android:title="Input Shape: (1,1,max_width_height) or (1,3,max_width_height)" />
<EditTextPreference
android:key="@string/INPUT_MEAN_KEY"
android:defaultValue="@string/INPUT_MEAN_DEFAULT"
android:title="Input Mean: (channel/255-mean)/std" />
<EditTextPreference
android:key="@string/INPUT_STD_KEY"
android:defaultValue="@string/INPUT_STD_DEFAULT"
android:title="Input Std: (channel/255-mean)/std" />
android:key="@string/DET_LONG_SIZE_KEY"
android:defaultValue="@string/DET_LONG_SIZE_DEFAULT"
android:title="det long size" />
</PreferenceCategory>
<PreferenceCategory android:title="Output Settings">
<EditTextPreference
......
- [端侧部署](#端侧部署)
- [1. 准备环境](#1-准备环境)
- [运行准备](#运行准备)
- [1.1 准备交叉编译环境](#11-准备交叉编译环境)
- [1.2 准备预测库](#12-准备预测库)
- [2 开始运行](#2-开始运行)
- [2.1 模型优化](#21-模型优化)
- [2.2 与手机联调](#22-与手机联调)
- [注意:](#注意)
- [FAQ](#faq)
# 端侧部署
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleOCR超轻量中文检测、识别模型的详细步骤。
......@@ -26,23 +37,23 @@ Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理
| 平台 | 预测库下载链接 |
|---|---|
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
|IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
|IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
注:1. 上述预测库为PaddleLite 2.9分支编译得到,有关PaddleLite 2.9 详细信息可参考 [链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.9) 。
注:1. 上述预测库为PaddleLite 2.10分支编译得到,有关PaddleLite 2.10 详细信息可参考 [链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.10) 。
- 2. [推荐]编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
# 切换到Paddle-Lite release/v2.9 稳定分支
git checkout release/v2.9
# 切换到Paddle-Lite release/v2.10 稳定分支
git checkout release/v2.10
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
```
注意:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,
更多编译命令
介绍请参考 [链接](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_andriod.html)
介绍请参考 [链接](https://paddle-lite.readthedocs.io/zh/release-v2.10_a/source_compile/linux_x86_compile_android.html)
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于
`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
......@@ -85,8 +96,8 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括
|模型版本|模型简介|模型大小|检测模型|文本方向分类模型|识别模型|Paddle-Lite版本|
|---|---|---|---|---|---|---|
|V2.0|超轻量中文OCR 移动端模型|7.8M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|超轻量中文OCR 移动端模型|3.3M|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
|PP-OCRv2|蒸馏版超轻量中文OCR移动端模型|11M|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_infer_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_infer_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_infer_opt.nb)|v2.10|
|PP-OCRv2(slim)|蒸馏版超轻量中文OCR移动端模型|4.6M|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_slim_opt.nb)|v2.10|
如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](#2.2与手机联调)
......@@ -97,7 +108,7 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout release/v2.9
git checkout release/v2.10
# 启动编译
./lite/tools/build.sh build_optimize_tool
```
......@@ -123,15 +134,15 @@ cd build.opt/lite/api/
下面以PaddleOCR的超轻量中文模型为例,介绍使用编译好的opt文件完成inference模型到Paddle-Lite优化模型的转换。
```
# 【推荐】 下载PaddleOCR V2.0版本的中英文 inference模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_slim_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_slim_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_slim_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_slim_infer.tar
# 【推荐】 下载 PP-OCRv2版本的中英文 inference模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf ch_PP-OCRv2_det_slim_quant_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf ch_PP-OCRv2_rec_slim_quant_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls_slim_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_slim_infer.tar
# 转换V2.0检测模型
./opt --model_file=./ch_ppocr_mobile_v2.0_det_slim_infer/inference.pdmodel --param_file=./ch_ppocr_mobile_v2.0_det_slim_infer/inference.pdiparams --optimize_out=./ch_ppocr_mobile_v2.0_det_slim_opt --valid_targets=arm --optimize_out_type=naive_buffer
# 转换V2.0识别模型
./opt --model_file=./ch_ppocr_mobile_v2.0_rec_slim_infer/inference.pdmodel --param_file=./ch_ppocr_mobile_v2.0_rec_slim_infer/inference.pdiparams --optimize_out=./ch_ppocr_mobile_v2.0_rec_slim_opt --valid_targets=arm --optimize_out_type=naive_buffer
# 转换V2.0方向分类器模型
# 转换检测模型
./opt --model_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdmodel --param_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdiparams --optimize_out=./ch_PP-OCRv2_det_slim_opt --valid_targets=arm --optimize_out_type=naive_buffer
# 转换识别模型
./opt --model_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdmodel --param_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdiparams --optimize_out=./ch_PP-OCRv2_rec_slim_opt --valid_targets=arm --optimize_out_type=naive_buffer
# 转换方向分类器模型
./opt --model_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdmodel --param_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdiparams --optimize_out=./ch_ppocr_mobile_v2.0_cls_slim_opt --valid_targets=arm --optimize_out_type=naive_buffer
```
......@@ -186,15 +197,15 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls
```
准备测试图像,以`PaddleOCR/doc/imgs/11.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。
准备lite opt工具优化后的模型文件,比如使用`ch_ppocr_mobile_v2.0_det_slim_opt.nb,ch_ppocr_mobile_v2.0_rec_slim_opt.nb, ch_ppocr_mobile_v2.0_cls_slim_opt.nb`,模型文件放置在`demo/cxx/ocr/debug/`文件夹下。
准备lite opt工具优化后的模型文件,比如使用`ch_PP-OCRv2_det_slim_opt.ch_PP-OCRv2_rec_slim_rec.nb, ch_ppocr_mobile_v2.0_cls_slim_opt.nb`,模型文件放置在`demo/cxx/ocr/debug/`文件夹下。
执行完成后,ocr文件夹下将有如下文件格式:
```
demo/cxx/ocr/
|-- debug/
| |--ch_ppocr_mobile_v2.0_det_slim_opt.nb 优化后的检测模型文件
| |--ch_ppocr_mobile_v2.0_rec_slim_opt.nb 优化后的识别模型文件
| |--ch_PP-OCRv2_det_slim_opt.nb 优化后的检测模型文件
| |--ch_PP-OCRv2_rec_slim_opt.nb 优化后的识别模型文件
| |--ch_ppocr_mobile_v2.0_cls_slim_opt.nb 优化后的文字方向分类器模型文件
| |--11.jpg 待测试图像
| |--ppocr_keys_v1.txt 中文字典文件
......@@ -250,7 +261,7 @@ use_direction_classify 0 # 是否使用方向分类器,0表示不使用,1
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
# 开始使用,ocr_db_crnn可执行文件的使用方式为:
# ./ocr_db_crnn 检测模型文件 方向分类器模型文件 识别模型文件 测试图像路径 字典文件路径
./ocr_db_crnn ch_ppocr_mobile_v2.0_det_slim_opt.nb ch_ppocr_mobile_v2.0_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_slim_opt.nb ./11.jpg ppocr_keys_v1.txt
./ocr_db_crnn ch_PP-OCRv2_det_slim_opt.nb ch_PP-OCRv2_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_slim_opt.nb ./11.jpg ppocr_keys_v1.txt
```
如果对代码做了修改,则需要重新编译并push到手机上。
......
This diff is collapsed.
......@@ -19,10 +19,14 @@ The introduction and tutorial of Paddle Serving service deployment framework ref
## Contents
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
- [FAQ](#faq)
- [OCR Pipeline WebService](#ocr-pipeline-webservice)
- [Service deployment based on PaddleServing](#service-deployment-based-on-paddleserving)
- [Contents](#contents)
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
- [WINDOWS Users](#windows-users)
- [FAQ](#faq)
<a name="environmental-preparation"></a>
## Environmental preparation
......@@ -201,7 +205,7 @@ The recognition model is the same.
## WINDOWS Users
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/WINDOWS_TUTORIAL.md)
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)
**WINDOWS user can only use version 0.5.0 CPU Mode**
......
......@@ -45,7 +45,7 @@ python3 setup.py install
'conv10_expand_weights': {0.1: 0.006509952684312718, 0.2: 0.01827734339798862, 0.3: 0.014528405644659832, 0.6: 0.06536008804270439, 0.8: 0.11798612250664964, 0.7: 0.12391408417493704, 0.4: 0.030615754498018757, 0.5: 0.047105205602406594}
'conv10_linear_weights': {0.1: 0.05113190831455035, 0.2: 0.07705573833558801, 0.3: 0.12096721757739311, 0.6: 0.5135061352930738, 0.8: 0.7908166677143281, 0.7: 0.7272187676899062, 0.4: 0.1819252083008504, 0.5: 0.3728054727792405}
}
加载敏感度文件后会返回一个字典,字典中的keys为网络模型参数模型的名字,values为一个字典,里面保存了相应网络层的裁剪敏感度信息。例如在例子中,conv10_expand_weights所对应的网络层在裁掉10%的卷积核后模型性能相较原模型会下降0.65%,详细信息可见[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/algo/algo.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86)
加载敏感度文件后会返回一个字典,字典中的keys为网络模型参数模型的名字,values为一个字典,里面保存了相应网络层的裁剪敏感度信息。例如在例子中,conv10_expand_weights所对应的网络层在裁掉10%的卷积核后模型性能相较原模型会下降0.65%,详细信息可见[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0-alpha/docs/zh_cn/algo/algo.md)
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
```bash
......
......@@ -3,7 +3,7 @@
Generally, a more complex model would achive better performance in the task, but it also leads to some redundancy in the model. Model Pruning is a technique that reduces this redundancy by removing the sub-models in the neural network model, so as to reduce model calculation complexity and improve model inference performance.
This example uses PaddleSlim provided[APIs of Pruning](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/) to compress the OCR model.
This example uses PaddleSlim provided[APIs of Pruning](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/docs/zh_cn/api_cn/dygraph/pruners) to compress the OCR model.
[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), an open source library which integrates model pruning, quantization (including quantization training and offline quantization), distillation, neural network architecture search, and many other commonly used and leading model compression technique in the industry.
It is recommended that you could understand following pages before reading this example:
......@@ -35,7 +35,7 @@ PaddleOCR also provides a series of [models](../../../doc/doc_en/models_list_en.
### 3. Pruning sensitivity analysis
After the pre-trained model is loaded, sensitivity analysis is performed on each network layer of the model to understand the redundancy of each network layer, and save a sensitivity file which named: sen.pickle. After that, user could load the sensitivity file via the [methods provided by PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L221) and determining the pruning ratio of each network layer automatically. For specific details of sensitivity analysis, see:[Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/tutorials/image_classification_sensitivity_analysis_tutorial.md)
After the pre-trained model is loaded, sensitivity analysis is performed on each network layer of the model to understand the redundancy of each network layer, and save a sensitivity file which named: sen.pickle. After that, user could load the sensitivity file via the [methods provided by PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L221) and determining the pruning ratio of each network layer automatically. For specific details of sensitivity analysis, see:[Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/en/tutorials/image_classification_sensitivity_analysis_tutorial_en.md)
The data format of sensitivity file:
sen.pickle(Dict){
'layer_weight_name_0': sens_of_each_ratio(Dict){'pruning_ratio_0': acc_loss, 'pruning_ratio_1': acc_loss}
......@@ -47,7 +47,7 @@ PaddleOCR also provides a series of [models](../../../doc/doc_en/models_list_en.
'conv10_expand_weights': {0.1: 0.006509952684312718, 0.2: 0.01827734339798862, 0.3: 0.014528405644659832, 0.6: 0.06536008804270439, 0.8: 0.11798612250664964, 0.7: 0.12391408417493704, 0.4: 0.030615754498018757, 0.5: 0.047105205602406594}
'conv10_linear_weights': {0.1: 0.05113190831455035, 0.2: 0.07705573833558801, 0.3: 0.12096721757739311, 0.6: 0.5135061352930738, 0.8: 0.7908166677143281, 0.7: 0.7272187676899062, 0.4: 0.1819252083008504, 0.5: 0.3728054727792405}
}
The function would return a dict after loading the sensitivity file. The keys of the dict are name of parameters in each layer. And the value of key is the information about pruning sensitivity of corresponding layer. In example, pruning 10% filter of the layer corresponding to conv10_expand_weights would lead to 0.65% degradation of model performance. The details could be seen at: [Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/algo/algo.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86)
The function would return a dict after loading the sensitivity file. The keys of the dict are name of parameters in each layer. And the value of key is the information about pruning sensitivity of corresponding layer. In example, pruning 10% filter of the layer corresponding to conv10_expand_weights would lead to 0.65% degradation of model performance. The details could be seen at: [Sensitivity analysis](https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.0-alpha/docs/zh_cn/algo/algo.md)
Enter the PaddleOCR root directory,perform sensitivity analysis on the model with the following command:
......
......@@ -5,11 +5,11 @@ Generally, a more complex model would achieve better performance in the task, bu
Quantization is a technique that reduces this redundancy by reducing the full precision data to a fixed number,
so as to reduce model calculation complexity and improve model inference performance.
This example uses PaddleSlim provided [APIs of Quantization](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/) to compress the OCR model.
This example uses PaddleSlim provided [APIs of Quantization](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/dygraph/quanter/qat.rst) to compress the OCR model.
It is recommended that you could understand following pages before reading this example:
- [The training strategy of OCR model](../../../doc/doc_en/quickstart_en.md)
- [PaddleSlim Document](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)
- [PaddleSlim Document](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/dygraph/quanter/qat.rst)
## Quick Start
Quantization is mostly suitable for the deployment of lightweight models on mobile terminals.
......
......@@ -349,7 +349,7 @@ A:PaddleOCR已完成Windows和Mac系统适配,运行时注意两点:
#### Q:训练文字识别模型,真实数据有30w,合成数据有500w,需要做样本均衡吗?
A:需要,一般需要保证一个batch中真实数据样本和合成数据样本的比例是1:1~1:3左右效果比较理想。如果合成数据过大,会过拟合到合成数据,预测效果往往不佳。还有一种启发性的尝试是可以先用大量合成数据训练一个base模型,然后再用真实数据微调,在一些简单场景效果也是会有提升的。
A:需要,一般需要保证一个batch中真实数据样本和合成数据样本的比例是5:1~10:1左右效果比较理想。如果合成数据过大,会过拟合到合成数据,预测效果往往不佳。还有一种启发性的尝试是可以先用大量合成数据训练一个base模型,然后再用真实数据微调,在一些简单场景效果也是会有提升的。
#### Q: 当训练数据量少时,如何获取更多的数据?
......@@ -734,7 +734,7 @@ C++TensorRT预测需要使用支持TRT的预测库并在编译时打开[-DWITH_T
#### Q:PaddleOCR中,对于模型预测加速,CPU加速的途径有哪些?基于TenorRT加速GPU对输入有什么要求?
**A**:(1)CPU可以使用mkldnn进行加速;对于python inference的话,可以把enable_mkldnn改为true,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L99),对于cpp inference的话,在配置文件里面配置use_mkldnn 1即可,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/cpp_infer/tools/config.txt#L6)
**A**:(1)CPU可以使用mkldnn进行加速;对于python inference的话,可以把enable_mkldnn改为true,[参考代码](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L99),对于cpp inference的话,可参考[文档](https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/cpp_infer)
(2)GPU需要注意变长输入问题等,TRT6 之后才支持变长输入
......
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment