Commit 315c07d5 authored by LDOUBLEV's avatar LDOUBLEV
Browse files

fix conflicts

parents 551377a0 0ec11a29
......@@ -324,7 +324,6 @@ Eval:
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
# GPU 评估, Global.checkpoints 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
......@@ -342,7 +341,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
```
# 预测英文结果
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png
```
预测图片:
......@@ -361,7 +360,7 @@ infer_img: doc/imgs_words/en/word_1.png
```
# 预测中文结果
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
预测图片:
......
......@@ -11,11 +11,12 @@
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
@inproceedings{liao2020real,
title={Real-Time Scene Text Detection with Differentiable Binarization.},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
booktitle={AAAI},
pages={11474--11481},
year={2020}
}
3. DTRB:
......@@ -37,10 +38,11 @@
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
@inproceedings{yu2020towards,
title={Towards accurate scene text recognition with semantic reasoning networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Liu, Tao and Han, Junyu and Liu, Jingtuo and Ding, Errui},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12113--12122},
year={2020}
}
......@@ -52,4 +54,62 @@
pages={9086--9095},
year={2019}
}
```
\ No newline at end of file
7. CRNN:
@article{shi2016end,
title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition},
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={39},
number={11},
pages={2298--2304},
year={2016},
publisher={IEEE}
}
8. FPGM:
@inproceedings{he2019filter,
title={Filter pruning via geometric median for deep convolutional neural networks acceleration},
author={He, Yang and Liu, Ping and Wang, Ziwei and Hu, Zhilan and Yang, Yi},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={4340--4349},
year={2019}
}
9. PACT:
@article{choi2018pact,
title={Pact: Parameterized clipping activation for quantized neural networks},
author={Choi, Jungwook and Wang, Zhuo and Venkataramani, Swagath and Chuang, Pierce I-Jen and Srinivasan, Vijayalakshmi and Gopalakrishnan, Kailash},
journal={arXiv preprint arXiv:1805.06085},
year={2018}
}
10.Rosetta
@inproceedings{borisyuk2018rosetta,
title={Rosetta: Large scale system for text detection and recognition in images},
author={Borisyuk, Fedor and Gordo, Albert and Sivakumar, Viswanath},
booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={71--79},
year={2018}
}
11.STAR-Net
@inproceedings{liu2016star,
title={STAR-Net: A SpaTial Attention Residue Network for Scene Text Recognition.},
author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
booktitle={BMVC},
volume={2},
pages={7},
year={2016}
}
12.RARE
@inproceedings{shi2016robust,
title={Robust scene text recognition with automatic rectification},
author={Shi, Baoguang and Wang, Xinggang and Lyu, Pengyuan and Yao, Cong and Bai, Xiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4168--4176},
year={2016}
}
```
......@@ -11,9 +11,9 @@ This tutorial lists the text detection algorithms and text recognition algorithm
### 1. Text Detection Algorithm
PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [x] SAST([paper](https://arxiv.org/abs/1908.05498) )(Baidu Self-Research)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
- [x] DB([paper](https://arxiv.org/abs/1911.08947))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
On the ICDAR2015 dataset, the text detection result is as follows:
......@@ -39,11 +39,11 @@ For the training guide and use of PaddleOCR text detection algorithms, please re
### 2. Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1)) coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294) )(Baidu Self-Research) coming soon
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
......
......@@ -119,7 +119,7 @@ Use `Global.infer_img` to specify the path of the predicted picture or folder, a
```
# Predict English results
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_10.png
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words_en/word_10.png
```
Input image:
......
......@@ -113,16 +113,16 @@ python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{pat
Test the detection result on a single image:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
When testing the DB model, adjust the post-processing threshold:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
Test the detection result on all images in the folder:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
......@@ -255,15 +255,18 @@ The following will introduce the lightweight Chinese recognition model inference
For lightweight Chinese recognition model inference, you can execute the following commands:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
# download CRNN text recognition inference model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```
![](../imgs_words/ch/word_4.jpg)
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
```
<a name="CTC-BASED_RECOGNITION"></a>
......@@ -339,7 +342,12 @@ For angle classification model inference, you can execute the following commands
```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
```
```
# download text angle class inference model:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.
......
......@@ -317,11 +317,11 @@ Eval:
<a name="EVALUATION"></a>
### EVALUATION
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
```
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
<a name="PREDICTION"></a>
......@@ -336,7 +336,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci
```
# Predict English results
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
```
Input image:
......@@ -354,7 +354,7 @@ The configuration file used for prediction must be consistent with the training.
```
# Predict Chinese results
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
Input image:
......
......@@ -262,8 +262,8 @@ class PaddleOCR(predict_system.TextSystem):
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
postprocess_params.rec_char_dict_path = Path(
__file__).parent / postprocess_params.rec_char_dict_path
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
# init det_model and rec_model
super().__init__(postprocess_params)
......
......@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer):
self.balance_loss = balance_loss
self.main_loss_type = main_loss_type
self.negative_ratio = negative_ratio
self.main_loss_type = main_loss_type
self.return_origin = return_origin
self.eps = eps
......
......@@ -19,7 +19,6 @@ from __future__ import print_function
import paddle
from paddle import nn
from .det_basic_loss import DiceLoss
import paddle.fluid as fluid
import numpy as np
......@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
"""
"""
def __init__(self,
eps=1e-6,
**kwargs):
def __init__(self, eps=1e-6, **kwargs):
super(SASTLoss, self).__init__()
self.dice_loss = DiceLoss(eps=eps)
......@@ -39,7 +36,7 @@ class SASTLoss(nn.Layer):
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
"""
f_score = predicts['f_score']
f_border = predicts['f_border']
f_tvo = predicts['f_tvo']
......@@ -53,15 +50,17 @@ class SASTLoss(nn.Layer):
score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss
l_border_split, l_border_norm = paddle.split(l_border, num_or_sections=[4, 1], axis=1)
l_border_split, l_border_norm = paddle.split(
l_border, num_or_sections=[4, 1], axis=1)
f_border_split = f_border
border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
l_border_norm_split = paddle.expand(x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
l_border_norm_split = paddle.expand(
x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
border_diff = l_border_split - f_border_split
abs_border_diff = paddle.abs(border_diff)
abs_border_diff = paddle.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = paddle.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
......@@ -72,15 +71,16 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss
l_tvo_split, l_tvo_norm = paddle.split(l_tvo, num_or_sections=[8, 1], axis=1)
l_tvo_split, l_tvo_norm = paddle.split(
l_tvo, num_or_sections=[8, 1], axis=1)
f_tvo_split = f_tvo
tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
#
tvo_geo_diff = l_tvo_split - f_tvo_split
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
tvo_sign = abs_tvo_geo_diff < 1.0
tvo_sign = paddle.cast(tvo_sign, dtype='float32')
tvo_sign.stop_gradient = True
......@@ -91,15 +91,16 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss
l_tco_split, l_tco_norm = paddle.split(l_tco, num_or_sections=[2, 1], axis=1)
l_tco_split, l_tco_norm = paddle.split(
l_tco, num_or_sections=[2, 1], axis=1)
f_tco_split = f_tco
tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
tco_geo_diff = l_tco_split - f_tco_split
abs_tco_geo_diff = paddle.abs(tco_geo_diff)
abs_tco_geo_diff = paddle.abs(tco_geo_diff)
tco_sign = abs_tco_geo_diff < 1.0
tco_sign = paddle.cast(tco_sign, dtype='float32')
tco_sign.stop_gradient = True
......@@ -109,13 +110,12 @@ class SASTLoss(nn.Layer):
tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss
tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0
total_loss = score_loss * score_lw + border_loss * border_lw + \
tvo_loss * tvo_lw + tco_loss * tco_lw
losses = {'loss':total_loss, "score_loss":score_loss,\
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
return losses
\ No newline at end of file
return losses
......@@ -32,7 +32,7 @@ setup(
package_dir={'paddleocr': ''},
include_package_data=True,
entry_points={"console_scripts": ["paddleocr= paddleocr.paddleocr:main"]},
version='2.0.1',
version='2.0.2',
install_requires=requirements,
license='Apache License 2.0',
description='Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',
......
......@@ -24,7 +24,6 @@ import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
......@@ -39,7 +38,6 @@ class TextClassifier(object):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num
self.cls_thresh = args.cls_thresh
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'ClsPostProcess',
"label_list": args.label_list,
......@@ -99,12 +97,8 @@ class TextClassifier(object):
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
......@@ -143,10 +137,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
cls_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())
......@@ -22,7 +22,6 @@ import cv2
import numpy as np
import time
import sys
import paddle
import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
......@@ -35,8 +34,8 @@ logger = get_logger()
class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
......@@ -70,6 +69,11 @@ class TextDetector(object):
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
}
postprocess_params['name'] = 'SASTPostProcess'
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
......@@ -157,12 +161,8 @@ class TextDetector(object):
img = img.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(img)
self.predictor.zero_copy_run()
else:
im = paddle.fluid.core.PaddleTensor(img)
self.predictor.run([im])
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
......
......@@ -23,7 +23,6 @@ import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
......@@ -39,7 +38,6 @@ class TextRecognizer(object):
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'CTCLabelDecode',
"character_type": args.rec_char_type,
......@@ -101,12 +99,8 @@ class TextRecognizer(object):
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
......@@ -145,8 +139,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
rec_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
......
......@@ -20,8 +20,7 @@ import numpy as np
import json
from PIL import Image, ImageDraw, ImageFont
import math
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
from paddle import inference
def parse_args():
......@@ -33,6 +32,7 @@ def parse_args():
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
# params for text detector
......@@ -46,7 +46,7 @@ def parse_args():
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
parser.add_argument("--max_batch_size", type=int, default=10)
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
......@@ -62,7 +62,7 @@ def parse_args():
parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=6)
parser.add_argument("--rec_batch_num", type=int, default=1)
parser.add_argument("--max_text_length", type=int, default=25)
parser.add_argument(
"--rec_char_dict_path",
......@@ -78,12 +78,10 @@ def parse_args():
parser.add_argument("--cls_model_dir", type=str)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=30)
parser.add_argument("--cls_batch_num", type=int, default=6)
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
return parser.parse_args()
......@@ -109,10 +107,15 @@ def create_predictor(args, mode, logger):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path)
config = inference.Config(model_file_path, params_file_path)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=inference.PrecisionType.Half
if args.use_fp16 else inference.PrecisionType.Float32,
max_batch_size=args.max_batch_size)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(6)
......@@ -124,20 +127,18 @@ def create_predictor(args, mode, logger):
# config.enable_memory_optim()
config.disable_glog_info()
if args.use_zero_copy_run:
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
else:
config.switch_use_feed_fetch_ops(True)
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
for name in input_names:
input_tensor = predictor.get_input_tensor(name)
input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
......
......@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
"model on CPU"
try:
if use_gpu and not paddle.fluid.is_compiled_with_cuda():
if use_gpu and not paddle.is_compiled_with_cuda():
print(err)
sys.exit(1)
except Exception as e:
......@@ -332,7 +332,7 @@ def eval(model, valid_dataloader, post_process_class, eval_class):
return metirc
def preprocess():
def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
......@@ -350,15 +350,17 @@ def preprocess():
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
logger = get_logger(
name='root', log_file='{}/train.log'.format(save_model_dir))
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
if config['Global']['use_visualdl']:
from visualdl import LogWriter
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
......
......@@ -110,6 +110,6 @@ def test_reader(config, device, logger):
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)
# test_reader(config, device, logger)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment