Commit 41a1b292 authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'origin/dygraph' into dygraph

parents 9471054e 3d30899b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import random
import time
import numpy as np
import paddle
from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction
from xfun import XFUNDataset
from vqa_utils import parse_args, get_bio_label_maps, print_arguments, set_seed
from data_collator import DataCollator
from eval_re import evaluate
from ppocr.utils.logging import get_logger
def train(args):
logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
rank = paddle.distributed.get_rank()
distributed = paddle.distributed.get_world_size() > 1
print_arguments(args, logger)
# Added here for reproducibility (even between python 2 and 3)
set_seed(args.seed)
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
# dist mode
if distributed:
paddle.distributed.init_parallel_env()
tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
if not args.resume:
model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
model = LayoutXLMForRelationExtraction(model, dropout=None)
logger.info('train from scratch')
else:
logger.info('resume from {}'.format(args.model_name_or_path))
model = LayoutXLMForRelationExtraction.from_pretrained(
args.model_name_or_path)
# dist mode
if distributed:
model = paddle.DataParallel(model)
train_dataset = XFUNDataset(
tokenizer,
data_dir=args.train_data_dir,
label_path=args.train_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
max_seq_len=args.max_seq_length,
pad_token_label_id=pad_token_label_id,
contains_re=True,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
max_seq_len=args.max_seq_length,
pad_token_label_id=pad_token_label_id,
contains_re=True,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_sampler,
num_workers=args.num_workers,
use_shared_memory=True,
collate_fn=DataCollator())
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.per_gpu_eval_batch_size,
num_workers=args.num_workers,
shuffle=False,
collate_fn=DataCollator())
t_total = len(train_dataloader) * args.num_train_epochs
# build linear decay with warmup lr sch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=t_total,
end_lr=0.0,
power=1.0)
if args.warmup_steps > 0:
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
lr_scheduler,
args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate, )
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
optimizer = paddle.optimizer.Adam(
learning_rate=args.learning_rate,
parameters=model.parameters(),
epsilon=args.adam_epsilon,
grad_clip=grad_clip,
weight_decay=args.weight_decay)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = {}".format(len(train_dataset)))
logger.info(" Num Epochs = {}".format(args.num_train_epochs))
logger.info(" Instantaneous batch size per GPU = {}".format(
args.per_gpu_train_batch_size))
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = {}".
format(args.per_gpu_train_batch_size *
paddle.distributed.get_world_size()))
logger.info(" Total optimization steps = {}".format(t_total))
global_step = 0
model.clear_gradients()
train_dataloader_len = len(train_dataloader)
best_metirc = {'f1': 0}
model.train()
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
print_step = 1
for epoch in range(int(args.num_train_epochs)):
for step, batch in enumerate(train_dataloader):
train_reader_cost += time.time() - reader_start
train_start = time.time()
outputs = model(**batch)
train_run_cost += time.time() - train_start
# model outputs are always tuple in ppnlp (see doc)
loss = outputs['loss']
loss = loss.mean()
loss.backward()
optimizer.step()
optimizer.clear_grad()
# lr_scheduler.step() # Update learning rate schedule
global_step += 1
total_samples += batch['image'].shape[0]
if rank == 0 and step % print_step == 0:
logger.info(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
format(epoch, args.num_train_epochs, step,
train_dataloader_len, global_step,
np.mean(loss.numpy()),
optimizer.get_lr(), train_reader_cost / print_step, (
train_reader_cost + train_run_cost) / print_step,
total_samples / print_step, total_samples / (
train_reader_cost + train_run_cost)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
if rank == 0 and args.eval_steps > 0 and global_step % args.eval_steps == 0 and args.evaluate_during_training:
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(model, eval_dataloader, logger)
if results['f1'] >= best_metirc['f1']:
best_metirc = results
output_dir = os.path.join(args.output_dir, "best_model")
os.makedirs(output_dir, exist_ok=True)
if distributed:
model._layers.save_pretrained(output_dir)
else:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(
output_dir))
logger.info("eval results: {}".format(results))
logger.info("best_metirc: {}".format(best_metirc))
reader_start = time.time()
if rank == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "latest_model")
os.makedirs(output_dir, exist_ok=True)
if distributed:
model._layers.save_pretrained(output_dir)
else:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(output_dir))
logger.info("best_metirc: {}".format(best_metirc))
if __name__ == "__main__":
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
train(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import random
import time
import copy
import logging
import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification
from xfun import XFUNDataset
from vqa_utils import parse_args, get_bio_label_maps, print_arguments, set_seed
from eval_ser import evaluate
from losses import SERLoss
from ppocr.utils.logging import get_logger
MODELS = {
'LayoutXLM':
(LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
'LayoutLM':
(LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}
def train(args):
os.makedirs(args.output_dir, exist_ok=True)
rank = paddle.distributed.get_rank()
distributed = paddle.distributed.get_world_size() > 1
logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
print_arguments(args, logger)
label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
loss_class = SERLoss(len(label2id_map))
pad_token_label_id = loss_class.ignore_index
# dist mode
if distributed:
paddle.distributed.init_parallel_env()
tokenizer_class, base_model_class, model_class = MODELS[args.ser_model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
if not args.resume:
base_model = base_model_class.from_pretrained(args.model_name_or_path)
model = model_class(
base_model, num_classes=len(label2id_map), dropout=None)
logger.info('train from scratch')
else:
logger.info('resume from {}'.format(args.model_name_or_path))
model = model_class.from_pretrained(args.model_name_or_path)
# dist mode
if distributed:
model = paddle.DataParallel(model)
train_dataset = XFUNDataset(
tokenizer,
data_dir=args.train_data_dir,
label_path=args.train_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
eval_dataset = XFUNDataset(
tokenizer,
data_dir=args.eval_data_dir,
label_path=args.eval_label_path,
label2id_map=label2id_map,
img_size=(224, 224),
pad_token_label_id=pad_token_label_id,
contains_re=False,
add_special_ids=False,
return_attention_mask=True,
load_mode='all')
train_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_sampler,
num_workers=args.num_workers,
use_shared_memory=True,
collate_fn=None, )
eval_dataloader = paddle.io.DataLoader(
eval_dataset,
batch_size=args.per_gpu_eval_batch_size,
num_workers=args.num_workers,
use_shared_memory=True,
collate_fn=None, )
t_total = len(train_dataloader) * args.num_train_epochs
# build linear decay with warmup lr sch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=t_total,
end_lr=0.0,
power=1.0)
if args.warmup_steps > 0:
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
lr_scheduler,
args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate, )
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
epsilon=args.adam_epsilon,
weight_decay=args.weight_decay)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d",
args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed) = %d",
args.per_gpu_train_batch_size * paddle.distributed.get_world_size(), )
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
set_seed(args.seed)
best_metrics = None
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
print_step = 1
model.train()
for epoch_id in range(args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
train_reader_cost += time.time() - reader_start
if args.ser_model_type == 'LayoutLM':
if 'image' in batch:
batch.pop('image')
labels = batch.pop('labels')
train_start = time.time()
outputs = model(**batch)
train_run_cost += time.time() - train_start
if args.ser_model_type == 'LayoutXLM':
outputs = outputs[0]
loss = loss_class(labels, outputs, batch['attention_mask'])
# model outputs are always tuple in ppnlp (see doc)
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
optimizer.step()
lr_scheduler.step() # Update learning rate schedule
optimizer.clear_grad()
global_step += 1
total_samples += batch['input_ids'].shape[0]
if rank == 0 and step % print_step == 0:
logger.info(
"epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
format(epoch_id, args.num_train_epochs, step,
len(train_dataloader), global_step,
loss.numpy()[0],
lr_scheduler.get_lr(), train_reader_cost /
print_step, (train_reader_cost + train_run_cost) /
print_step, total_samples / print_step, total_samples
/ (train_reader_cost + train_run_cost)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
if rank == 0 and args.eval_steps > 0 and global_step % args.eval_steps == 0 and args.evaluate_during_training:
# Log metrics
# Only evaluate when single GPU otherwise metrics may not average well
results, _ = evaluate(args, model, tokenizer, loss_class,
eval_dataloader, label2id_map,
id2label_map, pad_token_label_id, logger)
if best_metrics is None or results["f1"] >= best_metrics["f1"]:
best_metrics = copy.deepcopy(results)
output_dir = os.path.join(args.output_dir, "best_model")
os.makedirs(output_dir, exist_ok=True)
if distributed:
model._layers.save_pretrained(output_dir)
else:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args,
os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(
output_dir))
logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
epoch_id, args.num_train_epochs, step,
len(train_dataloader), results))
if best_metrics is not None:
logger.info("best metrics: {}".format(best_metrics))
reader_start = time.time()
if rank == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "latest_model")
os.makedirs(output_dir, exist_ok=True)
if distributed:
model._layers.save_pretrained(output_dir)
else:
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
paddle.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to {}".format(output_dir))
return global_step, tr_loss / global_step
if __name__ == "__main__":
args = parse_args()
train(args)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import cv2
import random
import numpy as np
import imghdr
from copy import deepcopy
import paddle
from PIL import Image, ImageDraw, ImageFont
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def get_bio_label_maps(label_map_path):
with open(label_map_path, "r", encoding='utf-8') as fin:
lines = fin.readlines()
lines = [line.strip() for line in lines]
if "O" not in lines:
lines.insert(0, "O")
labels = []
for line in lines:
if line == "O":
labels.append("O")
else:
labels.append("B-" + line)
labels.append("I-" + line)
label2id_map = {label: idx for idx, label in enumerate(labels)}
id2label_map = {idx: label for idx, label in enumerate(labels)}
return label2id_map, id2label_map
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
def draw_ser_results(image,
ocr_results,
font_path="../../doc/fonts/simfang.ttf",
font_size=18):
np.random.seed(2021)
color = (np.random.permutation(range(255)),
np.random.permutation(range(255)),
np.random.permutation(range(255)))
color_map = {
idx: (color[0][idx], color[1][idx], color[2][idx])
for idx in range(1, 255)
}
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img_new = image.copy()
draw = ImageDraw.Draw(img_new)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
for ocr_info in ocr_results:
if ocr_info["pred_id"] not in color_map:
continue
color = color_map[ocr_info["pred_id"]]
text = "{}: {}".format(ocr_info["pred"], ocr_info["text"])
draw_box_txt(ocr_info["bbox"], text, draw, font, font_size, color)
img_new = Image.blend(image, img_new, 0.5)
return np.array(img_new)
def draw_box_txt(bbox, text, draw, font, font_size, color):
# draw ocr results outline
bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]))
draw.rectangle(bbox, fill=color)
# draw ocr results
start_y = max(0, bbox[0][1] - font_size)
tw = font.getsize(text)[0]
draw.rectangle(
[(bbox[0][0] + 1, start_y), (bbox[0][0] + tw + 1, start_y + font_size)],
fill=(0, 0, 255))
draw.text((bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font)
def draw_re_results(image,
result,
font_path="../../doc/fonts/simfang.ttf",
font_size=18):
np.random.seed(0)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img_new = image.copy()
draw = ImageDraw.Draw(img_new)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
color_head = (0, 0, 255)
color_tail = (255, 0, 0)
color_line = (0, 255, 0)
for ocr_info_head, ocr_info_tail in result:
draw_box_txt(ocr_info_head["bbox"], ocr_info_head["text"], draw, font,
font_size, color_head)
draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["text"], draw, font,
font_size, color_tail)
center_head = (
(ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
(ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2)
center_tail = (
(ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
(ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2)
draw.line([center_head, center_tail], fill=color_line, width=5)
img_new = Image.blend(image, img_new, 0.5)
return np.array(img_new)
# pad sentences
def pad_sentences(tokenizer,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding with larger size, reshape is carried out
max_seq_len = (
len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [tokenizer.pad_token_id] * difference
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
] * difference
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def split_page(encoded_inputs, max_seq_len=512):
"""
truncate is often used in training process
"""
for key in encoded_inputs:
if key == 'entities':
encoded_inputs[key] = [encoded_inputs[key]]
continue
encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
if encoded_inputs[key].ndim <= 1: # for input_ids, att_mask and so on
encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
else: # for bbox
encoded_inputs[key] = encoded_inputs[key].reshape(
[-1, max_seq_len, 4])
return encoded_inputs
def preprocess(
tokenizer,
ori_img,
ocr_info,
img_size=(224, 224),
pad_token_label_id=-100,
max_seq_len=512,
add_special_ids=False,
return_attention_mask=True, ):
ocr_info = deepcopy(ocr_info)
height = ori_img.shape[0]
width = ori_img.shape[1]
img = cv2.resize(ori_img, img_size).transpose([2, 0, 1]).astype(np.float32)
segment_offset_id = []
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
entities = []
for info in ocr_info:
# x1, y1, x2, y2
bbox = info["bbox"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
if not add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
# for re
entities.append({
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": "O",
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
encoded_inputs = {
"input_ids": input_ids_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
"entities": entities
}
encoded_inputs = pad_sentences(
tokenizer,
encoded_inputs,
max_seq_len=max_seq_len,
return_attention_mask=return_attention_mask)
encoded_inputs = split_page(encoded_inputs)
fake_bs = encoded_inputs["input_ids"].shape[0]
encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
[fake_bs] + list(img.shape))
encoded_inputs["segment_offset_id"] = segment_offset_id
return encoded_inputs
def postprocess(attention_mask, preds, id2label_map):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds = np.argmax(preds, axis=2)
preds_list = [[] for _ in range(preds.shape[0])]
# keep batch info
for i in range(preds.shape[0]):
for j in range(preds.shape[1]):
if attention_mask[i][j] == 1:
preds_list[i].append(id2label_map[preds[i][j]])
return preds_list
def merge_preds_list_with_ocr_info(ocr_info, segment_offset_id, preds_list,
label2id_map_for_draw):
# must ensure the preds_list is generated from the same image
preds = [p for pred in preds_list for p in pred]
id2label_map = dict()
for key in label2id_map_for_draw:
val = label2id_map_for_draw[key]
if key == "O":
id2label_map[val] = key
if key.startswith("B-") or key.startswith("I-"):
id2label_map[val] = key[2:]
else:
id2label_map[val] = key
for idx in range(len(segment_offset_id)):
if idx == 0:
start_id = 0
else:
start_id = segment_offset_id[idx - 1]
end_id = segment_offset_id[idx]
curr_pred = preds[start_id:end_id]
curr_pred = [label2id_map_for_draw[p] for p in curr_pred]
if len(curr_pred) <= 0:
pred_id = 0
else:
counts = np.bincount(curr_pred)
pred_id = np.argmax(counts)
ocr_info[idx]["pred_id"] = int(pred_id)
ocr_info[idx]["pred"] = id2label_map[int(pred_id)]
return ocr_info
def print_arguments(args, logger=None):
print_func = logger.info if logger is not None else print
"""print arguments"""
print_func('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print_func('%s: %s' % (arg, value))
print_func('------------------------------------------------')
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
# yapf: disable
parser.add_argument("--model_name_or_path",
default=None, type=str, required=True,)
parser.add_argument("--ser_model_type",
default='LayoutXLM', type=str)
parser.add_argument("--re_model_name_or_path",
default=None, type=str, required=False,)
parser.add_argument("--train_data_dir", default=None,
type=str, required=False,)
parser.add_argument("--train_label_path", default=None,
type=str, required=False,)
parser.add_argument("--eval_data_dir", default=None,
type=str, required=False,)
parser.add_argument("--eval_label_path", default=None,
type=str, required=False,)
parser.add_argument("--output_dir", default=None, type=str, required=True,)
parser.add_argument("--max_seq_length", default=512, type=int,)
parser.add_argument("--evaluate_during_training", action="store_true",)
parser.add_argument("--num_workers", default=8, type=int,)
parser.add_argument("--per_gpu_train_batch_size", default=8,
type=int, help="Batch size per GPU/CPU for training.",)
parser.add_argument("--per_gpu_eval_batch_size", default=8,
type=int, help="Batch size per GPU/CPU for eval.",)
parser.add_argument("--learning_rate", default=5e-5,
type=float, help="The initial learning rate for Adam.",)
parser.add_argument("--weight_decay", default=0.0,
type=float, help="Weight decay if we apply some.",)
parser.add_argument("--adam_epsilon", default=1e-8,
type=float, help="Epsilon for Adam optimizer.",)
parser.add_argument("--max_grad_norm", default=1.0,
type=float, help="Max gradient norm.",)
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.",)
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.",)
parser.add_argument("--eval_steps", type=int, default=10,
help="eval every X updates steps.",)
parser.add_argument("--seed", type=int, default=2048,
help="random seed for initialization",)
parser.add_argument("--rec_model_dir", default=None, type=str, )
parser.add_argument("--det_model_dir", default=None, type=str, )
parser.add_argument(
"--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
parser.add_argument("--infer_imgs", default=None, type=str, required=False)
parser.add_argument("--resume", action='store_true')
parser.add_argument("--ocr_json_path", default=None,
type=str, required=False, help="ocr prediction results")
# yapf: enable
args = parser.parse_args()
return args
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import cv2
import numpy as np
import paddle
import copy
from paddle.io import Dataset
__all__ = ["XFUNDataset"]
class XFUNDataset(Dataset):
"""
Example:
print("=====begin to build dataset=====")
from paddlenlp.transformers import LayoutXLMTokenizer
tokenizer = LayoutXLMTokenizer.from_pretrained("/paddle/models/transformers/layoutxlm-base-paddle/")
tok_res = tokenizer.tokenize("Maribyrnong")
# res = tokenizer.convert_ids_to_tokens(val_data["input_ids"][0])
dataset = XfunDatasetForSer(
tokenizer,
data_dir="./zh.val/",
label_path="zh.val/xfun_normalize_val.json",
img_size=(224,224))
print(len(dataset))
data = dataset[0]
print(data.keys())
print("input_ids: ", data["input_ids"])
print("labels: ", data["labels"])
print("token_type_ids: ", data["token_type_ids"])
print("words_list: ", data["words_list"])
print("image shape: ", data["image"].shape)
"""
def __init__(self,
tokenizer,
data_dir,
label_path,
contains_re=False,
label2id_map=None,
img_size=(224, 224),
pad_token_label_id=None,
add_special_ids=False,
return_attention_mask=True,
load_mode='all',
max_seq_len=512):
super().__init__()
self.tokenizer = tokenizer
self.data_dir = data_dir
self.label_path = label_path
self.contains_re = contains_re
self.label2id_map = label2id_map
self.img_size = img_size
self.pad_token_label_id = pad_token_label_id
self.add_special_ids = add_special_ids
self.return_attention_mask = return_attention_mask
self.load_mode = load_mode
self.max_seq_len = max_seq_len
if self.pad_token_label_id is None:
self.pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
self.all_lines = self.read_all_lines()
self.entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2}
self.return_keys = {
'bbox': {
'type': 'np',
'dtype': 'int64'
},
'input_ids': {
'type': 'np',
'dtype': 'int64'
},
'labels': {
'type': 'np',
'dtype': 'int64'
},
'attention_mask': {
'type': 'np',
'dtype': 'int64'
},
'image': {
'type': 'np',
'dtype': 'float32'
},
'token_type_ids': {
'type': 'np',
'dtype': 'int64'
},
'entities': {
'type': 'dict'
},
'relations': {
'type': 'dict'
}
}
if load_mode == "all":
self.encoded_inputs_all = self._parse_label_file_all()
def pad_sentences(self,
encoded_inputs,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
truncation_strategy="longest_first",
return_overflowing_tokens=False,
return_special_tokens_mask=False):
# Padding
needs_to_be_padded = pad_to_max_seq_len and \
max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
if needs_to_be_padded:
difference = max_seq_len - len(encoded_inputs["input_ids"])
if self.tokenizer.padding_side == 'right':
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"]) + [0] * difference
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] +
[self.tokenizer.pad_token_type_id] * difference)
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs[
"special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs[
"input_ids"] + [self.tokenizer.pad_token_id] * difference
encoded_inputs["labels"] = encoded_inputs[
"labels"] + [self.pad_token_label_id] * difference
encoded_inputs["bbox"] = encoded_inputs[
"bbox"] + [[0, 0, 0, 0]] * difference
elif self.tokenizer.padding_side == 'left':
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + [
1
] * len(encoded_inputs["input_ids"])
if return_token_type_ids:
encoded_inputs["token_type_ids"] = (
[self.tokenizer.pad_token_type_id] * difference +
encoded_inputs["token_type_ids"])
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = [
1
] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs["input_ids"] = [
self.tokenizer.pad_token_id
] * difference + encoded_inputs["input_ids"]
encoded_inputs["labels"] = [
self.pad_token_label_id
] * difference + encoded_inputs["labels"]
encoded_inputs["bbox"] = [
[0, 0, 0, 0]
] * difference + encoded_inputs["bbox"]
else:
if return_attention_mask:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
"input_ids"])
return encoded_inputs
def truncate_inputs(self, encoded_inputs, max_seq_len=512):
for key in encoded_inputs:
if key == "sample_id":
continue
length = min(len(encoded_inputs[key]), max_seq_len)
encoded_inputs[key] = encoded_inputs[key][:length]
return encoded_inputs
def read_all_lines(self, ):
with open(self.label_path, "r", encoding='utf-8') as fin:
lines = fin.readlines()
return lines
def _parse_label_file_all(self):
"""
parse all samples
"""
encoded_inputs_all = []
for line in self.all_lines:
encoded_inputs_all.extend(self._parse_label_file(line))
return encoded_inputs_all
def _parse_label_file(self, line):
"""
parse single sample
"""
image_name, info_str = line.split("\t")
image_path = os.path.join(self.data_dir, image_name)
def add_imgge_path(x):
x['image_path'] = image_path
return x
encoded_inputs = self._read_encoded_inputs_sample(info_str)
if self.contains_re:
encoded_inputs = self._chunk_re(encoded_inputs)
else:
encoded_inputs = self._chunk_ser(encoded_inputs)
encoded_inputs = list(map(add_imgge_path, encoded_inputs))
return encoded_inputs
def _read_encoded_inputs_sample(self, info_str):
"""
parse label info
"""
# read text info
info_dict = json.loads(info_str)
height = info_dict["height"]
width = info_dict["width"]
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
gt_label_list = []
if self.contains_re:
# for re
entities = []
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
for info in info_dict["ocr_info"]:
if self.contains_re:
# for re
if len(info["text"]) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# x1, y1, x2, y2
bbox = info["bbox"]
label = info["label"]
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
text = info["text"]
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
gt_label = []
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:
-1]
if label.lower() == "other":
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
(len(encode_res["input_ids"]) - 1))
if self.contains_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
entities.append({
"start": len(input_ids_list),
"end":
len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
})
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
gt_label_list.extend(gt_label)
words_list.append(text)
encoded_inputs = {
"input_ids": input_ids_list,
"labels": gt_label_list,
"token_type_ids": token_type_ids_list,
"bbox": bbox_list,
"attention_mask": [1] * len(input_ids_list),
# "words_list": words_list,
}
encoded_inputs = self.pad_sentences(
encoded_inputs,
max_seq_len=self.max_seq_len,
return_attention_mask=self.return_attention_mask)
encoded_inputs = self.truncate_inputs(encoded_inputs)
if self.contains_re:
relations = self._relations(entities, relations, id2label,
empty_entity, entity_id_to_index_map)
encoded_inputs['relations'] = relations
encoded_inputs['entities'] = entities
return encoded_inputs
def _chunk_ser(self, encoded_inputs):
encoded_inputs_all = []
seq_len = len(encoded_inputs['input_ids'])
chunk_size = 512
for chunk_id, index in enumerate(range(0, seq_len, chunk_size)):
chunk_beg = index
chunk_end = min(index + chunk_size, seq_len)
encoded_inputs_example = {}
for key in encoded_inputs:
encoded_inputs_example[key] = encoded_inputs[key][chunk_beg:
chunk_end]
encoded_inputs_all.append(encoded_inputs_example)
return encoded_inputs_all
def _chunk_re(self, encoded_inputs):
# prepare data
entities = encoded_inputs.pop('entities')
relations = encoded_inputs.pop('relations')
encoded_inputs_all = []
chunk_size = 512
for chunk_id, index in enumerate(
range(0, len(encoded_inputs["input_ids"]), chunk_size)):
item = {}
for k in encoded_inputs:
item[k] = encoded_inputs[k][index:index + chunk_size]
# select entity in current chunk
entities_in_this_span = []
global_to_local_map = {} #
for entity_id, entity in enumerate(entities):
if (index <= entity["start"] < index + chunk_size and
index <= entity["end"] < index + chunk_size):
entity["start"] = entity["start"] - index
entity["end"] = entity["end"] - index
global_to_local_map[entity_id] = len(entities_in_this_span)
entities_in_this_span.append(entity)
# select relations in current chunk
relations_in_this_span = []
for relation in relations:
if (index <= relation["start_index"] < index + chunk_size and
index <= relation["end_index"] < index + chunk_size):
relations_in_this_span.append({
"head": global_to_local_map[relation["head"]],
"tail": global_to_local_map[relation["tail"]],
"start_index": relation["start_index"] - index,
"end_index": relation["end_index"] - index,
})
item.update({
"entities": reformat(entities_in_this_span),
"relations": reformat(relations_in_this_span),
})
item['entities']['label'] = [
self.entities_labels[x] for x in item['entities']['label']
]
encoded_inputs_all.append(item)
return encoded_inputs_all
def _relations(self, entities, relations, id2label, empty_entity,
entity_id_to_index_map):
"""
build relations
"""
relations = list(set(relations))
relations = [
rel for rel in relations
if rel[0] not in empty_entity and rel[1] not in empty_entity
]
kv_relations = []
for rel in relations:
pair = [id2label[rel[0]], id2label[rel[1]]]
if pair == ["question", "answer"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[0]],
"tail": entity_id_to_index_map[rel[1]]
})
elif pair == ["answer", "question"]:
kv_relations.append({
"head": entity_id_to_index_map[rel[1]],
"tail": entity_id_to_index_map[rel[0]]
})
else:
continue
relations = sorted(
[{
"head": rel["head"],
"tail": rel["tail"],
"start_index": get_relation_span(rel, entities)[0],
"end_index": get_relation_span(rel, entities)[1],
} for rel in kv_relations],
key=lambda x: x["head"], )
return relations
def load_img(self, image_path):
# read img
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
resize_h, resize_w = self.img_size
im_shape = img.shape[0:2]
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
img_new = cv2.resize(
img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=2)
mean = np.array([0.485, 0.456, 0.406])[np.newaxis, np.newaxis, :]
std = np.array([0.229, 0.224, 0.225])[np.newaxis, np.newaxis, :]
img_new = img_new / 255.0
img_new -= mean
img_new /= std
img = img_new.transpose((2, 0, 1))
return img
def __getitem__(self, idx):
if self.load_mode == "all":
data = copy.deepcopy(self.encoded_inputs_all[idx])
else:
data = self._parse_label_file(self.all_lines[idx])[0]
image_path = data.pop('image_path')
data["image"] = self.load_img(image_path)
return_data = {}
for k, v in data.items():
if k in self.return_keys:
if self.return_keys[k]['type'] == 'np':
v = np.array(v, dtype=self.return_keys[k]['dtype'])
return_data[k] = v
return return_data
def __len__(self, ):
if self.load_mode == "all":
return len(self.encoded_inputs_all)
else:
return len(self.all_lines)
def get_relation_span(rel, entities):
bound = []
for entity_index in [rel["head"], rel["tail"]]:
bound.append(entities[entity_index]["start"])
bound.append(entities[entity_index]["end"])
return min(bound), max(bound)
def reformat(data):
new_data = {}
for item in data:
for k, v in item.items():
if k not in new_data:
new_data[k] = []
new_data[k].append(v)
return new_data
......@@ -239,8 +239,7 @@ fi
if [ ${MODE} = "klquant_whole_infer" ]; then
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar --no-check-certificate
cd ./train_data/ && tar xf icdar2015_lite.tar
ln -s ./icdar2015_lite ./icdar2015 && cd ../
cd ./train_data/ && tar xf icdar2015_lite.tar && rm -rf ./icdar2015 && ln -s ./icdar2015_lite ./icdar2015 && cd ../
if [ ${model_name} = "ch_ppocr_mobile_v2.0_det_KL" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
......@@ -249,6 +248,8 @@ if [ ${MODE} = "klquant_whole_infer" ]; then
if [ ${model_name} = "PPOCRv2_ocr_rec_kl" ]; then
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar --no-check-certificate
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar --no-check-certificate
cd ./train_data/ && tar xf ic15_data.tar && cd ../
cd ./inference && tar xf rec_inference.tar && tar xf ch_PP-OCRv2_rec_infer.tar && cd ../
fi
if [ ${model_name} = "PPOCRv2_ocr_det_kl" ]; then
......
......@@ -68,14 +68,14 @@ test_tipc/
├── model_linux_gpu_normal_normal_infer_cpp_linux_gpu_cpu.txt # 测试Linux上c++预测的配置文件
├── model_linux_gpu_normal_normal_infer_python_jetson.txt # 测试Jetson上python预测的配置文件
├── train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt # 测试Linux上多机多卡、混合精度训练和python预测的配置文件
├── ...
├── ...
├── ch_ppocr_server_v2.0_det # ch_ppocr_server_v2.0_det模型的测试配置文件目录
├── ...
├── ...
├── ch_ppocr_mobile_v2.0_rec # ch_ppocr_mobile_v2.0_rec模型的测试配置文件目录
├── ...
├── ...
├── ch_ppocr_server_v2.0_det # ch_ppocr_server_v2.0_det模型的测试配置文件目录
├── ...
├── ...
├── ...
├── ...
├── results/ # 预先保存的预测结果,用于和实际预测结果进行精读比对
├── python_ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型python预测fp32精度的结果
├── python_ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型python预测fp16精度的结果
......@@ -119,7 +119,7 @@ bash test_tipc/test_train_inference_python.sh configs/[model_name]/[params_file_
bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_lite_infer'
# 运行测试
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/train_infer_python.txt 'lite_train_lite_infer'
```
```
关于本示例命令的更多信息可查看[基础训练预测使用文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/test_tipc/docs/test_train_inference_python.md#22-%E5%8A%9F%E8%83%BD%E6%B5%8B%E8%AF%95)
### 配置文件命名规范
......@@ -136,9 +136,9 @@ bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ch_ppocr_mobil
<a name="more"></a>
## 4. 开始测试
各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
- [test_train_inference_python 使用](docs/test_train_inference_python.md) :测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
- [test_train_inference_python 使用](docs/test_train_inference_python.md) :测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- [test_inference_cpp 使用](docs/test_inference_cpp.md):测试基于C++的模型推理。
- [test_serving 使用](docs/test_serving.md):测试基于Paddle Serving的服务化部署功能。
- [test_lite_arm_cpu_cpp 使用](docs/test_lite_arm_cpu_cpp.md):测试基于Paddle-Lite的ARM CPU端c++预测部署功能。
- [test_lite_arm_cpp 使用](docs/test_lite_arm_cpp.md):测试基于Paddle-Lite的ARM CPU端c++预测部署功能。
- [test_paddle2onnx 使用](docs/test_paddle2onnx.md):测试Paddle2ONNX的模型转化功能,并验证正确性。
import numpy as np
import os
import sys
import platform
import yaml
import time
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter
from utils import get_logger, print_dict
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
self.add_argument(
'-p',
'--profiler_options',
type=str,
default=None,
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
)
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.opt = self._parse_opt(args.opt)
return args
def _parse_opt(self, opts):
config = {}
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
config[k] = yaml.load(v, Loader=yaml.Loader)
return config
class AttrDict(dict):
"""Single level attribute dict, NOT recursive"""
def __init__(self, **kwargs):
super(AttrDict, self).__init__()
super(AttrDict, self).update(kwargs)
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError("object has no attribute '{}'".format(key))
global_config = AttrDict()
default_config = {'Global': {'debug': False, }}
def load_config(file_path):
"""
Load config from yml/yaml file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
merge_config(default_config)
_, ext = os.path.splitext(file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
return global_config
def merge_config(config):
"""
Merge config into global config.
Args:
config (dict): Config to be merged.
Returns: global config
"""
for key, value in config.items():
if "." not in key:
if isinstance(value, dict) and key in global_config:
global_config[key].update(value)
else:
global_config[key] = value
else:
sub_keys = key.split('.')
assert (
sub_keys[0] in global_config
), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
global_config.keys(), sub_keys[0])
cur = global_config[sub_keys[0]]
for idx, sub_key in enumerate(sub_keys[1:]):
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else:
cur = cur[sub_key]
def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
profiler_options = FLAGS.profiler_options
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
profile_dic = {"profiler_options": FLAGS.profiler_options}
merge_config(profile_dic)
if is_train:
# save_config
save_model_dir = config['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['use_gpu']
print_dict(config, logger)
return config, logger
if __name__ == "__main__":
config, logger = preprocess(is_train=False)
# print(config)
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference from : https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cc
#include <iostream>
#include <vector>
#include "paddle/extension.h"
template <typename data_t>
void relu_cpu_forward_kernel(const data_t* x_data,
data_t* out_data,
int64_t x_numel) {
for (int i = 0; i < x_numel; ++i) {
out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
}
}
template <typename data_t>
void relu_cpu_backward_kernel(const data_t* grad_out_data,
const data_t* out_data,
data_t* grad_x_data,
int64_t out_numel) {
for (int i = 0; i < out_numel; ++i) {
grad_x_data[i] =
grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
}
}
std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
out.reshape(x.shape());
PD_DISPATCH_FLOATING_TYPES(
x.type(), "relu_cpu_forward", ([&] {
relu_cpu_forward_kernel<data_t>(
x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
}));
return {out};
}
std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out) {
auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
grad_x.reshape(x.shape());
PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
relu_cpu_backward_kernel<data_t>(
grad_out.data<data_t>(),
out.data<data_t>(),
grad_x.mutable_data<data_t>(x.place()),
out.size());
}));
return {grad_x};
}
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x);
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out);
std::vector<paddle::Tensor> ReluForward(const paddle::Tensor& x) {
// TODO(chenweihang): Check Input
if (x.place() == paddle::PlaceType::kCPU) {
return relu_cpu_forward(x);
} else if (x.place() == paddle::PlaceType::kGPU) {
return relu_cuda_forward(x);
} else {
throw std::runtime_error("Not implemented.");
}
}
std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out) {
// TODO(chenweihang): Check Input
if (x.place() == paddle::PlaceType::kCPU) {
return relu_cpu_backward(x, out, grad_out);
} else if (x.place() == paddle::PlaceType::kGPU) {
return relu_cuda_backward(x, out, grad_out);
} else {
throw std::runtime_error("Not implemented.");
}
}
PD_BUILD_OP(custom_relu)
.Inputs({"X"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(ReluForward));
PD_BUILD_GRAD_OP(custom_relu)
.Inputs({"X", "Out", paddle::Grad("Out")})
.Outputs({paddle::Grad("X")})
.SetKernelFn(PD_KERNEL(ReluBackward));
\ No newline at end of file
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cu
#include "paddle/extension.h"
template <typename data_t>
__global__ void relu_cuda_forward_kernel(const data_t* x,
data_t* y,
const int num) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
y[i] = max(x[i], static_cast<data_t>(0.));
}
}
template <typename data_t>
__global__ void relu_cuda_backward_kernel(const data_t* dy,
const data_t* y,
data_t* dx,
const int num) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
dx[i] = dy[i] * (y[i] > 0 ? 1. : 0.);
}
}
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
auto out = paddle::Tensor(paddle::PlaceType::kGPU);
out.reshape(x.shape());
int numel = x.size();
int block = 512;
int grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_TYPES(
x.type(), "relu_cuda_forward_kernel", ([&] {
relu_cuda_forward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
x.data<data_t>(), out.mutable_data<data_t>(x.place()), numel);
}));
return {out};
}
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
const paddle::Tensor& out,
const paddle::Tensor& grad_out) {
auto grad_x = paddle::Tensor(paddle::PlaceType::kGPU);
grad_x.reshape(x.shape());
int numel = out.size();
int block = 512;
int grid = (numel + block - 1) / block;
PD_DISPATCH_FLOATING_TYPES(
out.type(), "relu_cuda_backward_kernel", ([&] {
relu_cuda_backward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
grad_out.data<data_t>(),
out.data<data_t>(),
grad_x.mutable_data<data_t>(x.place()),
numel);
}));
return {grad_x};
}
import paddle
import paddle.nn as nn
from paddle.vision.transforms import Compose, Normalize
from paddle.utils.cpp_extension import load
from paddle.inference import Config
from paddle.inference import create_predictor
import numpy as np
EPOCH_NUM = 4
BATCH_SIZE = 64
# jit compile custom op
custom_ops = load(
name="custom_jit_ops", sources=["custom_relu_op.cc", "custom_relu_op.cu"])
class LeNet(nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
self.max_pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = nn.Conv2D(
in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
self.linear1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
self.linear2 = nn.Linear(in_features=120, out_features=84)
self.linear3 = nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = custom_ops.custom_relu(x)
x = self.max_pool1(x)
x = custom_ops.custom_relu(x)
x = self.conv2(x)
x = self.max_pool2(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.linear1(x)
x = custom_ops.custom_relu(x)
x = self.linear2(x)
x = custom_ops.custom_relu(x)
x = self.linear3(x)
return x
# set device
paddle.set_device("gpu")
# model
net = LeNet()
loss_fn = nn.CrossEntropyLoss()
opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=net.parameters())
# data loader
transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='CHW')])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
train_loader = paddle.io.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(train_loader()):
out = net(image)
loss = loss_fn(out, label)
loss.backward()
if batch_id % 300 == 0:
print("Epoch {} batch {}: loss = {}".format(epoch_id, batch_id,
np.mean(loss.numpy())))
opt.step()
opt.clear_grad()
import numpy as np
import paddle
import os
import cv2
import glob
def transform(data, ops=None):
""" transform """
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def create_operators(op_param_list, global_config=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(op_param_list, list), ('operator config should be a list')
ops = []
for operator in op_param_list:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = eval(op_name)(**param)
ops.append(op)
return ops
class DecodeImage(object):
""" decode image """
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data['image']
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
data['src_image'] = img
return data
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
data['image'] = (
img.astype('float32') * self.scale - self.mean) / self.std
return data
class ToCHWImage(object):
""" convert hwc image to chw image
"""
def __init__(self, **kwargs):
pass
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
data['image'] = img.transpose((2, 0, 1))
src_img = data['src_image']
from PIL import Image
if isinstance(img, Image.Image):
src_img = np.array(src_img)
data['src_image'] = img.transpose((2, 0, 1))
return data
class SimpleDataset(nn.Dataset):
def __init__(self, config, mode, logger, seed=None):
self.logger = logger
self.mode = mode.lower()
data_dir = config['Train']['data_dir']
imgs_list = self.get_image_list(data_dir)
self.ops = create_operators(cfg['transforms'], None)
def get_image_list(self, img_dir):
imgs = glob.glob(os.path.join(img_dir, "*.png"))
if len(imgs) == 0:
raise ValueError(f"not any images founded in {img_dir}")
return imgs
def __getitem__(self, idx):
return None
import numpy as np
from paddle.vision.datasets import Cifar100
from paddle.vision.transforms import Normalize
from paddle.fluid.dataloader.collate import default_collate_fn
import signal
import os
from paddle.io import Dataset, DataLoader, DistributedBatchSampler
def term_mp(sig_num, frame):
""" kill all child processes
"""
pid = os.getpid()
pgid = os.getpgid(os.getpid())
print("main proc {} exit, kill process group " "{}".format(pid, pgid))
os.killpg(pgid, signal.SIGKILL)
return
def build_dataloader(mode,
batch_size=4,
seed=None,
num_workers=0,
device='gpu:0'):
normalize = Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], data_format='HWC')
if mode.lower() == "train":
dataset = Cifar100(mode=mode, transform=normalize)
elif mode.lower() in ["test", 'valid', 'eval']:
dataset = Cifar100(mode="test", transform=normalize)
else:
raise ValueError(f"{mode} should be one of ['train', 'test']")
# define batch sampler
batch_sampler = DistributedBatchSampler(
dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=True)
data_loader = DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
places=device,
num_workers=num_workers,
return_list=True,
use_shared_memory=False)
# support exit using ctrl+c
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)
return data_loader
# cifar100 = Cifar100(mode='train', transform=normalize)
# data = cifar100[0]
# image, label = data
# reader = build_dataloader('train')
# for idx, data in enumerate(reader):
# print(idx, data[0].shape, data[1].shape)
# if idx >= 10:
# break
import pickle as p
import numpy as np
from PIL import Image
def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb') as f:
datadict = p.load(f, encoding='bytes')
# 以字典的形式取出数据
X = datadict[b'data']
Y = datadict[b'fine_labels']
try:
X = X.reshape(10000, 3, 32, 32)
except:
X = X.reshape(50000, 3, 32, 32)
Y = np.array(Y)
print(Y.shape)
return X, Y
if __name__ == "__main__":
mode = "train"
imgX, imgY = load_CIFAR_batch(f"./cifar-100-python/{mode}")
with open(f'./cifar-100-python/{mode}_imgs/img_label.txt', 'a+') as f:
for i in range(imgY.shape[0]):
f.write('img' + str(i) + ' ' + str(imgY[i]) + '\n')
for i in range(imgX.shape[0]):
imgs = imgX[i]
img0 = imgs[0]
img1 = imgs[1]
img2 = imgs[2]
i0 = Image.fromarray(img0)
i1 = Image.fromarray(img1)
i2 = Image.fromarray(img2)
img = Image.merge("RGB", (i0, i1, i2))
name = "img" + str(i) + ".png"
img.save(f"./cifar-100-python/{mode}_imgs/" + name, "png")
print("save successfully!")
import paddle
import paddle.nn.functional as F
class Loss(object):
"""
Loss
"""
def __init__(self, class_dim=1000, epsilon=None):
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
self._class_dim = class_dim
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
self._epsilon = epsilon
self._label_smoothing = True
else:
self._epsilon = None
self._label_smoothing = False
def _labelsmoothing(self, target):
if target.shape[-1] != self._class_dim:
one_hot_target = F.one_hot(target, self._class_dim)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self._epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
return soft_target
def _crossentropy(self, input, target, use_pure_fp16=False):
if self._label_smoothing:
target = self._labelsmoothing(target)
input = -F.log_softmax(input, axis=-1)
cost = paddle.sum(target * input, axis=-1)
else:
cost = F.cross_entropy(input=input, label=target)
if use_pure_fp16:
avg_cost = paddle.sum(cost)
else:
avg_cost = paddle.mean(cost)
return avg_cost
def __call__(self, input, target):
return self._crossentropy(input, target)
def build_loss(config, epsilon=None):
class_dim = config['class_dim']
loss_func = Loss(class_dim=class_dim, epsilon=epsilon)
return loss_func
class LossDistill(Loss):
def __init__(self, model_name_list, class_dim=1000, epsilon=None):
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
self._class_dim = class_dim
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
self._epsilon = epsilon
self._label_smoothing = True
else:
self._epsilon = None
self._label_smoothing = False
self.model_name_list = model_name_list
assert len(self.model_name_list) > 1, "error"
def __call__(self, input, target):
losses = {}
for k in self.model_name_list:
inp = input[k]
losses[k] = self._crossentropy(inp, target)
return losses
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
p1 = F.softmax(p1, axis=-1)
p2 = F.softmax(p2, axis=-1)
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss)
elif reduction == "none" or reduction is None:
return loss
else:
loss = paddle.sum(loss)
return loss
class DMLLoss(object):
def __init__(self, model_name_pairs, mode='js'):
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
self.kljs_loss = KLJSLoss(mode=mode)
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(
model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
def __call__(self, predicts, target=None):
loss_dict = dict()
for pairs in self.model_name_pairs:
p1 = predicts[pairs[0]]
p2 = predicts[pairs[1]]
loss_dict[pairs[0] + "_" + pairs[1]] = self.kljs_loss(p1, p2)
return loss_dict
# def build_distill_loss(config, epsilon=None):
# class_dim = config['class_dim']
# loss = LossDistill(model_name_list=['student', 'student1'], )
# return loss_func
import paddle
import paddle.nn.functional as F
from collections import OrderedDict
def create_metric(out,
label,
architecture=None,
topk=5,
classes_num=1000,
use_distillation=False,
mode="train"):
"""
Create measures of model accuracy, such as top1 and top5
Args:
out(variable): model output variable
feeds(dict): dict of model input variables(included label)
topk(int): usually top5
classes_num(int): num of classes
use_distillation(bool): whether to use distillation training
mode(str): mode, train/valid
Returns:
fetchs(dict): dict of measures
"""
# if architecture["name"] == "GoogLeNet":
# assert len(out) == 3, "GoogLeNet should have 3 outputs"
# out = out[0]
# else:
# # just need student label to get metrics
# if use_distillation:
# out = out[1]
softmax_out = F.softmax(out)
fetchs = OrderedDict()
# set top1 to fetchs
top1 = paddle.metric.accuracy(softmax_out, label=label, k=1)
# set topk to fetchs
k = min(topk, classes_num)
topk = paddle.metric.accuracy(softmax_out, label=label, k=k)
# multi cards' eval
if mode != "train" and paddle.distributed.get_world_size() > 1:
top1 = paddle.distributed.all_reduce(
top1, op=paddle.distributed.ReduceOp.
SUM) / paddle.distributed.get_world_size()
topk = paddle.distributed.all_reduce(
topk, op=paddle.distributed.ReduceOp.
SUM) / paddle.distributed.get_world_size()
fetchs['top1'] = top1
topk_name = 'top{}'.format(k)
fetchs[topk_name] = topk
return fetchs
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.functional import hardswish, hardsigmoid
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
import math
from paddle.utils.cpp_extension import load
# jit compile custom op
custom_ops = load(
name="custom_jit_ops",
sources=["./custom_op/custom_relu_op.cc", "./custom_op/custom_relu_op.cu"])
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
def __init__(self,
scale=1.0,
model_name="small",
dropout_prob=0.2,
class_dim=1000,
use_custom_relu=False):
super(MobileNetV3, self).__init__()
self.use_custom_relu = use_custom_relu
inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1],
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1],
[3, 240, 80, False, "hardswish", 2],
[3, 200, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 480, 112, True, "hardswish", 1],
[3, 672, 112, True, "hardswish", 1],
[5, 672, 160, True, "hardswish", 2],
[5, 960, 160, True, "hardswish", 1],
[5, 960, 160, True, "hardswish", 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hardswish", 2],
[5, 240, 40, True, "hardswish", 1],
[5, 240, 40, True, "hardswish", 1],
[5, 120, 48, True, "hardswish", 1],
[5, 144, 48, True, "hardswish", 1],
[5, 288, 96, True, "hardswish", 2],
[5, 576, 96, True, "hardswish", 1],
[5, 576, 96, True, "hardswish", 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
else:
raise NotImplementedError(
"mode[{}_model] is not implemented!".format(model_name))
self.conv1 = ConvBNLayer(
in_c=3,
out_c=make_divisible(inplanes * scale),
filter_size=3,
stride=2,
padding=1,
num_groups=1,
if_act=True,
act="hardswish",
name="conv1",
use_custom_relu=self.use_custom_relu)
self.block_list = []
i = 0
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in self.cfg:
block = self.add_sublayer(
"conv" + str(i + 2),
ResidualUnit(
in_c=inplanes,
mid_c=make_divisible(scale * exp),
out_c=make_divisible(scale * c),
filter_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2),
use_custom_relu=self.use_custom_relu))
self.block_list.append(block)
inplanes = make_divisible(scale * c)
i += 1
self.last_second_conv = ConvBNLayer(
in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act="hardswish",
name="conv_last",
use_custom_relu=self.use_custom_relu)
self.pool = AdaptiveAvgPool2D(1)
self.last_conv = Conv2D(
in_channels=make_divisible(scale * self.cls_ch_squeeze),
out_channels=self.cls_ch_expand,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(),
bias_attr=False)
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
self.out = Linear(
self.cls_ch_expand,
class_dim,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
def forward(self, inputs, label=None):
x = self.conv1(inputs)
for block in self.block_list:
x = block(x)
x = self.last_second_conv(x)
x = self.pool(x)
x = self.last_conv(x)
x = hardswish(x)
x = self.dropout(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.out(x)
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
use_cudnn=True,
name="",
use_custom_relu=False):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = Conv2D(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(),
bias_attr=False)
self.bn = BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
# moving_mean_name=name + "_bn_mean",
# moving_variance_name=name + "_bn_variance")
self.use_custom_relu = use_custom_relu
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
if self.use_custom_relu:
x = custom_ops.custom_relu(x)
else:
x = F.relu(x)
elif self.act == "hardswish":
x = hardswish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
act=None,
name='',
use_custom_relu=False):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.if_se = use_se
self.use_custom_relu = use_custom_relu
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + "_expand",
use_custom_relu=self.use_custom_relu)
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) // 2),
num_groups=mid_c,
if_act=True,
act=act,
name=name + "_depthwise",
use_custom_relu=self.use_custom_relu)
if self.if_se:
self.mid_se = SEModule(mid_c, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name=name + "_linear",
use_custom_relu=self.use_custom_relu)
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(inputs, x)
return x
class SEModule(nn.Layer):
def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = hardsigmoid(outputs, slope=0.2, offset=0.5)
return paddle.multiply(x=inputs, y=outputs)
def MobileNetV3_small_x0_35(**args):
model = MobileNetV3(model_name="small", scale=0.35, **args)
return model
def MobileNetV3_small_x0_5(**args):
model = MobileNetV3(model_name="small", scale=0.5, **args)
return model
def MobileNetV3_small_x0_75(**args):
model = MobileNetV3(model_name="small", scale=0.75, **args)
return model
def MobileNetV3_small_x1_0(**args):
model = MobileNetV3(model_name="small", scale=1.0, **args)
return model
def MobileNetV3_small_x1_25(**args):
model = MobileNetV3(model_name="small", scale=1.25, **args)
return model
def MobileNetV3_large_x0_35(**args):
model = MobileNetV3(model_name="large", scale=0.35, **args)
return model
def MobileNetV3_large_x0_5(**args):
model = MobileNetV3(model_name="large", scale=0.5, **args)
return model
def MobileNetV3_large_x0_75(**args):
model = MobileNetV3(model_name="large", scale=0.75, **args)
return model
def MobileNetV3_large_x1_0(**args):
model = MobileNetV3(model_name="large", scale=1.0, **args)
return model
def MobileNetV3_large_x1_25(**args):
model = MobileNetV3(model_name="large", scale=1.25, **args)
return
class DistillMV3(nn.Layer):
def __init__(self,
scale=1.0,
model_name="small",
dropout_prob=0.2,
class_dim=1000,
args=None,
use_custom_relu=False):
super(DistillMV3, self).__init__()
self.student = MobileNetV3(
model_name=model_name,
scale=scale,
class_dim=class_dim,
use_custom_relu=use_custom_relu)
self.student1 = MobileNetV3(
model_name=model_name,
scale=scale,
class_dim=class_dim,
use_custom_relu=use_custom_relu)
def forward(self, inputs, label=None):
predicts = dict()
predicts['student'] = self.student(inputs, label)
predicts['student1'] = self.student1(inputs, label)
return predicts
def distillmv3_large_x0_5(**args):
model = DistillMV3(model_name="large", scale=0.5, **args)
return model
class SiameseMV3(nn.Layer):
def __init__(self,
scale=1.0,
model_name="small",
dropout_prob=0.2,
class_dim=1000,
args=None,
use_custom_relu=False):
super(SiameseMV3, self).__init__()
self.net = MobileNetV3(
model_name=model_name,
scale=scale,
class_dim=class_dim,
use_custom_relu=use_custom_relu)
self.net1 = MobileNetV3(
model_name=model_name,
scale=scale,
class_dim=class_dim,
use_custom_relu=use_custom_relu)
def forward(self, inputs, label=None):
# net
x = self.net.conv1(inputs)
for block in self.net.block_list:
x = block(x)
# net1
x1 = self.net1.conv1(inputs)
for block in self.net1.block_list:
x1 = block(x1)
# add
x = x + x1
x = self.net.last_second_conv(x)
x = self.net.pool(x)
x = self.net.last_conv(x)
x = hardswish(x)
x = self.net.dropout(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.net.out(x)
return x
def siamese_mv3(class_dim, use_custom_relu):
model = SiameseMV3(
scale=0.5,
model_name="large",
class_dim=class_dim,
use_custom_relu=use_custom_relu)
return model
def build_model(config):
model_type = config['model_type']
if model_type == "cls":
class_dim = config['MODEL']['class_dim']
use_custom_relu = config['MODEL']['use_custom_relu']
if 'siamese' in config['MODEL'] and config['MODEL']['siamese'] is True:
model = siamese_mv3(
class_dim=class_dim, use_custom_relu=use_custom_relu)
else:
model = MobileNetV3_large_x0_5(
class_dim=class_dim, use_custom_relu=use_custom_relu)
elif model_type == "cls_distill":
class_dim = config['MODEL']['class_dim']
use_custom_relu = config['MODEL']['use_custom_relu']
model = distillmv3_large_x0_5(
class_dim=class_dim, use_custom_relu=use_custom_relu)
elif model_type == "cls_distill_multiopt":
class_dim = config['MODEL']['class_dim']
use_custom_relu = config['MODEL']['use_custom_relu']
model = distillmv3_large_x0_5(
class_dim=100, use_custom_relu=use_custom_relu)
else:
raise ValueError("model_type should be one of ['']")
return model
class_dim: 100
total_images: 50000
epochs: 1000
topk: 5
save_model_dir: ./output/
use_gpu: True
model_type: cls_distill
LEARNING_RATE:
function: 'Cosine'
params:
lr: 0.001
warmup_epoch: 5
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.00002
TRAIN:
batch_size: 1280
num_workers: 4
VALID:
batch_size: 64
num_workers: 4
class_dim: 100
total_images: 50000
epoch: 1000
topk: 5
save_model_dir: ./output/
use_gpu: True
model_type: cls
use_custom_relu: false
pretrained_model:
checkpoints:
save_model_dir: ./output/cls/
# slim
quant_train: false
prune_train: false
MODEL:
class_dim: 100
use_custom_relu: False
siamese: False
AMP:
use_amp: False
scale_loss: 1024.0
use_dynamic_loss_scale: True
LEARNING_RATE:
function: 'Cosine'
params:
lr: 0.001
warmup_epoch: 5
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.00002
TRAIN:
batch_size: 1280
num_workers: 4
VALID:
batch_size: 64
num_workers: 4
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment