Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
3d695fcc
Unverified
Commit
3d695fcc
authored
Oct 18, 2021
by
xiaoting
Committed by
GitHub
Oct 18, 2021
Browse files
Merge branch 'dygraph' into add_test_serving
parents
ae12e0d5
d2d1483c
Changes
28
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
260 additions
and
706 deletions
+260
-706
tests/readme.md
tests/readme.md
+79
-58
tests/results/cpp_ppocr_det_mobile_results_fp16.txt
tests/results/cpp_ppocr_det_mobile_results_fp16.txt
+0
-0
tests/results/cpp_ppocr_det_mobile_results_fp32.txt
tests/results/cpp_ppocr_det_mobile_results_fp32.txt
+0
-0
tests/results/python_ppocr_det_mobile_results_fp16.txt
tests/results/python_ppocr_det_mobile_results_fp16.txt
+0
-0
tests/results/python_ppocr_det_mobile_results_fp32.txt
tests/results/python_ppocr_det_mobile_results_fp32.txt
+0
-0
tests/test.sh
tests/test.sh
+0
-634
tests/test_python.sh
tests/test_python.sh
+181
-13
tools/infer/predict_e2e.py
tools/infer/predict_e2e.py
+0
-1
No files found.
tests/readme.md
View file @
3d695fcc
#
从训练到推理部署工具链测试方法介绍
#
推理部署导航
test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程
测试。
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的推理部署导航,方便用户查阅每种模型的推理部署打通情况,并可以进行一键
测试。
# 安装依赖
-
安装PaddlePaddle >= 2.0
-
安装PaddleOCR依赖
```
pip3 install -r ../requirements.txt
```
-
安装autolog
```
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
pip3 install -r requirements.txt
python3 setup.py bdist_wheel
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
cd ../
```
<div
align=
"center"
>
<img
src=
"docs/guide.png"
width=
"1000"
>
</div>
# 目录介绍
打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
```
bash
tests/
├── ocr_det_params.txt
# 测试OCR检测模型的参数配置文件
├── ocr_rec_params.txt
# 测试OCR识别模型的参数配置文件
├── ocr_ppocr_mobile_params.txt
# 测试OCR检测+识别模型串联的参数配置文件
└── prepare.sh
# 完成test.sh运行所需要的数据和模型下载
└── test.sh
# 测试主程序
```
# 使用方法
| 算法论文 | 模型名称 | 模型类型 | python训练预测 | 其他 |
| :--- | :--- | :---- | :-------- | :---- |
| DB |ch_ppocr_mobile_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测
<br>
Paddle Serving: Python, C++
<br>
Paddle-Lite: Python, C++ / ARM CPU |
| DB |ch_ppocr_server_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测
<br>
Paddle Serving: Python, C++
<br>
Paddle-Lite: Python, C++ / ARM CPU |
| DB |ch_PP-OCRv2_det | 检测 |
| CRNN |ch_ppocr_mobile_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测
<br>
Paddle Serving: Python, C++
<br>
Paddle-Lite: Python, C++ / ARM CPU |
| CRNN |ch_ppocr_server_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测
<br>
Paddle Serving: Python, C++
<br>
Paddle-Lite: Python, C++ / ARM CPU |
| CRNN |ch_PP-OCRv2_rec | 识别 |
| DB |det_mv3_db_v2.0 | 检测 |
| DB |det_r50_vd_db_v2.0 | 检测 |
| EAST |det_mv3_east_v2.0 | 检测 |
| EAST |det_r50_vd_east_v2.0 | 检测 |
| PSENet |det_mv3_pse_v2.0 | 检测 |
| PSENet |det_r50_vd_pse_v2.0 | 检测 |
| SAST |det_r50_vd_sast_totaltext_v2.0 | 检测 |
| Rosetta|rec_mv3_none_none_ctc_v2.0 | 识别 |
| Rosetta|rec_r34_vd_none_none_ctc_v2.0 | 识别 |
| CRNN |rec_mv3_none_bilstm_ctc_v2.0 | 识别 |
| CRNN |rec_r34_vd_none_bilstm_ctc_v2.0| 识别 |
| StarNet|rec_mv3_tps_bilstm_ctc_v2.0 | 识别 |
| StarNet|rec_r34_vd_tps_bilstm_ctc_v2.0 | 识别 |
| RARE |rec_mv3_tps_bilstm_att_v2.0 | 识别 |
| RARE |rec_r34_vd_tps_bilstm_att_v2.0 | 识别 |
| SRN |rec_r50fpn_vd_none_srn | 识别 |
| NRTR |rec_mtb_nrtr | 识别 |
| SAR |rec_r31_sar | 识别 |
| PGNet |rec_r34_vd_none_none_ctc_v2.0 | 端到端|
test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
-
模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```
shell
bash tests/prepare.sh ./tests/ocr_det_params.txt
'lite_train_infer'
bash tests/test.sh ./tests/ocr_det_params.txt
'lite_train_infer'
```
-
模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```
shell
bash tests/prepare.sh ./tests/ocr_det_params.txt
'whole_infer'
bash tests/test.sh ./tests/ocr_det_params.txt
'whole_infer'
```
## 一键测试工具使用
### 目录介绍
-
模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```
shell
bash tests/prepare.sh ./tests/ocr_det_params.txt
'infer'
# 用法1:
bash tests/test.sh ./tests/ocr_det_params.txt
'infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test.sh ./tests/ocr_det_params.txt
'infer'
'1'
tests/
├── configs/
# 配置文件目录
├── det_mv3_db.yml
# 测试mobile版ppocr检测模型训练的yml文件
├── det_r50_vd_db.yml
# 测试server版ppocr检测模型训练的yml文件
├── rec_icdar15_r34_train.yml
# 测试server版ppocr识别模型训练的yml文件
├── ppocr_sys_mobile_params.txt
# 测试mobile版ppocr检测+识别模型串联的参数配置文件
├── ppocr_det_mobile_params.txt
# 测试mobile版ppocr检测模型的参数配置文件
├── ppocr_rec_mobile_params.txt
# 测试mobile版ppocr识别模型的参数配置文件
├── ppocr_sys_server_params.txt
# 测试server版ppocr检测+识别模型串联的参数配置文件
├── ppocr_det_server_params.txt
# 测试server版ppocr检测模型的参数配置文件
├── ppocr_rec_server_params.txt
# 测试server版ppocr识别模型的参数配置文件
├── ...
├── results/
# 预先保存的预测结果,用于和实际预测结果进行精读比对
├── ppocr_det_mobile_results_fp32.txt
# 预存的mobile版ppocr检测模型fp32精度的结果
├── ppocr_det_mobile_results_fp16.txt
# 预存的mobile版ppocr检测模型fp16精度的结果
├── ppocr_det_mobile_results_fp32_cpp.txt
# 预存的mobile版ppocr检测模型c++预测的fp32精度的结果
├── ppocr_det_mobile_results_fp16_cpp.txt
# 预存的mobile版ppocr检测模型c++预测的fp16精度的结果
├── ...
├── prepare.sh
# 完成test_*.sh运行所需要的数据和模型下载
├── test_python.sh
# 测试python训练预测的主程序
├── test_cpp.sh
# 测试c++预测的主程序
├── test_serving.sh
# 测试serving部署预测的主程序
├── test_lite.sh
# 测试lite部署预测的主程序
├── compare_results.py
# 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
└── readme.md
# 使用文档
```
-
模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
```
shell
bash tests/prepare.sh ./tests/ocr_det_params.txt
'whole_train_infer'
bash tests/test.sh ./tests/ocr_det_params.txt
'whole_train_infer'
```
### 测试流程
使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
<div
align=
"center"
>
<img
src=
"docs/test.png"
width=
"800"
>
</div>
-
模式5:cpp_infer , CE: 验证inference model的c++预测是否走通;
```
shell
bash tests/prepare.sh ./tests/ocr_det_params.txt
'cpp_infer'
bash tests/test.sh ./tests/ocr_det_params.txt
'cpp_infer'
```
1.
运行prepare.sh准备测试所需数据和模型;
2.
运行要测试的功能对应的测试脚本
`test_*.sh`
,产出log,由log可以看到不同配置是否运行成功;
3.
用
`compare_results.py`
对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
# 日志输出
最终在
```tests/output```
目录下生成.log后缀的日志文件
其中,有4个测试主程序,功能如下:
-
`test_python.sh`
:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
-
`test_cpp.sh`
:测试基于C++的模型推理。
-
`test_serving.sh`
:测试基于Paddle Serving的服务化部署功能。
-
`test_lite.sh`
:测试基于Paddle-Lite的端侧预测部署功能。
各功能测试中涉及GPU/CPU、mkldnn、Tensorrt等多种参数配置,点击相应链接了解更多细节和使用教程:
[
test_python使用
](
docs/test_python.md
)
[
test_cpp使用
](
docs/test_cpp.md
)
[
test_serving使用
](
docs/test_serving.md
)
[
test_lite使用
](
docs/test_lite.md
)
tests/results/ppocr_det_mobile_results_fp16
_cpp
.txt
→
tests/results/
cpp_
ppocr_det_mobile_results_fp16.txt
View file @
3d695fcc
File moved
tests/results/ppocr_det_mobile_results_fp32
_cpp
.txt
→
tests/results/
cpp_
ppocr_det_mobile_results_fp32.txt
View file @
3d695fcc
File moved
tests/results/ppocr_det_mobile_results_fp16.txt
→
tests/results/
python_
ppocr_det_mobile_results_fp16.txt
View file @
3d695fcc
File moved
tests/results/ppocr_det_mobile_results_fp32.txt
→
tests/results/
python_
ppocr_det_mobile_results_fp32.txt
View file @
3d695fcc
File moved
tests/test.sh
deleted
100644 → 0
View file @
ae12e0d5
This diff is collapsed.
Click to expand it.
tests/test_python.sh
View file @
3d695fcc
...
...
@@ -2,7 +2,14 @@
source
tests/common_func.sh
FILENAME
=
$1
dataline
=
$(
awk
'NR==1, NR==51{print}'
$FILENAME
)
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
MODE
=
$2
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
dataline
=
$(
awk
'NR==82, NR==98{print}'
$FILENAME
)
else
dataline
=
$(
awk
'NR==1, NR==51{print}'
$FILENAME
)
fi
# parser params
IFS
=
$'
\n
'
...
...
@@ -84,6 +91,35 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1
=
$(
func_parser_key
"
${
lines
[50]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
# parser klquant_infer
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
# parser inference model
infer_model_dir_list
=
$(
func_parser_value
"
${
lines
[1]
}
"
)
infer_export_list
=
$(
func_parser_value
"
${
lines
[2]
}
"
)
infer_is_quant
=
$(
func_parser_value
"
${
lines
[3]
}
"
)
# parser inference
inference_py
=
$(
func_parser_value
"
${
lines
[4]
}
"
)
use_gpu_key
=
$(
func_parser_key
"
${
lines
[5]
}
"
)
use_gpu_list
=
$(
func_parser_value
"
${
lines
[5]
}
"
)
use_mkldnn_key
=
$(
func_parser_key
"
${
lines
[6]
}
"
)
use_mkldnn_list
=
$(
func_parser_value
"
${
lines
[6]
}
"
)
cpu_threads_key
=
$(
func_parser_key
"
${
lines
[7]
}
"
)
cpu_threads_list
=
$(
func_parser_value
"
${
lines
[7]
}
"
)
batch_size_key
=
$(
func_parser_key
"
${
lines
[8]
}
"
)
batch_size_list
=
$(
func_parser_value
"
${
lines
[8]
}
"
)
use_trt_key
=
$(
func_parser_key
"
${
lines
[9]
}
"
)
use_trt_list
=
$(
func_parser_value
"
${
lines
[9]
}
"
)
precision_key
=
$(
func_parser_key
"
${
lines
[10]
}
"
)
precision_list
=
$(
func_parser_value
"
${
lines
[10]
}
"
)
infer_model_key
=
$(
func_parser_key
"
${
lines
[11]
}
"
)
image_dir_key
=
$(
func_parser_key
"
${
lines
[12]
}
"
)
infer_img_dir
=
$(
func_parser_value
"
${
lines
[12]
}
"
)
save_log_key
=
$(
func_parser_key
"
${
lines
[13]
}
"
)
benchmark_key
=
$(
func_parser_key
"
${
lines
[14]
}
"
)
benchmark_value
=
$(
func_parser_value
"
${
lines
[14]
}
"
)
infer_key1
=
$(
func_parser_key
"
${
lines
[15]
}
"
)
infer_value1
=
$(
func_parser_value
"
${
lines
[15]
}
"
)
fi
LOG_PATH
=
"./tests/output"
mkdir
-p
${
LOG_PATH
}
...
...
@@ -107,7 +143,7 @@ function func_inference(){
fi
for
threads
in
${
cpu_threads_list
[*]
}
;
do
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
_save_log_path
=
"
${
_log_path
}
/
python_
infer_cpu_usemkldnn_
${
use_mkldnn
}
_threads_
${
threads
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
set_benchmark
=
$(
func_set_params
"
${
benchmark_key
}
"
"
${
benchmark_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
batch_size_key
}
"
"
${
batch_size
}
"
)
...
...
@@ -135,7 +171,7 @@ function func_inference(){
continue
fi
for
batch_size
in
${
batch_size_list
[*]
}
;
do
_save_log_path
=
"
${
_log_path
}
/infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
_save_log_path
=
"
${
_log_path
}
/
python_
infer_gpu_usetrt_
${
use_trt
}
_precision_
${
precision
}
_batchsize_
${
batch_size
}
.log"
set_infer_data
=
$(
func_set_params
"
${
image_dir_key
}
"
"
${
_img_dir
}
"
)
set_benchmark
=
$(
func_set_params
"
${
benchmark_key
}
"
"
${
benchmark_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
batch_size_key
}
"
"
${
batch_size
}
"
)
...
...
@@ -158,16 +194,148 @@ function func_inference(){
done
}
# set cuda device
GPUID
=
$2
if
[
${#
GPUID
}
-le
0
]
;
then
if
[
${
MODE
}
=
"infer"
]
||
[
${
MODE
}
=
"klquant_infer"
]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
else
else
env
=
"export CUDA_VISIBLE_DEVICES=
${
GPUID
}
"
fi
set
CUDA_VISIBLE_DEVICES
eval
$env
fi
# set CUDA_VISIBLE_DEVICES
eval
$env
export
Count
=
0
IFS
=
"|"
infer_run_exports
=(
${
infer_export_list
}
)
infer_quant_flag
=(
${
infer_is_quant
}
)
for
infer_model
in
${
infer_model_dir_list
[*]
}
;
do
# run export
if
[
${
infer_run_exports
[Count]
}
!=
"null"
]
;
then
save_infer_dir
=
$(
dirname
$infer_model
)
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
infer_model
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_dir
}
"
)
export_cmd
=
"
${
python
}
${
infer_run_exports
[Count]
}
${
set_export_weight
}
${
set_save_infer_key
}
"
echo
${
infer_run_exports
[Count]
}
echo
$export_cmd
eval
$export_cmd
status_export
=
$?
status_check
$status_export
"
${
export_cmd
}
"
"
${
status_log
}
"
else
save_infer_dir
=
${
infer_model
}
fi
#run inference
is_quant
=
${
infer_quant_flag
[Count]
}
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
save_infer_dir
}
"
"
${
LOG_PATH
}
"
"
${
infer_img_dir
}
"
${
is_quant
}
Count
=
$((
$Count
+
1
))
done
else
IFS
=
"|"
export
Count
=
0
USE_GPU_KEY
=(
${
train_use_gpu_value
}
)
for
gpu
in
${
gpu_list
[*]
}
;
do
use_gpu
=
${
USE_GPU_KEY
[Count]
}
Count
=
$((
$Count
+
1
))
if
[
${
gpu
}
=
"-1"
]
;
then
env
=
""
elif
[
${#
gpu
}
-le
1
]
;
then
env
=
"export CUDA_VISIBLE_DEVICES=
${
gpu
}
"
eval
${
env
}
elif
[
${#
gpu
}
-le
15
]
;
then
IFS
=
","
array
=(
${
gpu
}
)
env
=
"export CUDA_VISIBLE_DEVICES=
${
array
[0]
}
"
IFS
=
"|"
else
IFS
=
";"
array
=(
${
gpu
}
)
ips
=
${
array
[0]
}
gpu
=
${
array
[1]
}
IFS
=
"|"
env
=
" "
fi
for
autocast
in
${
autocast_list
[*]
}
;
do
for
trainer
in
${
trainer_list
[*]
}
;
do
flag_quant
=
False
if
[
${
trainer
}
=
${
pact_key
}
]
;
then
run_train
=
${
pact_trainer
}
run_export
=
${
pact_export
}
flag_quant
=
True
elif
[
${
trainer
}
=
"
${
fpgm_key
}
"
]
;
then
run_train
=
${
fpgm_trainer
}
run_export
=
${
fpgm_export
}
elif
[
${
trainer
}
=
"
${
distill_key
}
"
]
;
then
run_train
=
${
distill_trainer
}
run_export
=
${
distill_export
}
elif
[
${
trainer
}
=
${
trainer_key1
}
]
;
then
run_train
=
${
trainer_value1
}
run_export
=
${
export_value1
}
elif
[[
${
trainer
}
=
${
trainer_key2
}
]]
;
then
run_train
=
${
trainer_value2
}
run_export
=
${
export_value2
}
else
run_train
=
${
norm_trainer
}
run_export
=
${
norm_export
}
fi
if
[
${
run_train
}
=
"null"
]
;
then
continue
fi
set_autocast
=
$(
func_set_params
"
${
autocast_key
}
"
"
${
autocast
}
"
)
set_epoch
=
$(
func_set_params
"
${
epoch_key
}
"
"
${
epoch_num
}
"
)
set_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
pretrain_model_value
}
"
)
set_batchsize
=
$(
func_set_params
"
${
train_batch_key
}
"
"
${
train_batch_value
}
"
)
set_train_params1
=
$(
func_set_params
"
${
train_param_key1
}
"
"
${
train_param_value1
}
"
)
set_use_gpu
=
$(
func_set_params
"
${
train_use_gpu_key
}
"
"
${
use_gpu
}
"
)
save_log
=
"
${
LOG_PATH
}
/
${
trainer
}
_gpus_
${
gpu
}
_autocast_
${
autocast
}
"
# load pretrain from norm training if current trainer is pact or fpgm trainer
if
[
${
trainer
}
=
${
pact_key
}
]
||
[
${
trainer
}
=
${
fpgm_key
}
]
;
then
set_pretrain
=
"
${
load_norm_train_model
}
"
fi
set_save_model
=
$(
func_set_params
"
${
save_model_key
}
"
"
${
save_log
}
"
)
if
[
${#
gpu
}
-le
2
]
;
then
# train with cpu or single gpu
cmd
=
"
${
python
}
${
run_train
}
${
set_use_gpu
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
elif
[
${#
gpu
}
-le
15
]
;
then
# train with multi-gpu
cmd
=
"
${
python
}
-m paddle.distributed.launch --gpus=
${
gpu
}
${
run_train
}
${
set_save_model
}
${
set_epoch
}
${
set_pretrain
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
else
# train with multi-machine
cmd
=
"
${
python
}
-m paddle.distributed.launch --ips=
${
ips
}
--gpus=
${
gpu
}
${
run_train
}
${
set_save_model
}
${
set_pretrain
}
${
set_epoch
}
${
set_autocast
}
${
set_batchsize
}
${
set_train_params1
}
"
fi
# run train
eval
"unset CUDA_VISIBLE_DEVICES"
eval
$cmd
status_check
$?
"
${
cmd
}
"
"
${
status_log
}
"
set_eval_pretrain
=
$(
func_set_params
"
${
pretrain_model_key
}
"
"
${
save_log
}
/
${
train_model_name
}
"
)
# save norm trained models to set pretrain for pact training and fpgm training
if
[
${
trainer
}
=
${
trainer_norm
}
]
;
then
load_norm_train_model
=
${
set_eval_pretrain
}
fi
# run eval
if
[
${
eval_py
}
!=
"null"
]
;
then
set_eval_params1
=
$(
func_set_params
"
${
eval_key1
}
"
"
${
eval_value1
}
"
)
eval_cmd
=
"
${
python
}
${
eval_py
}
${
set_eval_pretrain
}
${
set_use_gpu
}
${
set_eval_params1
}
"
eval
$eval_cmd
status_check
$?
"
${
eval_cmd
}
"
"
${
status_log
}
"
fi
# run export model
if
[
${
run_export
}
!=
"null"
]
;
then
# run export model
save_infer_path
=
"
${
save_log
}
"
set_export_weight
=
$(
func_set_params
"
${
export_weight
}
"
"
${
save_log
}
/
${
train_model_name
}
"
)
set_save_infer_key
=
$(
func_set_params
"
${
save_infer_key
}
"
"
${
save_infer_path
}
"
)
export_cmd
=
"
${
python
}
${
run_export
}
${
set_export_weight
}
${
set_save_infer_key
}
"
eval
$export_cmd
status_check
$?
"
${
export_cmd
}
"
"
${
status_log
}
"
#run inference
eval
$env
save_infer_path
=
"
${
save_log
}
"
func_inference
"
${
python
}
"
"
${
inference_py
}
"
"
${
save_infer_path
}
"
"
${
LOG_PATH
}
"
"
${
train_infer_img_dir
}
"
"
${
flag_quant
}
"
eval
"unset CUDA_VISIBLE_DEVICES"
fi
done
# done with: for trainer in ${trainer_list[*]}; do
done
# done with: for autocast in ${autocast_list[*]}; do
done
# done with: for gpu in ${gpu_list[*]}; do
fi
# end if [ ${MODE} = "infer" ]; then
echo
"################### run test ###################"
tools/infer/predict_e2e.py
View file @
3d695fcc
...
...
@@ -141,7 +141,6 @@ if __name__ == "__main__":
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
img
=
cv2
.
imread
(
image_file
)
img
=
img
[:,
:,
::
-
1
]
if
img
is
None
:
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment