Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
297edfaa
Commit
297edfaa
authored
Jul 12, 2020
by
littletomatodonkey
Browse files
add cpp inference
parent
a987ec70
Changes
16
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
12739 additions
and
0 deletions
+12739
-0
.gitignore
.gitignore
+1
-0
deploy/cpp_infer/CMakeLists.txt
deploy/cpp_infer/CMakeLists.txt
+110
-0
deploy/cpp_infer/include/clipper.h
deploy/cpp_infer/include/clipper.h
+423
-0
deploy/cpp_infer/include/ocr_det.h
deploy/cpp_infer/include/ocr_det.h
+71
-0
deploy/cpp_infer/include/ocr_rec.h
deploy/cpp_infer/include/ocr_rec.h
+81
-0
deploy/cpp_infer/include/postprocess_op.h
deploy/cpp_infer/include/postprocess_op.h
+111
-0
deploy/cpp_infer/include/preprocess_op.h
deploy/cpp_infer/include/preprocess_op.h
+60
-0
deploy/cpp_infer/src/clipper.cpp
deploy/cpp_infer/src/clipper.cpp
+4380
-0
deploy/cpp_infer/src/main.cpp
deploy/cpp_infer/src/main.cpp
+67
-0
deploy/cpp_infer/src/ocr_det.cpp
deploy/cpp_infer/src/ocr_det.cpp
+142
-0
deploy/cpp_infer/src/ocr_rec.cpp
deploy/cpp_infer/src/ocr_rec.cpp
+218
-0
deploy/cpp_infer/src/postprocess_op.cpp
deploy/cpp_infer/src/postprocess_op.cpp
+307
-0
deploy/cpp_infer/src/preprocess_op.cpp
deploy/cpp_infer/src/preprocess_op.cpp
+119
-0
deploy/cpp_infer/tools/build.sh
deploy/cpp_infer/tools/build.sh
+24
-0
deploy/cpp_infer/tools/ppocr_keys_v1.txt
deploy/cpp_infer/tools/ppocr_keys_v1.txt
+6623
-0
deploy/cpp_infer/tools/run.sh
deploy/cpp_infer/tools/run.sh
+2
-0
No files found.
.gitignore
View file @
297edfaa
# Byte-compiled / optimized / DLL files
__pycache__/
.ipynb_checkpoints/
*.py[cod]
*$py.class
...
...
deploy/cpp_infer/CMakeLists.txt
0 → 100644
View file @
297edfaa
project
(
ocr_system CXX C
)
option
(
WITH_MKL
"Compile demo with MKL/OpenBlas support, default use MKL."
ON
)
option
(
WITH_GPU
"Compile demo with GPU/CPU, default use CPU."
OFF
)
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
ON
)
option
(
USE_TENSORRT
"Compile demo with TensorRT."
OFF
)
macro
(
safe_set_static_flag
)
foreach
(
flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
)
if
(
${
flag_var
}
MATCHES
"/MD"
)
string
(
REGEX REPLACE
"/MD"
"/MT"
${
flag_var
}
"
${${
flag_var
}}
"
)
endif
(
${
flag_var
}
MATCHES
"/MD"
)
endforeach
(
flag_var
)
endmacro
()
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-std=c++11 -g -fpermissive"
)
set
(
CMAKE_STATIC_LIBRARY_PREFIX
""
)
message
(
"flags"
${
CMAKE_CXX_FLAGS
}
)
set
(
CMAKE_CXX_FLAGS_RELEASE
"-O3"
)
if
(
NOT DEFINED PADDLE_LIB
)
message
(
FATAL_ERROR
"please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib"
)
endif
()
if
(
NOT DEFINED DEMO_NAME
)
message
(
FATAL_ERROR
"please set DEMO_NAME with -DDEMO_NAME=demo_name"
)
endif
()
# user ze
# find_package(OpenCV)
set
(
OPENCV_DIR
"/paddle/libs/opencv-3.4.7/opencv3"
)
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
include_directories
(
"
${
PADDLE_LIB
}
/paddle/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/boost"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/eigen3"
)
include_directories
(
"
${
CMAKE_SOURCE_DIR
}
/"
)
if
(
USE_TENSORRT AND WITH_GPU
)
include_directories
(
"
${
TENSORRT_ROOT
}
/include"
)
link_directories
(
"
${
TENSORRT_ROOT
}
/lib"
)
endif
()
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/zlib/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/third_party/install/xxhash/lib"
)
link_directories
(
"
${
PADDLE_LIB
}
/paddle/lib"
)
add_executable
(
${
DEMO_NAME
}
src/main.cpp src/ocr_det.cpp src/ocr_rec.cpp src/preprocess_op.cpp src/clipper.cpp src/postprocess_op.cpp
)
if
(
WITH_MKL
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/mklml/include"
)
set
(
MATH_LIB
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libmklml_intel
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
${
PADDLE_LIB
}
/third_party/install/mklml/lib/libiomp5
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
MKLDNN_PATH
"
${
PADDLE_LIB
}
/third_party/install/mkldnn"
)
if
(
EXISTS
${
MKLDNN_PATH
}
)
include_directories
(
"
${
MKLDNN_PATH
}
/include"
)
set
(
MKLDNN_LIB
${
MKLDNN_PATH
}
/lib/libmkldnn.so.0
)
endif
()
else
()
set
(
MATH_LIB
${
PADDLE_LIB
}
/third_party/install/openblas/lib/libopenblas
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
if
(
WITH_STATIC_LIB
)
set
(
DEPS
${
PADDLE_LIB
}
/paddle/lib/libpaddle_fluid
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
else
()
set
(
DEPS
${
PADDLE_LIB
}
/paddle/lib/libpaddle_fluid
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
# user ze
# set(EXTERNAL_LIB "-lrt -ldl -lpthread -lm -lopencv_world")
# gry
set
(
EXTERNAL_LIB
"-lrt -ldl -lpthread -lm"
)
set
(
DEPS
${
DEPS
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
glog gflags protobuf z xxhash
${
EXTERNAL_LIB
}
${
OpenCV_LIBS
}
)
if
(
WITH_GPU
)
if
(
USE_TENSORRT
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_ROOT
}
/lib/libnvinfer
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_ROOT
}
/lib/libnvinfer_plugin
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/libcudart
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/libcudart
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/libcublas
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDNN_LIB
}
/libcudnn
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
target_link_libraries
(
${
DEMO_NAME
}
${
DEPS
}
)
deploy/cpp_infer/include/clipper.h
0 → 100644
View file @
297edfaa
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#define CLIPPER_VERSION "6.4.2"
// use_int32: When enabled 32bit ints are used instead of 64bit ints. This
// improve performance but coordinate values are limited to the range +/- 46340
//#define use_int32
// use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
// use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
// use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <cstdlib>
#include <cstring>
#include <functional>
#include <list>
#include <ostream>
#include <queue>
#include <set>
#include <stdexcept>
#include <vector>
namespace
ClipperLib
{
enum
ClipType
{
ctIntersection
,
ctUnion
,
ctDifference
,
ctXor
};
enum
PolyType
{
ptSubject
,
ptClip
};
// By far the most widely used winding rules for polygon filling are
// EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
// Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
// see http://glprogramming.com/red/chapter11.html
enum
PolyFillType
{
pftEvenOdd
,
pftNonZero
,
pftPositive
,
pftNegative
};
#ifdef use_int32
typedef
int
cInt
;
static
cInt
const
loRange
=
0x7FFF
;
static
cInt
const
hiRange
=
0x7FFF
;
#else
typedef
signed
long
long
cInt
;
static
cInt
const
loRange
=
0x3FFFFFFF
;
static
cInt
const
hiRange
=
0x3FFFFFFFFFFFFFFFLL
;
typedef
signed
long
long
long64
;
// used by Int128 class
typedef
unsigned
long
long
ulong64
;
#endif
struct
IntPoint
{
cInt
X
;
cInt
Y
;
#ifdef use_xyz
cInt
Z
;
IntPoint
(
cInt
x
=
0
,
cInt
y
=
0
,
cInt
z
=
0
)
:
X
(
x
),
Y
(
y
),
Z
(
z
){};
#else
IntPoint
(
cInt
x
=
0
,
cInt
y
=
0
)
:
X
(
x
),
Y
(
y
){};
#endif
friend
inline
bool
operator
==
(
const
IntPoint
&
a
,
const
IntPoint
&
b
)
{
return
a
.
X
==
b
.
X
&&
a
.
Y
==
b
.
Y
;
}
friend
inline
bool
operator
!=
(
const
IntPoint
&
a
,
const
IntPoint
&
b
)
{
return
a
.
X
!=
b
.
X
||
a
.
Y
!=
b
.
Y
;
}
};
//------------------------------------------------------------------------------
typedef
std
::
vector
<
IntPoint
>
Path
;
typedef
std
::
vector
<
Path
>
Paths
;
inline
Path
&
operator
<<
(
Path
&
poly
,
const
IntPoint
&
p
)
{
poly
.
push_back
(
p
);
return
poly
;
}
inline
Paths
&
operator
<<
(
Paths
&
polys
,
const
Path
&
p
)
{
polys
.
push_back
(
p
);
return
polys
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
IntPoint
&
p
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
Path
&
p
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
const
Paths
&
p
);
struct
DoublePoint
{
double
X
;
double
Y
;
DoublePoint
(
double
x
=
0
,
double
y
=
0
)
:
X
(
x
),
Y
(
y
)
{}
DoublePoint
(
IntPoint
ip
)
:
X
((
double
)
ip
.
X
),
Y
((
double
)
ip
.
Y
)
{}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef
void
(
*
ZFillCallback
)(
IntPoint
&
e1bot
,
IntPoint
&
e1top
,
IntPoint
&
e2bot
,
IntPoint
&
e2top
,
IntPoint
&
pt
);
#endif
enum
InitOptions
{
ioReverseSolution
=
1
,
ioStrictlySimple
=
2
,
ioPreserveCollinear
=
4
};
enum
JoinType
{
jtSquare
,
jtRound
,
jtMiter
};
enum
EndType
{
etClosedPolygon
,
etClosedLine
,
etOpenButt
,
etOpenSquare
,
etOpenRound
};
class
PolyNode
;
typedef
std
::
vector
<
PolyNode
*>
PolyNodes
;
class
PolyNode
{
public:
PolyNode
();
virtual
~
PolyNode
(){};
Path
Contour
;
PolyNodes
Childs
;
PolyNode
*
Parent
;
PolyNode
*
GetNext
()
const
;
bool
IsHole
()
const
;
bool
IsOpen
()
const
;
int
ChildCount
()
const
;
private:
// PolyNode& operator =(PolyNode& other);
unsigned
Index
;
// node index in Parent.Childs
bool
m_IsOpen
;
JoinType
m_jointype
;
EndType
m_endtype
;
PolyNode
*
GetNextSiblingUp
()
const
;
void
AddChild
(
PolyNode
&
child
);
friend
class
Clipper
;
// to access Index
friend
class
ClipperOffset
;
};
class
PolyTree
:
public
PolyNode
{
public:
~
PolyTree
()
{
Clear
();
};
PolyNode
*
GetFirst
()
const
;
void
Clear
();
int
Total
()
const
;
private:
// PolyTree& operator =(PolyTree& other);
PolyNodes
AllNodes
;
friend
class
Clipper
;
// to access AllNodes
};
bool
Orientation
(
const
Path
&
poly
);
double
Area
(
const
Path
&
poly
);
int
PointInPolygon
(
const
IntPoint
&
pt
,
const
Path
&
path
);
void
SimplifyPolygon
(
const
Path
&
in_poly
,
Paths
&
out_polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
SimplifyPolygons
(
const
Paths
&
in_polys
,
Paths
&
out_polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
SimplifyPolygons
(
Paths
&
polys
,
PolyFillType
fillType
=
pftEvenOdd
);
void
CleanPolygon
(
const
Path
&
in_poly
,
Path
&
out_poly
,
double
distance
=
1.415
);
void
CleanPolygon
(
Path
&
poly
,
double
distance
=
1.415
);
void
CleanPolygons
(
const
Paths
&
in_polys
,
Paths
&
out_polys
,
double
distance
=
1.415
);
void
CleanPolygons
(
Paths
&
polys
,
double
distance
=
1.415
);
void
MinkowskiSum
(
const
Path
&
pattern
,
const
Path
&
path
,
Paths
&
solution
,
bool
pathIsClosed
);
void
MinkowskiSum
(
const
Path
&
pattern
,
const
Paths
&
paths
,
Paths
&
solution
,
bool
pathIsClosed
);
void
MinkowskiDiff
(
const
Path
&
poly1
,
const
Path
&
poly2
,
Paths
&
solution
);
void
PolyTreeToPaths
(
const
PolyTree
&
polytree
,
Paths
&
paths
);
void
ClosedPathsFromPolyTree
(
const
PolyTree
&
polytree
,
Paths
&
paths
);
void
OpenPathsFromPolyTree
(
PolyTree
&
polytree
,
Paths
&
paths
);
void
ReversePath
(
Path
&
p
);
void
ReversePaths
(
Paths
&
p
);
struct
IntRect
{
cInt
left
;
cInt
top
;
cInt
right
;
cInt
bottom
;
};
// enums that are used internally ...
enum
EdgeSide
{
esLeft
=
1
,
esRight
=
2
};
// forward declarations (for stuff used internally) ...
struct
TEdge
;
struct
IntersectNode
;
struct
LocalMinimum
;
struct
OutPt
;
struct
OutRec
;
struct
Join
;
typedef
std
::
vector
<
OutRec
*>
PolyOutList
;
typedef
std
::
vector
<
TEdge
*>
EdgeList
;
typedef
std
::
vector
<
Join
*>
JoinList
;
typedef
std
::
vector
<
IntersectNode
*>
IntersectList
;
//------------------------------------------------------------------------------
// ClipperBase is the ancestor to the Clipper class. It should not be
// instantiated directly. This class simply abstracts the conversion of sets of
// polygon coordinates into edge objects that are stored in a LocalMinima list.
class
ClipperBase
{
public:
ClipperBase
();
virtual
~
ClipperBase
();
virtual
bool
AddPath
(
const
Path
&
pg
,
PolyType
PolyTyp
,
bool
Closed
);
bool
AddPaths
(
const
Paths
&
ppg
,
PolyType
PolyTyp
,
bool
Closed
);
virtual
void
Clear
();
IntRect
GetBounds
();
bool
PreserveCollinear
()
{
return
m_PreserveCollinear
;
};
void
PreserveCollinear
(
bool
value
)
{
m_PreserveCollinear
=
value
;
};
protected:
void
DisposeLocalMinimaList
();
TEdge
*
AddBoundsToLML
(
TEdge
*
e
,
bool
IsClosed
);
virtual
void
Reset
();
TEdge
*
ProcessBound
(
TEdge
*
E
,
bool
IsClockwise
);
void
InsertScanbeam
(
const
cInt
Y
);
bool
PopScanbeam
(
cInt
&
Y
);
bool
LocalMinimaPending
();
bool
PopLocalMinima
(
cInt
Y
,
const
LocalMinimum
*&
locMin
);
OutRec
*
CreateOutRec
();
void
DisposeAllOutRecs
();
void
DisposeOutRec
(
PolyOutList
::
size_type
index
);
void
SwapPositionsInAEL
(
TEdge
*
edge1
,
TEdge
*
edge2
);
void
DeleteFromAEL
(
TEdge
*
e
);
void
UpdateEdgeIntoAEL
(
TEdge
*&
e
);
typedef
std
::
vector
<
LocalMinimum
>
MinimaList
;
MinimaList
::
iterator
m_CurrentLM
;
MinimaList
m_MinimaList
;
bool
m_UseFullRange
;
EdgeList
m_edges
;
bool
m_PreserveCollinear
;
bool
m_HasOpenPaths
;
PolyOutList
m_PolyOuts
;
TEdge
*
m_ActiveEdges
;
typedef
std
::
priority_queue
<
cInt
>
ScanbeamList
;
ScanbeamList
m_Scanbeam
;
};
//------------------------------------------------------------------------------
class
Clipper
:
public
virtual
ClipperBase
{
public:
Clipper
(
int
initOptions
=
0
);
bool
Execute
(
ClipType
clipType
,
Paths
&
solution
,
PolyFillType
fillType
=
pftEvenOdd
);
bool
Execute
(
ClipType
clipType
,
Paths
&
solution
,
PolyFillType
subjFillType
,
PolyFillType
clipFillType
);
bool
Execute
(
ClipType
clipType
,
PolyTree
&
polytree
,
PolyFillType
fillType
=
pftEvenOdd
);
bool
Execute
(
ClipType
clipType
,
PolyTree
&
polytree
,
PolyFillType
subjFillType
,
PolyFillType
clipFillType
);
bool
ReverseSolution
()
{
return
m_ReverseOutput
;
};
void
ReverseSolution
(
bool
value
)
{
m_ReverseOutput
=
value
;
};
bool
StrictlySimple
()
{
return
m_StrictSimple
;
};
void
StrictlySimple
(
bool
value
)
{
m_StrictSimple
=
value
;
};
// set the callback function for z value filling on intersections (otherwise Z
// is 0)
#ifdef use_xyz
void
ZFillFunction
(
ZFillCallback
zFillFunc
);
#endif
protected:
virtual
bool
ExecuteInternal
();
private:
JoinList
m_Joins
;
JoinList
m_GhostJoins
;
IntersectList
m_IntersectList
;
ClipType
m_ClipType
;
typedef
std
::
list
<
cInt
>
MaximaList
;
MaximaList
m_Maxima
;
TEdge
*
m_SortedEdges
;
bool
m_ExecuteLocked
;
PolyFillType
m_ClipFillType
;
PolyFillType
m_SubjFillType
;
bool
m_ReverseOutput
;
bool
m_UsingPolyTree
;
bool
m_StrictSimple
;
#ifdef use_xyz
ZFillCallback
m_ZFill
;
// custom callback
#endif
void
SetWindingCount
(
TEdge
&
edge
);
bool
IsEvenOddFillType
(
const
TEdge
&
edge
)
const
;
bool
IsEvenOddAltFillType
(
const
TEdge
&
edge
)
const
;
void
InsertLocalMinimaIntoAEL
(
const
cInt
botY
);
void
InsertEdgeIntoAEL
(
TEdge
*
edge
,
TEdge
*
startEdge
);
void
AddEdgeToSEL
(
TEdge
*
edge
);
bool
PopEdgeFromSEL
(
TEdge
*&
edge
);
void
CopyAELToSEL
();
void
DeleteFromSEL
(
TEdge
*
e
);
void
SwapPositionsInSEL
(
TEdge
*
edge1
,
TEdge
*
edge2
);
bool
IsContributing
(
const
TEdge
&
edge
)
const
;
bool
IsTopHorz
(
const
cInt
XPos
);
void
DoMaxima
(
TEdge
*
e
);
void
ProcessHorizontals
();
void
ProcessHorizontal
(
TEdge
*
horzEdge
);
void
AddLocalMaxPoly
(
TEdge
*
e1
,
TEdge
*
e2
,
const
IntPoint
&
pt
);
OutPt
*
AddLocalMinPoly
(
TEdge
*
e1
,
TEdge
*
e2
,
const
IntPoint
&
pt
);
OutRec
*
GetOutRec
(
int
idx
);
void
AppendPolygon
(
TEdge
*
e1
,
TEdge
*
e2
);
void
IntersectEdges
(
TEdge
*
e1
,
TEdge
*
e2
,
IntPoint
&
pt
);
OutPt
*
AddOutPt
(
TEdge
*
e
,
const
IntPoint
&
pt
);
OutPt
*
GetLastOutPt
(
TEdge
*
e
);
bool
ProcessIntersections
(
const
cInt
topY
);
void
BuildIntersectList
(
const
cInt
topY
);
void
ProcessIntersectList
();
void
ProcessEdgesAtTopOfScanbeam
(
const
cInt
topY
);
void
BuildResult
(
Paths
&
polys
);
void
BuildResult2
(
PolyTree
&
polytree
);
void
SetHoleState
(
TEdge
*
e
,
OutRec
*
outrec
);
void
DisposeIntersectNodes
();
bool
FixupIntersectionOrder
();
void
FixupOutPolygon
(
OutRec
&
outrec
);
void
FixupOutPolyline
(
OutRec
&
outrec
);
bool
IsHole
(
TEdge
*
e
);
bool
FindOwnerFromSplitRecs
(
OutRec
&
outRec
,
OutRec
*&
currOrfl
);
void
FixHoleLinkage
(
OutRec
&
outrec
);
void
AddJoin
(
OutPt
*
op1
,
OutPt
*
op2
,
const
IntPoint
offPt
);
void
ClearJoins
();
void
ClearGhostJoins
();
void
AddGhostJoin
(
OutPt
*
op
,
const
IntPoint
offPt
);
bool
JoinPoints
(
Join
*
j
,
OutRec
*
outRec1
,
OutRec
*
outRec2
);
void
JoinCommonEdges
();
void
DoSimplePolygons
();
void
FixupFirstLefts1
(
OutRec
*
OldOutRec
,
OutRec
*
NewOutRec
);
void
FixupFirstLefts2
(
OutRec
*
InnerOutRec
,
OutRec
*
OuterOutRec
);
void
FixupFirstLefts3
(
OutRec
*
OldOutRec
,
OutRec
*
NewOutRec
);
#ifdef use_xyz
void
SetZ
(
IntPoint
&
pt
,
TEdge
&
e1
,
TEdge
&
e2
);
#endif
};
//------------------------------------------------------------------------------
class
ClipperOffset
{
public:
ClipperOffset
(
double
miterLimit
=
2.0
,
double
roundPrecision
=
0.25
);
~
ClipperOffset
();
void
AddPath
(
const
Path
&
path
,
JoinType
joinType
,
EndType
endType
);
void
AddPaths
(
const
Paths
&
paths
,
JoinType
joinType
,
EndType
endType
);
void
Execute
(
Paths
&
solution
,
double
delta
);
void
Execute
(
PolyTree
&
solution
,
double
delta
);
void
Clear
();
double
MiterLimit
;
double
ArcTolerance
;
private:
Paths
m_destPolys
;
Path
m_srcPoly
;
Path
m_destPoly
;
std
::
vector
<
DoublePoint
>
m_normals
;
double
m_delta
,
m_sinA
,
m_sin
,
m_cos
;
double
m_miterLim
,
m_StepsPerRad
;
IntPoint
m_lowest
;
PolyNode
m_polyNodes
;
void
FixOrientations
();
void
DoOffset
(
double
delta
);
void
OffsetPoint
(
int
j
,
int
&
k
,
JoinType
jointype
);
void
DoSquare
(
int
j
,
int
k
);
void
DoMiter
(
int
j
,
int
k
,
double
r
);
void
DoRound
(
int
j
,
int
k
);
};
//------------------------------------------------------------------------------
class
clipperException
:
public
std
::
exception
{
public:
clipperException
(
const
char
*
description
)
:
m_descr
(
description
)
{}
virtual
~
clipperException
()
throw
()
{}
virtual
const
char
*
what
()
const
throw
()
{
return
m_descr
.
c_str
();
}
private:
std
::
string
m_descr
;
};
//------------------------------------------------------------------------------
}
// ClipperLib namespace
#endif // clipper_hpp
deploy/cpp_infer/include/ocr_det.h
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/postprocess_op.h>
#include <include/preprocess_op.h>
namespace
PaddleOCR
{
class
DBDetector
{
public:
explicit
DBDetector
(
const
std
::
string
&
model_dir
,
bool
use_gpu
=
false
,
const
int
gpu_id
=
0
,
const
int
max_side_len
=
960
)
{
LoadModel
(
model_dir
,
use_gpu
);
this
->
max_side_len_
=
max_side_len
;
}
// Load Paddle inference model
void
LoadModel
(
const
std
::
string
&
model_dir
,
bool
use_gpu
,
const
int
min_subgraph_size
=
3
,
const
int
batch_size
=
1
,
const
int
gpu_id
=
0
);
// Run predictor
void
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
);
private:
std
::
shared_ptr
<
PaddlePredictor
>
predictor_
;
int
max_side_len_
=
960
;
std
::
vector
<
float
>
mean_
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
scale_
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
bool
is_scale_
=
true
;
// pre-process
ResizeImgType0
resize_op_
;
Normalize
normalize_op_
;
Permute
permute_op_
;
// post-process
PostProcessor
post_processor_
;
};
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/include/ocr_rec.h
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/postprocess_op.h>
#include <include/preprocess_op.h>
namespace
PaddleOCR
{
class
CRNNRecognizer
{
public:
explicit
CRNNRecognizer
(
const
std
::
string
&
model_dir
,
const
string
label_path
=
"./tools/ppocr_keys_v1.txt"
,
bool
use_gpu
=
false
,
const
int
gpu_id
=
0
)
{
LoadModel
(
model_dir
,
use_gpu
);
this
->
label_list_
=
ReadDict
(
label_path
);
}
// Load Paddle inference model
void
LoadModel
(
const
std
::
string
&
model_dir
,
bool
use_gpu
,
const
int
gpu_id
=
0
,
const
int
min_subgraph_size
=
3
,
const
int
batch_size
=
1
);
void
Run
(
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
,
cv
::
Mat
&
img
);
private:
std
::
shared_ptr
<
PaddlePredictor
>
predictor_
;
std
::
vector
<
std
::
string
>
label_list_
;
std
::
vector
<
float
>
mean_
=
{
0.5
f
,
0.5
f
,
0.5
f
};
std
::
vector
<
float
>
scale_
=
{
1
/
0.5
f
,
1
/
0.5
f
,
1
/
0.5
f
};
bool
is_scale_
=
true
;
// pre-process
CrnnResizeImg
resize_op_
;
Normalize
normalize_op_
;
Permute
permute_op_
;
// post-process
PostProcessor
post_processor_
;
cv
::
Mat
get_rotate_crop_image
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
);
std
::
vector
<
std
::
string
>
ReadDict
(
const
std
::
string
&
path
);
template
<
class
ForwardIterator
>
inline
size_t
argmax
(
ForwardIterator
first
,
ForwardIterator
last
)
{
return
std
::
distance
(
first
,
std
::
max_element
(
first
,
last
));
}
};
// class CrnnRecognizer
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/include/postprocess_op.h
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include "include/clipper.h"
using
namespace
std
;
namespace
PaddleOCR
{
inline
std
::
vector
<
std
::
string
>
ReadDict
(
std
::
string
path
)
{
std
::
ifstream
in
(
path
);
std
::
string
filename
;
std
::
string
line
;
std
::
vector
<
std
::
string
>
m_vec
;
if
(
in
)
{
while
(
getline
(
in
,
line
))
{
m_vec
.
push_back
(
line
);
}
}
else
{
std
::
cout
<<
"no such file"
<<
std
::
endl
;
}
return
m_vec
;
}
template
<
class
ForwardIterator
>
inline
size_t
Argmax
(
ForwardIterator
first
,
ForwardIterator
last
)
{
return
std
::
distance
(
first
,
std
::
max_element
(
first
,
last
));
}
class
PostProcessor
{
public:
void
GetContourArea
(
float
**
box
,
float
unclip_ratio
,
float
&
distance
);
cv
::
RotatedRect
unclip
(
float
**
box
);
float
**
Mat2Vec
(
cv
::
Mat
mat
);
void
quickSort_vector
(
std
::
vector
<
std
::
vector
<
int
>>
&
box
,
int
l
,
int
r
,
int
axis
);
std
::
vector
<
std
::
vector
<
int
>>
order_points_clockwise
(
std
::
vector
<
std
::
vector
<
int
>>
pts
);
float
**
get_mini_boxes
(
cv
::
RotatedRect
box
,
float
&
ssid
);
float
box_score_fast
(
float
**
box_array
,
cv
::
Mat
pred
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes_from_bitmap
(
const
cv
::
Mat
pred
,
const
cv
::
Mat
bitmap
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
filter_tag_det_res
(
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
,
float
ratio_h
,
float
ratio_w
,
cv
::
Mat
srcimg
);
template
<
class
ForwardIterator
>
inline
size_t
argmax
(
ForwardIterator
first
,
ForwardIterator
last
)
{
return
std
::
distance
(
first
,
std
::
max_element
(
first
,
last
));
}
// CRNN
private:
void
quickSort
(
float
**
s
,
int
l
,
int
r
);
inline
int
_max
(
int
a
,
int
b
)
{
return
a
>=
b
?
a
:
b
;
}
inline
int
_min
(
int
a
,
int
b
)
{
return
a
>=
b
?
b
:
a
;
}
template
<
class
T
>
inline
T
clamp
(
T
x
,
T
min
,
T
max
)
{
if
(
x
>
max
)
return
max
;
if
(
x
<
min
)
return
min
;
return
x
;
}
inline
float
clampf
(
float
x
,
float
min
,
float
max
)
{
if
(
x
>
max
)
return
max
;
if
(
x
<
min
)
return
min
;
return
x
;
}
};
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/include/preprocess_op.h
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
using
namespace
std
;
using
namespace
paddle
;
namespace
PaddleOCR
{
class
Normalize
{
public:
virtual
void
Run
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
=
true
);
};
// RGB -> CHW
class
Permute
{
public:
virtual
void
Run
(
const
cv
::
Mat
*
im
,
float
*
data
);
};
// RGB -> CHW
class
ResizeImgType0
{
public:
virtual
void
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
max_size_len
,
float
&
ratio_h
,
float
&
ratio_w
);
};
class
CrnnResizeImg
{
public:
virtual
void
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
float
wh_ratio
,
const
std
::
vector
<
int
>
rec_image_shape
=
{
3
,
32
,
320
});
};
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/src/clipper.cpp
0 → 100644
View file @
297edfaa
This diff is collapsed.
Click to expand it.
deploy/cpp_infer/src/main.cpp
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/ocr_det.h>
#include <include/ocr_rec.h>
using
namespace
std
;
using
namespace
cv
;
using
namespace
PaddleOCR
;
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
4
)
{
std
::
cerr
<<
"[ERROR] usage: "
<<
argv
[
0
]
<<
" det_model_file rec_model_file image_path
\n
"
;
exit
(
1
);
}
std
::
string
det_model_file
=
argv
[
1
];
std
::
string
rec_model_file
=
argv
[
2
];
std
::
string
img_path
=
argv
[
3
];
auto
start
=
std
::
chrono
::
system_clock
::
now
();
cv
::
Mat
srcimg
=
cv
::
imread
(
img_path
,
cv
::
IMREAD_COLOR
);
DBDetector
det
(
det_model_file
);
CRNNRecognizer
rec
(
rec_model_file
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
det
.
Run
(
srcimg
,
boxes
);
rec
.
Run
(
boxes
,
srcimg
);
auto
end
=
std
::
chrono
::
system_clock
::
now
();
auto
duration
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"花费了"
<<
double
(
duration
.
count
())
*
std
::
chrono
::
microseconds
::
period
::
num
/
std
::
chrono
::
microseconds
::
period
::
den
<<
"秒"
<<
std
::
endl
;
return
0
;
}
deploy/cpp_infer/src/ocr_det.cpp
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/ocr_det.h>
namespace
PaddleOCR
{
void
DBDetector
::
LoadModel
(
const
std
::
string
&
model_dir
,
bool
use_gpu
,
const
int
gpu_id
,
const
int
min_subgraph_size
,
const
int
batch_size
)
{
AnalysisConfig
config
;
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
// for cpu
config
.
DisableGpu
();
config
.
EnableMKLDNN
();
// 开启MKLDNN加速
config
.
SetCpuMathLibraryNumThreads
(
10
);
// 使用ZeroCopyTensor,此处必须设置为false
config
.
SwitchUseFeedFetchOps
(
false
);
// 若输入为多个,此处必须设置为true
config
.
SwitchSpecifyInputNames
(
true
);
// config.SwitchIrDebug(true); //
// 可视化调试选项,若开启,则会在每个图优化过程后生成dot文件
// config.SwitchIrOptim(false);// 默认为true。如果设置为false,关闭所有优化
config
.
EnableMemoryOptim
();
// 开启内存/显存复用
this
->
predictor_
=
CreatePaddlePredictor
(
config
);
// predictor_ = std::move(CreatePaddlePredictor(config)); // PaddleDetection
// usage
}
void
DBDetector
::
Run
(
cv
::
Mat
&
img
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
&
boxes
)
{
float
ratio_h
{};
float
ratio_w
{};
cv
::
Mat
srcimg
;
cv
::
Mat
resize_img
;
img
.
copyTo
(
srcimg
);
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
max_side_len_
,
ratio_h
,
ratio_w
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
float
*
input
=
new
float
[
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
];
this
->
permute_op_
.
Run
(
&
resize_img
,
input
);
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputTensor
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
input_t
->
copy_from_cpu
(
input
);
this
->
predictor_
->
ZeroCopyRun
();
std
::
vector
<
float
>
out_data
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
out_data
.
resize
(
out_num
);
output_t
->
copy_to_cpu
(
out_data
.
data
());
int
n2
=
output_shape
[
2
];
int
n3
=
output_shape
[
3
];
int
n
=
n2
*
n3
;
float
*
pred
=
new
float
[
n
];
unsigned
char
*
cbuf
=
new
unsigned
char
[
n
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
pred
[
i
]
=
float
(
out_data
[
i
]);
cbuf
[
i
]
=
(
unsigned
char
)((
out_data
[
i
])
*
255
);
}
cv
::
Mat
cbuf_map
(
n2
,
n3
,
CV_8UC1
,
(
unsigned
char
*
)
cbuf
);
cv
::
Mat
pred_map
(
n2
,
n3
,
CV_32F
,
(
float
*
)
pred
);
const
double
threshold
=
0.3
*
255
;
const
double
maxvalue
=
255
;
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
boxes
=
post_processor_
.
boxes_from_bitmap
(
pred_map
,
bit_map
);
boxes
=
post_processor_
.
filter_tag_det_res
(
boxes
,
ratio_h
,
ratio_w
,
srcimg
);
//// visualization
cv
::
Point
rook_points
[
boxes
.
size
()][
4
];
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
for
(
int
m
=
0
;
m
<
boxes
[
0
].
size
();
m
++
)
{
rook_points
[
n
][
m
]
=
cv
::
Point
(
int
(
boxes
[
n
][
m
][
0
]),
int
(
boxes
[
n
][
m
][
1
]));
}
}
cv
::
Mat
img_vis
;
srcimg
.
copyTo
(
img_vis
);
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
const
cv
::
Point
*
ppt
[
1
]
=
{
rook_points
[
n
]};
int
npt
[]
=
{
4
};
cv
::
polylines
(
img_vis
,
ppt
,
npt
,
1
,
1
,
CV_RGB
(
0
,
255
,
0
),
2
,
8
,
0
);
}
imwrite
(
"./det_res.png"
,
img_vis
);
std
::
cout
<<
"The detection visualized image saved in ./det_res.png"
<<
std
::
endl
;
delete
[]
input
;
delete
[]
pred
;
delete
[]
cbuf
;
}
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/src/ocr_rec.cpp
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/ocr_rec.h>
namespace
PaddleOCR
{
void
CRNNRecognizer
::
Run
(
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
,
cv
::
Mat
&
img
)
{
cv
::
Mat
srcimg
;
img
.
copyTo
(
srcimg
);
cv
::
Mat
crop_img
;
cv
::
Mat
resize_img
;
std
::
cout
<<
"The predicted text is :"
<<
std
::
endl
;
int
index
=
0
;
for
(
int
i
=
boxes
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
crop_img
=
get_rotate_crop_image
(
srcimg
,
boxes
[
i
]);
float
wh_ratio
=
float
(
crop_img
.
cols
)
/
float
(
crop_img
.
rows
);
this
->
resize_op_
.
Run
(
crop_img
,
resize_img
,
wh_ratio
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_
,
this
->
scale_
,
this
->
is_scale_
);
float
*
input
=
new
float
[
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
];
this
->
permute_op_
.
Run
(
&
resize_img
,
input
);
auto
input_names
=
this
->
predictor_
->
GetInputNames
();
auto
input_t
=
this
->
predictor_
->
GetInputTensor
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
});
input_t
->
copy_from_cpu
(
input
);
this
->
predictor_
->
ZeroCopyRun
();
std
::
vector
<
int64_t
>
rec_idx
;
auto
output_names
=
this
->
predictor_
->
GetOutputNames
();
auto
output_t
=
this
->
predictor_
->
GetOutputTensor
(
output_names
[
0
]);
auto
rec_idx_lod
=
output_t
->
lod
();
auto
shape_out
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
shape_out
.
begin
(),
shape_out
.
end
(),
1
,
std
::
multiplies
<
int
>
());
rec_idx
.
resize
(
out_num
);
output_t
->
copy_to_cpu
(
rec_idx
.
data
());
std
::
vector
<
int
>
pred_idx
;
for
(
int
n
=
int
(
rec_idx_lod
[
0
][
0
]);
n
<
int
(
rec_idx_lod
[
0
][
1
]);
n
++
)
{
pred_idx
.
push_back
(
int
(
rec_idx
[
n
]));
}
if
(
pred_idx
.
size
()
<
1e-3
)
continue
;
index
+=
1
;
std
::
cout
<<
index
<<
"
\t
"
;
for
(
int
n
=
0
;
n
<
pred_idx
.
size
();
n
++
)
{
std
::
cout
<<
label_list_
[
pred_idx
[
n
]];
}
std
::
vector
<
float
>
predict_batch
;
auto
output_t_1
=
this
->
predictor_
->
GetOutputTensor
(
output_names
[
1
]);
auto
predict_lod
=
output_t_1
->
lod
();
auto
predict_shape
=
output_t_1
->
shape
();
int
out_num_1
=
std
::
accumulate
(
predict_shape
.
begin
(),
predict_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
predict_batch
.
resize
(
out_num_1
);
output_t_1
->
copy_to_cpu
(
predict_batch
.
data
());
int
argmax_idx
;
int
blank
=
predict_shape
[
1
];
float
score
=
0.
f
;
int
count
=
0
;
float
max_value
=
0.0
f
;
for
(
int
n
=
predict_lod
[
0
][
0
];
n
<
predict_lod
[
0
][
1
]
-
1
;
n
++
)
{
argmax_idx
=
int
(
argmax
(
&
predict_batch
[
n
*
predict_shape
[
1
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
1
]]));
max_value
=
float
(
*
std
::
max_element
(
&
predict_batch
[
n
*
predict_shape
[
1
]],
&
predict_batch
[(
n
+
1
)
*
predict_shape
[
1
]]));
if
(
blank
-
1
-
argmax_idx
>
1e-5
)
{
score
+=
max_value
;
count
+=
1
;
}
}
score
/=
count
;
std
::
cout
<<
"
\t
score: "
<<
score
<<
std
::
endl
;
delete
[]
input
;
}
}
void
CRNNRecognizer
::
LoadModel
(
const
std
::
string
&
model_dir
,
bool
use_gpu
,
const
int
gpu_id
,
const
int
min_subgraph_size
,
const
int
batch_size
)
{
AnalysisConfig
config
;
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
// for cpu
config
.
DisableGpu
();
config
.
EnableMKLDNN
();
// 开启MKLDNN加速
config
.
SetCpuMathLibraryNumThreads
(
10
);
// 使用ZeroCopyTensor,此处必须设置为false
config
.
SwitchUseFeedFetchOps
(
false
);
// 若输入为多个,此处必须设置为true
config
.
SwitchSpecifyInputNames
(
true
);
// config.SwitchIrDebug(true); //
// 可视化调试选项,若开启,则会在每个图优化过程后生成dot文件
// config.SwitchIrOptim(false);// 默认为true。如果设置为false,关闭所有优化
config
.
EnableMemoryOptim
();
// 开启内存/显存复用
this
->
predictor_
=
CreatePaddlePredictor
(
config
);
}
cv
::
Mat
CRNNRecognizer
::
get_rotate_crop_image
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
)
{
cv
::
Mat
image
;
srcimage
.
copyTo
(
image
);
std
::
vector
<
std
::
vector
<
int
>>
points
=
box
;
int
x_collect
[
4
]
=
{
box
[
0
][
0
],
box
[
1
][
0
],
box
[
2
][
0
],
box
[
3
][
0
]};
int
y_collect
[
4
]
=
{
box
[
0
][
1
],
box
[
1
][
1
],
box
[
2
][
1
],
box
[
3
][
1
]};
int
left
=
int
(
*
std
::
min_element
(
x_collect
,
x_collect
+
4
));
int
right
=
int
(
*
std
::
max_element
(
x_collect
,
x_collect
+
4
));
int
top
=
int
(
*
std
::
min_element
(
y_collect
,
y_collect
+
4
));
int
bottom
=
int
(
*
std
::
max_element
(
y_collect
,
y_collect
+
4
));
cv
::
Mat
img_crop
;
image
(
cv
::
Rect
(
left
,
top
,
right
-
left
,
bottom
-
top
)).
copyTo
(
img_crop
);
for
(
int
i
=
0
;
i
<
points
.
size
();
i
++
)
{
points
[
i
][
0
]
-=
left
;
points
[
i
][
1
]
-=
top
;
}
int
img_crop_width
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
1
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
1
][
1
],
2
)));
int
img_crop_height
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
3
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
3
][
1
],
2
)));
cv
::
Point2f
pts_std
[
4
];
pts_std
[
0
]
=
cv
::
Point2f
(
0.
,
0.
);
pts_std
[
1
]
=
cv
::
Point2f
(
img_crop_width
,
0.
);
pts_std
[
2
]
=
cv
::
Point2f
(
img_crop_width
,
img_crop_height
);
pts_std
[
3
]
=
cv
::
Point2f
(
0.
f
,
img_crop_height
);
cv
::
Point2f
pointsf
[
4
];
pointsf
[
0
]
=
cv
::
Point2f
(
points
[
0
][
0
],
points
[
0
][
1
]);
pointsf
[
1
]
=
cv
::
Point2f
(
points
[
1
][
0
],
points
[
1
][
1
]);
pointsf
[
2
]
=
cv
::
Point2f
(
points
[
2
][
0
],
points
[
2
][
1
]);
pointsf
[
3
]
=
cv
::
Point2f
(
points
[
3
][
0
],
points
[
3
][
1
]);
cv
::
Mat
M
=
cv
::
getPerspectiveTransform
(
pointsf
,
pts_std
);
cv
::
Mat
dst_img
;
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
Size
(
img_crop_width
,
img_crop_height
),
cv
::
BORDER_REPLICATE
);
if
(
float
(
dst_img
.
rows
)
>=
float
(
dst_img
.
cols
)
*
1.5
)
{
cv
::
Mat
srcCopy
=
cv
::
Mat
(
dst_img
.
rows
,
dst_img
.
cols
,
dst_img
.
depth
());
cv
::
transpose
(
dst_img
,
srcCopy
);
cv
::
flip
(
srcCopy
,
srcCopy
,
0
);
return
srcCopy
;
}
else
{
return
dst_img
;
}
}
std
::
vector
<
std
::
string
>
CRNNRecognizer
::
ReadDict
(
const
std
::
string
&
path
)
{
std
::
ifstream
in
(
path
);
std
::
string
filename
;
std
::
string
line
;
std
::
vector
<
std
::
string
>
m_vec
;
if
(
in
)
{
while
(
getline
(
in
,
line
))
{
m_vec
.
push_back
(
line
);
}
}
else
{
std
::
cout
<<
"no such file"
<<
std
::
endl
;
}
return
m_vec
;
}
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/src/postprocess_op.cpp
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/postprocess_op.h>
namespace
PaddleOCR
{
void
PostProcessor
::
GetContourArea
(
float
**
box
,
float
unclip_ratio
,
float
&
distance
)
{
int
pts_num
=
4
;
float
area
=
0.0
f
;
float
dist
=
0.0
f
;
for
(
int
i
=
0
;
i
<
pts_num
;
i
++
)
{
area
+=
box
[
i
][
0
]
*
box
[(
i
+
1
)
%
pts_num
][
1
]
-
box
[
i
][
1
]
*
box
[(
i
+
1
)
%
pts_num
][
0
];
dist
+=
sqrtf
((
box
[
i
][
0
]
-
box
[(
i
+
1
)
%
pts_num
][
0
])
*
(
box
[
i
][
0
]
-
box
[(
i
+
1
)
%
pts_num
][
0
])
+
(
box
[
i
][
1
]
-
box
[(
i
+
1
)
%
pts_num
][
1
])
*
(
box
[
i
][
1
]
-
box
[(
i
+
1
)
%
pts_num
][
1
]));
}
area
=
fabs
(
float
(
area
/
2.0
));
distance
=
area
*
unclip_ratio
/
dist
;
}
cv
::
RotatedRect
PostProcessor
::
unclip
(
float
**
box
)
{
float
unclip_ratio
=
2.0
;
float
distance
=
1.0
;
GetContourArea
(
box
,
unclip_ratio
,
distance
);
ClipperLib
::
ClipperOffset
offset
;
ClipperLib
::
Path
p
;
p
<<
ClipperLib
::
IntPoint
(
int
(
box
[
0
][
0
]),
int
(
box
[
0
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
1
][
0
]),
int
(
box
[
1
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
2
][
0
]),
int
(
box
[
2
][
1
]))
<<
ClipperLib
::
IntPoint
(
int
(
box
[
3
][
0
]),
int
(
box
[
3
][
1
]));
offset
.
AddPath
(
p
,
ClipperLib
::
jtRound
,
ClipperLib
::
etClosedPolygon
);
ClipperLib
::
Paths
soln
;
offset
.
Execute
(
soln
,
distance
);
std
::
vector
<
cv
::
Point2f
>
points
;
for
(
int
j
=
0
;
j
<
soln
.
size
();
j
++
)
{
for
(
int
i
=
0
;
i
<
soln
[
soln
.
size
()
-
1
].
size
();
i
++
)
{
points
.
emplace_back
(
soln
[
j
][
i
].
X
,
soln
[
j
][
i
].
Y
);
}
}
cv
::
RotatedRect
res
=
cv
::
minAreaRect
(
points
);
return
res
;
}
float
**
PostProcessor
::
Mat2Vec
(
cv
::
Mat
mat
)
{
auto
**
array
=
new
float
*
[
mat
.
rows
];
for
(
int
i
=
0
;
i
<
mat
.
rows
;
++
i
)
array
[
i
]
=
new
float
[
mat
.
cols
];
for
(
int
i
=
0
;
i
<
mat
.
rows
;
++
i
)
{
for
(
int
j
=
0
;
j
<
mat
.
cols
;
++
j
)
{
array
[
i
][
j
]
=
mat
.
at
<
float
>
(
i
,
j
);
}
}
return
array
;
}
void
PostProcessor
::
quickSort
(
float
**
s
,
int
l
,
int
r
)
{
if
(
l
<
r
)
{
int
i
=
l
,
j
=
r
;
float
x
=
s
[
l
][
0
];
float
*
xp
=
s
[
l
];
while
(
i
<
j
)
{
while
(
i
<
j
&&
s
[
j
][
0
]
>=
x
)
j
--
;
if
(
i
<
j
)
std
::
swap
(
s
[
i
++
],
s
[
j
]);
while
(
i
<
j
&&
s
[
i
][
0
]
<
x
)
i
++
;
if
(
i
<
j
)
std
::
swap
(
s
[
j
--
],
s
[
i
]);
}
s
[
i
]
=
xp
;
quickSort
(
s
,
l
,
i
-
1
);
quickSort
(
s
,
i
+
1
,
r
);
}
}
void
PostProcessor
::
quickSort_vector
(
std
::
vector
<
std
::
vector
<
int
>>
&
box
,
int
l
,
int
r
,
int
axis
)
{
if
(
l
<
r
)
{
int
i
=
l
,
j
=
r
;
int
x
=
box
[
l
][
axis
];
std
::
vector
<
int
>
xp
(
box
[
l
]);
while
(
i
<
j
)
{
while
(
i
<
j
&&
box
[
j
][
axis
]
>=
x
)
j
--
;
if
(
i
<
j
)
std
::
swap
(
box
[
i
++
],
box
[
j
]);
while
(
i
<
j
&&
box
[
i
][
axis
]
<
x
)
i
++
;
if
(
i
<
j
)
std
::
swap
(
box
[
j
--
],
box
[
i
]);
}
box
[
i
]
=
xp
;
quickSort_vector
(
box
,
l
,
i
-
1
,
axis
);
quickSort_vector
(
box
,
i
+
1
,
r
,
axis
);
}
}
std
::
vector
<
std
::
vector
<
int
>>
PostProcessor
::
order_points_clockwise
(
std
::
vector
<
std
::
vector
<
int
>>
pts
)
{
std
::
vector
<
std
::
vector
<
int
>>
box
=
pts
;
quickSort_vector
(
box
,
0
,
int
(
box
.
size
()
-
1
),
0
);
std
::
vector
<
std
::
vector
<
int
>>
leftmost
=
{
box
[
0
],
box
[
1
]};
std
::
vector
<
std
::
vector
<
int
>>
rightmost
=
{
box
[
2
],
box
[
3
]};
if
(
leftmost
[
0
][
1
]
>
leftmost
[
1
][
1
])
std
::
swap
(
leftmost
[
0
],
leftmost
[
1
]);
if
(
rightmost
[
0
][
1
]
>
rightmost
[
1
][
1
])
std
::
swap
(
rightmost
[
0
],
rightmost
[
1
]);
std
::
vector
<
std
::
vector
<
int
>>
rect
=
{
leftmost
[
0
],
rightmost
[
0
],
rightmost
[
1
],
leftmost
[
1
]};
return
rect
;
}
float
**
PostProcessor
::
get_mini_boxes
(
cv
::
RotatedRect
box
,
float
&
ssid
)
{
ssid
=
box
.
size
.
width
>=
box
.
size
.
height
?
box
.
size
.
height
:
box
.
size
.
width
;
cv
::
Mat
points
;
cv
::
boxPoints
(
box
,
points
);
// sorted box points
auto
array
=
Mat2Vec
(
points
);
quickSort
(
array
,
0
,
3
);
float
*
idx1
=
array
[
0
],
*
idx2
=
array
[
1
],
*
idx3
=
array
[
2
],
*
idx4
=
array
[
3
];
if
(
array
[
3
][
1
]
<=
array
[
2
][
1
])
{
idx2
=
array
[
3
];
idx3
=
array
[
2
];
}
else
{
idx2
=
array
[
2
];
idx3
=
array
[
3
];
}
if
(
array
[
1
][
1
]
<=
array
[
0
][
1
])
{
idx1
=
array
[
1
];
idx4
=
array
[
0
];
}
else
{
idx1
=
array
[
0
];
idx4
=
array
[
1
];
}
array
[
0
]
=
idx1
;
array
[
1
]
=
idx2
;
array
[
2
]
=
idx3
;
array
[
3
]
=
idx4
;
return
array
;
}
float
PostProcessor
::
box_score_fast
(
float
**
box_array
,
cv
::
Mat
pred
)
{
auto
array
=
box_array
;
int
width
=
pred
.
cols
;
int
height
=
pred
.
rows
;
float
box_x
[
4
]
=
{
array
[
0
][
0
],
array
[
1
][
0
],
array
[
2
][
0
],
array
[
3
][
0
]};
float
box_y
[
4
]
=
{
array
[
0
][
1
],
array
[
1
][
1
],
array
[
2
][
1
],
array
[
3
][
1
]};
int
xmin
=
clamp
(
int
(
std
::
floor
(
*
(
std
::
min_element
(
box_x
,
box_x
+
4
)))),
0
,
width
-
1
);
int
xmax
=
clamp
(
int
(
std
::
ceil
(
*
(
std
::
max_element
(
box_x
,
box_x
+
4
)))),
0
,
width
-
1
);
int
ymin
=
clamp
(
int
(
std
::
floor
(
*
(
std
::
min_element
(
box_y
,
box_y
+
4
)))),
0
,
height
-
1
);
int
ymax
=
clamp
(
int
(
std
::
ceil
(
*
(
std
::
max_element
(
box_y
,
box_y
+
4
)))),
0
,
height
-
1
);
cv
::
Mat
mask
;
mask
=
cv
::
Mat
::
zeros
(
ymax
-
ymin
+
1
,
xmax
-
xmin
+
1
,
CV_8UC1
);
cv
::
Point
root_point
[
4
];
root_point
[
0
]
=
cv
::
Point
(
int
(
array
[
0
][
0
])
-
xmin
,
int
(
array
[
0
][
1
])
-
ymin
);
root_point
[
1
]
=
cv
::
Point
(
int
(
array
[
1
][
0
])
-
xmin
,
int
(
array
[
1
][
1
])
-
ymin
);
root_point
[
2
]
=
cv
::
Point
(
int
(
array
[
2
][
0
])
-
xmin
,
int
(
array
[
2
][
1
])
-
ymin
);
root_point
[
3
]
=
cv
::
Point
(
int
(
array
[
3
][
0
])
-
xmin
,
int
(
array
[
3
][
1
])
-
ymin
);
const
cv
::
Point
*
ppt
[
1
]
=
{
root_point
};
int
npt
[]
=
{
4
};
cv
::
fillPoly
(
mask
,
ppt
,
npt
,
1
,
cv
::
Scalar
(
1
));
cv
::
Mat
croppedImg
;
pred
(
cv
::
Rect
(
xmin
,
ymin
,
xmax
-
xmin
+
1
,
ymax
-
ymin
+
1
))
.
copyTo
(
croppedImg
);
auto
score
=
cv
::
mean
(
croppedImg
,
mask
)[
0
];
return
score
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
PostProcessor
::
boxes_from_bitmap
(
const
cv
::
Mat
pred
,
const
cv
::
Mat
bitmap
)
{
const
int
min_size
=
3
;
const
int
max_candidates
=
1000
;
const
float
box_thresh
=
0.5
;
int
width
=
bitmap
.
cols
;
int
height
=
bitmap
.
rows
;
std
::
vector
<
std
::
vector
<
cv
::
Point
>>
contours
;
std
::
vector
<
cv
::
Vec4i
>
hierarchy
;
cv
::
findContours
(
bitmap
,
contours
,
hierarchy
,
cv
::
RETR_LIST
,
cv
::
CHAIN_APPROX_SIMPLE
);
int
num_contours
=
contours
.
size
()
>=
max_candidates
?
max_candidates
:
contours
.
size
();
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
for
(
int
_i
=
0
;
_i
<
num_contours
;
_i
++
)
{
float
ssid
;
cv
::
RotatedRect
box
=
cv
::
minAreaRect
(
contours
[
_i
]);
auto
array
=
get_mini_boxes
(
box
,
ssid
);
auto
box_for_unclip
=
array
;
// end get_mini_box
if
(
ssid
<
min_size
)
{
continue
;
}
float
score
;
score
=
box_score_fast
(
array
,
pred
);
// end box_score_fast
if
(
score
<
box_thresh
)
continue
;
// start for unclip
cv
::
RotatedRect
points
=
unclip
(
box_for_unclip
);
// end for unclip
cv
::
RotatedRect
clipbox
=
points
;
auto
cliparray
=
get_mini_boxes
(
clipbox
,
ssid
);
if
(
ssid
<
min_size
+
2
)
continue
;
int
dest_width
=
pred
.
cols
;
int
dest_height
=
pred
.
rows
;
std
::
vector
<
std
::
vector
<
int
>>
intcliparray
;
for
(
int
num_pt
=
0
;
num_pt
<
4
;
num_pt
++
)
{
std
::
vector
<
int
>
a
{
int
(
clampf
(
roundf
(
cliparray
[
num_pt
][
0
]
/
float
(
width
)
*
float
(
dest_width
)),
0
,
float
(
dest_width
))),
int
(
clampf
(
roundf
(
cliparray
[
num_pt
][
1
]
/
float
(
height
)
*
float
(
dest_height
)),
0
,
float
(
dest_height
)))};
intcliparray
.
push_back
(
a
);
}
boxes
.
push_back
(
intcliparray
);
}
// end for
return
boxes
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
PostProcessor
::
filter_tag_det_res
(
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
,
float
ratio_h
,
float
ratio_w
,
cv
::
Mat
srcimg
)
{
int
oriimg_h
=
srcimg
.
rows
;
int
oriimg_w
=
srcimg
.
cols
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
root_points
;
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
boxes
[
n
]
=
order_points_clockwise
(
boxes
[
n
]);
for
(
int
m
=
0
;
m
<
boxes
[
0
].
size
();
m
++
)
{
boxes
[
n
][
m
][
0
]
/=
ratio_w
;
boxes
[
n
][
m
][
1
]
/=
ratio_h
;
boxes
[
n
][
m
][
0
]
=
int
(
_min
(
_max
(
boxes
[
n
][
m
][
0
],
0
),
oriimg_w
-
1
));
boxes
[
n
][
m
][
1
]
=
int
(
_min
(
_max
(
boxes
[
n
][
m
][
1
],
0
),
oriimg_h
-
1
));
}
}
for
(
int
n
=
0
;
n
<
boxes
.
size
();
n
++
)
{
int
rect_width
,
rect_height
;
rect_width
=
int
(
sqrt
(
pow
(
boxes
[
n
][
0
][
0
]
-
boxes
[
n
][
1
][
0
],
2
)
+
pow
(
boxes
[
n
][
0
][
1
]
-
boxes
[
n
][
1
][
1
],
2
)));
rect_height
=
int
(
sqrt
(
pow
(
boxes
[
n
][
0
][
0
]
-
boxes
[
n
][
3
][
0
],
2
)
+
pow
(
boxes
[
n
][
0
][
1
]
-
boxes
[
n
][
3
][
1
],
2
)));
if
(
rect_width
<=
10
||
rect_height
<=
10
)
continue
;
root_points
.
push_back
(
boxes
[
n
]);
}
return
root_points
;
}
}
// namespace PaddleOCR
deploy/cpp_infer/src/preprocess_op.cpp
0 → 100644
View file @
297edfaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/preprocess_op.h>
namespace
PaddleOCR
{
void
Permute
::
Run
(
const
cv
::
Mat
*
im
,
float
*
data
)
{
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
i
*
rh
*
rw
),
i
);
}
}
void
Normalize
::
Run
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
)
{
double
e
=
1.0
;
if
(
is_scale
)
{
e
/=
255.0
;
}
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im
->
cols
;
w
++
)
{
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean
[
0
])
*
scale
[
0
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean
[
1
])
*
scale
[
1
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean
[
2
])
*
scale
[
2
];
}
}
}
void
ResizeImgType0
::
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
max_size_len
,
float
&
ratio_h
,
float
&
ratio_w
)
{
int
w
=
img
.
cols
;
int
h
=
img
.
rows
;
float
ratio
=
1.
f
;
int
max_wh
=
w
>=
h
?
w
:
h
;
if
(
max_wh
>
max_size_len
)
{
if
(
h
>
w
)
{
ratio
=
float
(
max_size_len
)
/
float
(
h
);
}
else
{
ratio
=
float
(
max_size_len
)
/
float
(
w
);
}
}
int
resize_h
=
int
(
float
(
h
)
*
ratio
);
int
resize_w
=
int
(
float
(
w
)
*
ratio
);
if
(
resize_h
%
32
==
0
)
resize_h
=
resize_h
;
else
if
(
resize_h
/
32
<
1
+
1e-5
)
resize_h
=
32
;
else
resize_h
=
(
resize_h
/
32
-
1
)
*
32
;
if
(
resize_w
%
32
==
0
)
resize_w
=
resize_w
;
else
if
(
resize_w
/
32
<
1
)
resize_w
=
32
;
else
resize_w
=
(
resize_w
/
32
-
1
)
*
32
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
resize_h
));
ratio_h
=
float
(
resize_h
)
/
float
(
h
);
ratio_w
=
float
(
resize_w
)
/
float
(
w
);
}
void
CrnnResizeImg
::
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
float
wh_ratio
,
const
std
::
vector
<
int
>
rec_image_shape
)
{
int
imgC
,
imgH
,
imgW
;
imgC
=
rec_image_shape
[
0
];
imgH
=
rec_image_shape
[
1
];
imgW
=
rec_image_shape
[
2
];
imgW
=
int
(
32
*
wh_ratio
);
float
ratio
=
float
(
img
.
cols
)
/
float
(
img
.
rows
);
int
resize_w
,
resize_h
;
if
(
ceilf
(
imgH
*
ratio
)
>
imgW
)
resize_w
=
imgW
;
else
resize_w
=
int
(
ceilf
(
imgH
*
ratio
));
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
imgH
),
0.
f
,
0.
f
,
cv
::
INTER_LINEAR
);
}
}
// namespace PaddleOCR
\ No newline at end of file
deploy/cpp_infer/tools/build.sh
0 → 100755
View file @
297edfaa
LIB_DIR
=
/paddle/code/gry/Paddle/build/fluid_inference_install_dir/
CUDA_LIB_DIR
=
/usr/local/cuda/lib64
CUDNN_LIB_DIR
=
/usr/lib/x86_64-linux-gnu/
TENSORRT_ROOT_DIR
=
YOUR_TENSORRT_ROOT_DIR
BUILD_DIR
=
build
rm
-rf
${
BUILD_DIR
}
mkdir
${
BUILD_DIR
}
cd
${
BUILD_DIR
}
cmake ..
\
-DPADDLE_LIB
=
${
LIB_DIR
}
\
-DWITH_MKL
=
ON
\
-DDEMO_NAME
=
ocr_system
\
-DWITH_GPU
=
OFF
\
-DWITH_STATIC_LIB
=
OFF
\
-DUSE_TENSORRT
=
OFF
\
-DCUDNN_LIB
=
${
CUDNN_LIB_DIR
}
\
-DCUDA_LIB
=
${
CUDA_LIB_DIR
}
\
-DTENSORRT_ROOT
=
YOUR_TENSORRT_ROOT_DIR
make
-j
deploy/cpp_infer/tools/ppocr_keys_v1.txt
0 → 100644
View file @
297edfaa
This diff is collapsed.
Click to expand it.
deploy/cpp_infer/tools/run.sh
0 → 100755
View file @
297edfaa
./build/ocr_system ./inference/det_db/ ./inference/rec_crnn/ ../../doc/imgs/11.jpg
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment