@@ -8,9 +8,12 @@ PPOCRLabel is a semi-automatic graphic annotation tool suitable for OCR field, w
### Recent Update
- 2021.8.11:
- New functions: Open the dataset folder, image rotation (Note: Please delete the label box before rotating the image) (by [Wei-JL](https://github.com/Wei-JL))
- Added shortcut key description (Help-Shortcut Key), repaired the direction shortcut key movement function under batch processing (by [d2623587501](https://github.com/d2623587501))
- 2021.2.5: New batch processing and undo functions (by [Evezerest](https://github.com/Evezerest)):
- Batch processing function: Press and hold the Ctrl key to select the box, you can move, copy, and delete in batches.
- Undo function: In the process of drawing a four-point label box or after editing the box, press Ctrl+Z to undo the previous operation.
-**Batch processing function**: Press and hold the Ctrl key to select the box, you can move, copy, and delete in batches.
-**Undo function**: In the process of drawing a four-point label box or after editing the box, press Ctrl+Z to undo the previous operation.
- Fix image rotation and size problems, optimize the process of editing the mark frame (by [ninetailskim](https://github.com/ninetailskim)、 [edencfc](https://github.com/edencfc)).
- 2021.1.11: Optimize the labeling experience (by [edencfc](https://github.com/edencfc)),
- Users can choose whether to pop up the label input dialog after drawing the detection box in "View - Pop-up Label Input Dialog".
...
...
@@ -23,15 +26,51 @@ PPOCRLabel is a semi-automatic graphic annotation tool suitable for OCR field, w
## Installation
### 1. Install PaddleOCR
### 1. Environment Preparation
PaddleOCR models has been built in PPOCRLabel, please refer to [PaddleOCR installation document](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/installation.md) to prepare PaddleOCR and make sure it works.
#### **Install PaddlePaddle 2.0**
```bash
pip3 install--upgrade pip
# If you have cuda9 or cuda10 installed on your machine, please run the following command to install
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
# Note: The cloud-hosting code may not be able to synchronize the update with this GitHub project in real time. There might be a delay of 3-5 days. Please give priority to the recommended method.
```
#### **Install Third-party Libraries**
```bash
cd PaddleOCR
pip3 install-r requirements.txt
```
If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file using http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely.
Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
### 2. Install PPOCRLabel
#### Windows
```
```bash
pip install pyqt5
cd ./PPOCRLabel # Change the directory to the PPOCRLabel folder
python PPOCRLabel.py
...
...
@@ -39,15 +78,15 @@ python PPOCRLabel.py
#### Ubuntu Linux
```
```bash
pip3 install pyqt5
pip3 install trash-cli
cd ./PPOCRLabel # Change the directory to the PPOCRLabel folder
python3 PPOCRLabel.py
```
#### macOS
```
#### MacOS
```bash
pip3 install pyqt5
pip3 uninstall opencv-python # Uninstall opencv manually as it conflicts with pyqt
pip3 install opencv-contrib-python-headless==4.2.0.32 # Install the headless version of opencv
...
...
@@ -77,11 +116,11 @@ python3 PPOCRLabel.py
7. Double click the result in 'recognition result' list to manually change inaccurate recognition results.
8. Click "Check", the image status will switch to "√",then the program automatically jump to the next.
8.**Click "Check", the image status will switch to "√",then the program automatically jump to the next.**
9. Click "Delete Image" and the image will be deleted to the recycle bin.
10. Labeling result: the user can save manually through the menu "File - Save Label", while the program will also save automatically if "File - Auto Save Label Mode" is selected. The manually checked label will be stored in *Label.txt* under the opened picture folder. Click "PaddleOCR"-"Save Recognition Results" in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*<sup>[4]</sup>.
10. Labeling result: the user can export the label result manually through the menu "File - Export Label", while the program will also export automatically if "File - Auto export Label Mode" is selected. The manually checked label will be stored in *Label.txt* under the opened picture folder. Click "File"-"Export Recognition Results" in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*<sup>[4]</sup>.
| Label.txt | The detection label file can be directly used for PPOCR detection model training. After the user saves 5 label results, the file will be automatically saved. It will also be written when the user closes the application or changes the file folder. |
| Label.txt | The detection label file can be directly used for PPOCR detection model training. After the user saves 5 label results, the file will be automatically exported. It will also be written when the user closes the application or changes the file folder. |
| fileState.txt | The picture status file save the image in the current folder that has been manually confirmed by the user. |
| Cache.cach | Cache files to save the results of model recognition. |
| rec_gt.txt | The recognition label file, which can be directly used for PPOCR identification model training, is generated after the user clicks on the menu bar "File"-"Save recognition result". |
| rec_gt.txt | The recognition label file, which can be directly used for PPOCR identification model training, is generated after the user clicks on the menu bar "File"-"Export recognition result". |
| crop_img | The recognition data, generated at the same time with *rec_gt.txt* |
## Explanation
...
...
@@ -132,16 +171,16 @@ python3 PPOCRLabel.py
- Custom model: The model trained by users can be replaced by modifying PPOCRLabel.py in [PaddleOCR class instantiation](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/PPOCRLabel/PPOCRLabel.py#L110) referring [Custom Model Code](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/whl_en.md#use-custom-model)
### Save
### Export Label Result
PPOCRLabel supports three ways to save Label.txt
PPOCRLabel supports three ways to export Label.txt
- Automatically save: After selecting "File - Auto Save Label Mode", the program will automatically write the annotations into Label.txt every time the user confirms an image. If this option is not turned on, it will be automatically saved after detecting that the user has manually checked 5 images.
- Manual save: Click "File-Save Marking Results" to manually save the label.
- Close application save
- Automatically export: After selecting "File - Auto Export Label Mode", the program will automatically write the annotations into Label.txt every time the user confirms an image. If this option is not turned on, it will be automatically exported after detecting that the user has manually checked 5 images.
- Manual export: Click "File-Export Marking Results" to manually export the label.
- Close application export
### Export partial recognition results
### Export Partial Recognition Results
For some data that are difficult to recognize, the recognition results will not be exported by **unchecking** the corresponding tags in the recognition results checkbox.
Specifically, the content in `tools/build.sh` is as follows.
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
BUILD_DIR=build
rm-rf${BUILD_DIR}
mkdir${BUILD_DIR}
cd${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR}\
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR}\
-DCUDNN_LIB=${CUDNN_LIB_DIR}\
-DCUDA_LIB=${CUDA_LIB_DIR}\
make -j
```
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`paddle_inference` folder)
...
...
@@ -193,48 +176,84 @@ or the generated Paddle inference library path (`build/paddle_inference_install_
`CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
* After the compilation is completed, an executable file named `ocr_system` will be generated in the `build` folder.
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
### Run the demo
* Execute the following command to complete the OCR recognition and detection of an image.
Execute the built executable file:
```shell
./build/ppocr <mode> [--param1][--param2][...]
```
Here, `mode` is a required parameter,and the value range is ['det', 'rec', 'system'], representing using detection only, using recognition only and using the end-to-end system respectively. Specifically,
* If you want to orientation classifier to correct the detected boxes, you can set `use_angle_cls` in the file `tools/config.txt` as 1 to enable the function.
* What's more, Parameters and their meanings in `tools/config.txt` are as follows.
More parameters are as follows,
- common parameters
```
use_gpu 0 # Whether to use GPU, 0 means not to use, 1 means to use
gpu_id 0 # GPU id when use_gpu is 1
gpu_mem 4000 # GPU memory requested
cpu_math_library_num_threads 10 # Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed
use_mkldnn 1 # Whether to use mkdlnn library
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|use_mkldnn|bool|true|Whether to use mkdlnn library|
max_side_len 960 # Limit the maximum image height and width to 960
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
use_polygon_score 1 # Whether to use polygon box to calculate bbox score, 0 means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.
det_model_dir ./inference/det_db # Address of detection inference model
- detection related parameters
# cls config
use_angle_cls 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
cls_model_dir ./inference/cls # Address of direction classifier inference model
cls_thresh 0.9 # Score threshold of the direction classifier
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, The prediction result will be save in the image file `./ocr_vis.png`.|
# rec config
rec_model_dir ./inference/rec_crnn # Address of recognition inference model
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir` in file `tools/config.txt`.
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir`.
The detection results will be shown on the screen, which is as follows.