Commit 19eb7eb8 authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'origin/dygraph' into dy1

parents 0afe6c32 03b7daa5
@if "%DEBUG%" == "" @echo off
@rem ##########################################################################
@rem
@rem Gradle startup script for Windows
@rem
@rem ##########################################################################
@rem Set local scope for the variables with windows NT shell
if "%OS%"=="Windows_NT" setlocal
set DIRNAME=%~dp0
if "%DIRNAME%" == "" set DIRNAME=.
set APP_BASE_NAME=%~n0
set APP_HOME=%DIRNAME%
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
set DEFAULT_JVM_OPTS=
@rem Find java.exe
if defined JAVA_HOME goto findJavaFromJavaHome
set JAVA_EXE=java.exe
%JAVA_EXE% -version >NUL 2>&1
if "%ERRORLEVEL%" == "0" goto init
echo.
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:findJavaFromJavaHome
set JAVA_HOME=%JAVA_HOME:"=%
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
if exist "%JAVA_EXE%" goto init
echo.
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
echo.
echo Please set the JAVA_HOME variable in your environment to match the
echo location of your Java installation.
goto fail
:init
@rem Get command-line arguments, handling Windows variants
if not "%OS%" == "Windows_NT" goto win9xME_args
:win9xME_args
@rem Slurp the command line arguments.
set CMD_LINE_ARGS=
set _SKIP=2
:win9xME_args_slurp
if "x%~1" == "x" goto execute
set CMD_LINE_ARGS=%*
:execute
@rem Setup the command line
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
@rem Execute Gradle
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %CMD_LINE_ARGS%
:end
@rem End local scope for the variables with windows NT shell
if "%ERRORLEVEL%"=="0" goto mainEnd
:fail
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
rem the _cmd.exe /c_ return code!
if not "" == "%GRADLE_EXIT_CONSOLE%" exit 1
exit /b 1
:mainEnd
if "%OS%"=="Windows_NT" endlocal
:omega
project(ocr_system CXX C)
project(ppocr CXX C)
cmake_minimum_required(VERSION 3.14)
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
......@@ -11,7 +12,7 @@ SET(CUDA_LIB "" CACHE PATH "Location of libraries")
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
set(DEMO_NAME "ocr_system")
set(DEMO_NAME "ppocr")
macro(safe_set_static_flag)
......@@ -38,9 +39,8 @@ endif()
if (WIN32)
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
include_directories("${PADDLE_LIB}/paddle/include")
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
link_directories("${PADDLE_LIB}/paddle/lib")
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
else ()
......@@ -140,22 +140,22 @@ else()
endif ()
endif()
# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a
# Note: libpaddle_inference_api.so/a must put before libpaddle_inference.so/a
if(WITH_STATIC_LIB)
if(WIN32)
set(DEPS
${PADDLE_LIB}/paddle/lib/paddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
else()
if(WIN32)
set(DEPS
${PADDLE_LIB}/paddle/lib/paddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_LIB}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif(WITH_STATIC_LIB)
......@@ -207,9 +207,12 @@ endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
include(FetchContent)
include(external-cmake/auto-log.cmake)
include_directories(${FETCHCONTENT_BASE_DIR}/extern_autolog-src)
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
target_link_libraries(${DEMO_NAME} ${DEPS})
if (WIN32 AND WITH_MKL)
......
......@@ -14,7 +14,7 @@ PaddleOCR在Windows 平台下基于`Visual Studio 2019 Community` 进行了测
### Step1: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/windows_cpp_inference.html)
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows)
解压后`D:\projects\fluid_inference`目录包含内容为:
```
......@@ -93,3 +93,5 @@ cd D:\projects\PaddleOCR\deploy\cpp_infer\out\build\x64-Release
### 注意
* 在Windows下的终端中执行文件exe时,可能会发生乱码的现象,此时需要在终端中输入`CHCP 65001`,将终端的编码方式由GBK编码(默认)改为UTF-8编码,更加具体的解释可以参考这篇博客:[https://blog.csdn.net/qq_35038153/article/details/78430359](https://blog.csdn.net/qq_35038153/article/details/78430359)
* 编译时,如果报错`错误:C1083 无法打开包括文件:"dirent.h":No such file or directory`,可以参考该[文档](https://blog.csdn.net/Dora_blank/article/details/117740837#41_C1083_direnthNo_such_file_or_directory_54),新建`dirent.h`文件,并添加到`VC++`的包含目录中。
find_package(Git REQUIRED)
include(FetchContent)
set(FETCHCONTENT_BASE_DIR "${CMAKE_CURRENT_BINARY_DIR}/third-party")
FetchContent_Declare(
extern_Autolog
PREFIX autolog
GIT_REPOSITORY https://github.com/LDOUBLEV/AutoLog.git
GIT_TAG main
)
FetchContent_MakeAvailable(extern_Autolog)
......@@ -668,7 +668,7 @@ void DisposeOutPts(OutPt *&pp) {
//------------------------------------------------------------------------------
inline void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt) {
std::memset(e, 0, sizeof(TEdge));
std::memset(e, int(0), sizeof(TEdge));
e->Next = eNext;
e->Prev = ePrev;
e->Curr = Pt;
......@@ -1895,17 +1895,17 @@ void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) {
TEdge *rb = lm->RightBound;
OutPt *Op1 = 0;
if (!lb) {
if (!lb || !rb) {
// nb: don't insert LB into either AEL or SEL
InsertEdgeIntoAEL(rb, 0);
SetWindingCount(*rb);
if (IsContributing(*rb))
Op1 = AddOutPt(rb, rb->Bot);
} else if (!rb) {
InsertEdgeIntoAEL(lb, 0);
SetWindingCount(*lb);
if (IsContributing(*lb))
Op1 = AddOutPt(lb, lb->Bot);
//} else if (!rb) {
// InsertEdgeIntoAEL(lb, 0);
// SetWindingCount(*lb);
// if (IsContributing(*lb))
// Op1 = AddOutPt(lb, lb->Bot);
InsertScanbeam(lb->Top.Y);
} else {
InsertEdgeIntoAEL(lb, 0);
......@@ -2547,13 +2547,13 @@ void Clipper::ProcessHorizontal(TEdge *horzEdge) {
if (dir == dLeftToRight) {
maxIt = m_Maxima.begin();
while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X)
maxIt++;
++maxIt;
if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X)
maxIt = m_Maxima.end();
} else {
maxRit = m_Maxima.rbegin();
while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X)
maxRit++;
++maxRit;
if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X)
maxRit = m_Maxima.rend();
}
......@@ -2576,13 +2576,13 @@ void Clipper::ProcessHorizontal(TEdge *horzEdge) {
while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y));
maxIt++;
++maxIt;
}
} else {
while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y));
maxRit++;
++maxRit;
}
}
};
......
......@@ -31,6 +31,8 @@
* *
*******************************************************************************/
#pragma once
#ifndef clipper_hpp
#define clipper_hpp
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iomanip>
#include <iostream>
#include <map>
#include <ostream>
#include <string>
#include <vector>
#include "include/utility.h"
namespace PaddleOCR {
class OCRConfig {
public:
explicit OCRConfig(const std::string &config_file) {
config_map_ = LoadConfig(config_file);
this->use_gpu = bool(stoi(config_map_["use_gpu"]));
this->gpu_id = stoi(config_map_["gpu_id"]);
this->gpu_mem = stoi(config_map_["gpu_mem"]);
this->cpu_math_library_num_threads =
stoi(config_map_["cpu_math_library_num_threads"]);
this->use_mkldnn = bool(stoi(config_map_["use_mkldnn"]));
this->max_side_len = stoi(config_map_["max_side_len"]);
this->det_db_thresh = stod(config_map_["det_db_thresh"]);
this->det_db_box_thresh = stod(config_map_["det_db_box_thresh"]);
this->det_db_unclip_ratio = stod(config_map_["det_db_unclip_ratio"]);
this->det_model_dir.assign(config_map_["det_model_dir"]);
this->rec_model_dir.assign(config_map_["rec_model_dir"]);
this->char_list_file.assign(config_map_["char_list_file"]);
this->use_angle_cls = bool(stoi(config_map_["use_angle_cls"]));
this->cls_model_dir.assign(config_map_["cls_model_dir"]);
this->cls_thresh = stod(config_map_["cls_thresh"]);
this->visualize = bool(stoi(config_map_["visualize"]));
this->use_tensorrt = bool(stoi(config_map_["use_tensorrt"]));
this->use_fp16 = bool(stod(config_map_["use_fp16"]));
}
bool use_gpu = false;
int gpu_id = 0;
int gpu_mem = 4000;
int cpu_math_library_num_threads = 1;
bool use_mkldnn = false;
int max_side_len = 960;
double det_db_thresh = 0.3;
double det_db_box_thresh = 0.5;
double det_db_unclip_ratio = 2.0;
std::string det_model_dir;
std::string rec_model_dir;
bool use_angle_cls;
std::string char_list_file;
std::string cls_model_dir;
double cls_thresh;
bool visualize = true;
bool use_tensorrt = false;
bool use_fp16 = false;
void PrintConfigInfo();
private:
// Load configuration
std::map<std::string, std::string> LoadConfig(const std::string &config_file);
std::vector<std::string> split(const std::string &str,
const std::string &delim);
std::map<std::string, std::string> config_map_;
};
} // namespace PaddleOCR
......@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
......@@ -40,7 +42,7 @@ public:
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const double &cls_thresh,
const bool &use_tensorrt, const bool &use_fp16) {
const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
......@@ -49,7 +51,7 @@ public:
this->cls_thresh = cls_thresh;
this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16;
this->precision_ = precision;
LoadModel(model_dir);
}
......@@ -73,7 +75,7 @@ private:
std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
bool is_scale_ = true;
bool use_tensorrt_ = false;
bool use_fp16_ = false;
std::string precision_ = "fp32";
// pre-process
ClsResizeImg resize_op_;
Normalize normalize_op_;
......
......@@ -44,8 +44,9 @@ public:
const bool &use_mkldnn, const int &max_side_len,
const double &det_db_thresh,
const double &det_db_box_thresh,
const double &det_db_unclip_ratio, const bool &visualize,
const bool &use_tensorrt, const bool &use_fp16) {
const double &det_db_unclip_ratio,
const bool &use_polygon_score, const bool &visualize,
const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
......@@ -57,10 +58,11 @@ public:
this->det_db_thresh_ = det_db_thresh;
this->det_db_box_thresh_ = det_db_box_thresh;
this->det_db_unclip_ratio_ = det_db_unclip_ratio;
this->use_polygon_score_ = use_polygon_score;
this->visualize_ = visualize;
this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16;
this->precision_ = precision;
LoadModel(model_dir);
}
......@@ -69,7 +71,7 @@ public:
void LoadModel(const std::string &model_dir);
// Run predictor
void Run(cv::Mat &img, std::vector<std::vector<std::vector<int>>> &boxes);
void Run(cv::Mat &img, std::vector<std::vector<std::vector<int>>> &boxes, std::vector<double> *times);
private:
std::shared_ptr<Predictor> predictor_;
......@@ -85,10 +87,11 @@ private:
double det_db_thresh_ = 0.3;
double det_db_box_thresh_ = 0.5;
double det_db_unclip_ratio_ = 2.0;
bool use_polygon_score_ = false;
bool visualize_ = true;
bool use_tensorrt_ = false;
bool use_fp16_ = false;
std::string precision_ = "fp32";
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
......
......@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
......@@ -42,14 +44,14 @@ public:
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const string &label_path,
const bool &use_tensorrt, const bool &use_fp16) {
const bool &use_tensorrt, const std::string &precision) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_tensorrt_ = use_tensorrt;
this->use_fp16_ = use_fp16;
this->precision_ = precision;
this->label_list_ = Utility::ReadDict(label_path);
this->label_list_.insert(this->label_list_.begin(),
......@@ -62,8 +64,7 @@ public:
// Load Paddle inference model
void LoadModel(const std::string &model_dir);
void Run(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat &img,
Classifier *cls);
void Run(cv::Mat &img, std::vector<double> *times);
private:
std::shared_ptr<Predictor> predictor_;
......@@ -80,7 +81,7 @@ private:
std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
bool is_scale_ = true;
bool use_tensorrt_ = false;
bool use_fp16_ = false;
std::string precision_ = "fp32";
// pre-process
CrnnResizeImg resize_op_;
Normalize normalize_op_;
......@@ -89,9 +90,6 @@ private:
// post-process
PostProcessor post_processor_;
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
}; // class CrnnRecognizer
} // namespace PaddleOCR
......@@ -51,10 +51,12 @@ public:
float &ssid);
float BoxScoreFast(std::vector<std::vector<float>> box_array, cv::Mat pred);
float PolygonScoreAcc(std::vector<cv::Point> contour, cv::Mat pred);
std::vector<std::vector<std::vector<int>>>
BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
const float &box_thresh, const float &det_db_unclip_ratio);
const float &box_thresh, const float &det_db_unclip_ratio,
const bool &use_polygon_score);
std::vector<std::vector<std::vector<int>>>
FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
......
......@@ -44,6 +44,12 @@ public:
inline static size_t argmax(ForwardIterator first, ForwardIterator last) {
return std::distance(first, std::max_element(first, last));
}
static void GetAllFiles(const char *dir_name,
std::vector<std::string> &all_inputs);
static cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
};
} // namespace PaddleOCR
\ No newline at end of file
......@@ -18,6 +18,7 @@ PaddleOCR模型部署。
* 首先需要从opencv官网上下载在Linux环境下源码编译的包,以opencv3.4.7为例,下载命令如下。
```
cd deploy/cpp_infer
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
......@@ -74,9 +75,10 @@ opencv3/
* 有2种方式获取Paddle预测库,下面进行详细介绍。
#### 1.2.1 直接下载安装
* [Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html)上提供了不同cuda版本的Linux预测库,可以在官网查看并选择合适的预测库版本。
* [Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 上提供了不同cuda版本的Linux预测库,可以在官网查看并选择合适的预测库版本*建议选择paddle版本>=2.0.1版本的预测库*
* 下载之后使用下面的方法解压。
......@@ -88,10 +90,11 @@ tar -xf paddle_inference.tgz
#### 1.2.2 预测库源码编译
* 如果希望获取最新预测库特性,可以从Paddle github上克隆最新代码,源码编译预测库。
* 可以参考[Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html)的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。
* 可以参考[Paddle预测库安装编译说明](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi) 的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。
```shell
git clone https://github.com/PaddlePaddle/Paddle.git
git checkout release/2.1
```
* 进入Paddle目录后,编译方法如下。
......@@ -114,7 +117,7 @@ make -j
make inference_lib_dist
```
更多编译参数选项可以参考Paddle C++预测库官网:[https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html)
更多编译参数选项介绍可以参考[文档说明](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi)
* 编译完成之后,可以在`build/paddle_inference_install_dir/`文件下看到生成了以下文件及文件夹。
......@@ -130,8 +133,6 @@ build/paddle_inference_install_dir/
其中`paddle`就是C++预测所需的Paddle库,`version.txt`中包含当前预测库的版本信息。
## 2 开始运行
### 2.1 将模型导出为inference model
......@@ -141,11 +142,11 @@ build/paddle_inference_install_dir/
```
inference/
|-- det_db
| |--inference.pdparams
| |--inference.pdimodel
| |--inference.pdiparams
| |--inference.pdmodel
|-- rec_rcnn
| |--inference.pdparams
| |--inference.pdparams
| |--inference.pdiparams
| |--inference.pdmodel
```
......@@ -153,86 +154,107 @@ inference/
* 编译命令如下,其中Paddle C++预测库、opencv等其他依赖库的地址需要换成自己机器上的实际地址。
```shell
sh tools/build.sh
```
具体地,`tools/build.sh`中内容如下
* 具体的,需要修改`tools/build.sh`环境路径,相关内容如下
```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=/your_cudnn_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
```
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`
其中,`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`**注意:以上路径都写绝对路径,不要写相对路径。**
* 编译完成之后,会在`build`文件夹下生成一个名为`ocr_system`的可执行文件。
* 编译完成之后,会在`build`文件夹下生成一个名为`ppocr`的可执行文件。
### 运行demo
* 执行以下命令,完成对一幅图像的OCR识别与检测。
运行方式:
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
```
其中,`mode`为必选参数,表示选择的功能,取值范围['det', 'rec', 'system'],分别表示调用检测、识别、检测识别串联(包括方向分类器)。具体命令如下:
##### 1. 只调用检测:
```shell
sh tools/run.sh
./build/ppocr det \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--image_dir=../../doc/imgs/12.jpg
```
##### 2. 只调用识别:
```shell
./build/ppocr rec \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs_words/ch/
```
##### 3. 调用串联:
```shell
# 不使用方向分类器
./build/ppocr system \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs/12.jpg
# 使用方向分类器
./build/ppocr system \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--use_angle_cls=true \
--cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs/12.jpg
```
* 若需要使用方向分类器,则需要将`tools/config.txt`中的`use_angle_cls`参数修改为1,表示开启方向分类器的预测。
* 更多地,tools/config.txt中的参数及解释如下。
更多参数如下:
```
use_gpu 0 # 是否使用GPU,1表示使用,0表示不使用
gpu_id 0 # GPU id,使用GPU时有效
gpu_mem 4000 # 申请的GPU内存
cpu_math_library_num_threads 10 # CPU预测时的线程数,在机器核数充足的情况下,该值越大,预测速度越快
use_mkldnn 1 # 是否使用mkldnn库
- 通用参数
# det config
max_side_len 960 # 输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960
det_db_thresh 0.3 # 用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显
det_db_box_thresh 0.5 # DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小
det_db_unclip_ratio 1.6 # 表示文本框的紧致程度,越小则文本框更靠近文本
det_model_dir ./inference/det_db # 检测模型inference model地址
|参数名称|类型|默认参数|意义|
| --- | --- | --- | --- |
|use_gpu|bool|false|是否使用GPU|
|gpu_id|int|0|GPU id,使用GPU时有效|
|gpu_mem|int|4000|申请的GPU内存|
|cpu_math_library_num_threads|int|10|CPU预测时的线程数,在机器核数充足的情况下,该值越大,预测速度越快|
|use_mkldnn|bool|true|是否使用mkldnn库|
# cls config
use_angle_cls 0 # 是否使用方向分类器,0表示不使用,1表示使用
cls_model_dir ./inference/cls # 方向分类器inference model地址
cls_thresh 0.9 # 方向分类器的得分阈值
- 检测模型相关
# rec config
rec_model_dir ./inference/rec_crnn # 识别模型inference model地址
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt # 字典文件
|参数名称|类型|默认参数|意义|
| --- | --- | --- | --- |
|det_model_dir|string|-|检测模型inference model地址|
|max_side_len|int|960|输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960|
|det_db_thresh|float|0.3|用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显|
|det_db_box_thresh|float|0.5|DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小|
|det_db_unclip_ratio|float|1.6|表示文本框的紧致程度,越小则文本框更靠近文本|
|use_polygon_score|bool|false|是否使用多边形框计算bbox score,false表示使用矩形框计算。矩形框计算速度更快,多边形框对弯曲文本区域计算更准确。|
|visualize|bool|true|是否对结果进行可视化,为1时,会在当前文件夹下保存文件名为`ocr_vis.png`的预测结果。|
- 方向分类器相关
|参数名称|类型|默认参数|意义|
| --- | --- | --- | --- |
|use_angle_cls|bool|false|是否使用方向分类器|
|cls_model_dir|string|-|方向分类器inference model地址|
|cls_thresh|float|0.9|方向分类器的得分阈值|
- 识别模型相关
|参数名称|类型|默认参数|意义|
| --- | --- | --- | --- |
|rec_model_dir|string|-|识别模型inference model地址|
|char_list_file|string|../../ppocr/utils/ppocr_keys_v1.txt|字典文件|
# show the detection results
visualize 1 # 是否对结果进行可视化,为1时,会在当前文件夹下保存文件名为`ocr_vis.png`的预测结果。
```
* PaddleOCR也支持多语言的预测,更多支持的语言和模型可以参考[识别文档](../../doc/doc_ch/recognition.md)中的多语言字典与模型部分,如果希望进行多语言预测,只需将修改`tools/config.txt`中的`char_list_file`(字典文件路径)以及`rec_model_dir`(inference模型路径)字段即可。
* PaddleOCR也支持多语言的预测,更多支持的语言和模型可以参考[识别文档](../../doc/doc_ch/recognition.md)中的多语言字典与模型部分,如果希望进行多语言预测,只需将修改`char_list_file`(字典文件路径)以及`rec_model_dir`(inference模型路径)字段即可。
最终屏幕上会输出检测结果如下。
<div align="center">
<img src="../imgs/cpp_infer_pred_12.png" width="600">
<img src="./imgs/cpp_infer_pred_12.png" width="600">
</div>
......
......@@ -18,6 +18,7 @@ PaddleOCR model deployment.
* First of all, you need to download the source code compiled package in the Linux environment from the opencv official website. Taking opencv3.4.7 as an example, the download command is as follows.
```
cd deploy/cpp_infer
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
......@@ -78,8 +79,7 @@ opencv3/
#### 1.2.1 Direct download and installation
* Different cuda versions of the Linux inference library (based on GCC 4.8.2) are provided on the
[Paddle inference library official website](https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/05_inference_deployment/inference/build_and_install_lib_en.html). You can view and select the appropriate version of the inference library on the official website.
[Paddle inference library official website](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html). You can view and select the appropriate version of the inference library on the official website.
* After downloading, use the following method to uncompress.
......@@ -91,15 +91,16 @@ tar -xf paddle_inference.tgz
Finally you can see the following files in the folder of `paddle_inference/`.
#### 1.2.2 Compile from the source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle github repository and compile the inference library from the source code.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/05_inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from github, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle github repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from github, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
```shell
git clone https://github.com/PaddlePaddle/Paddle.git
git checkout release/2.1
```
* After entering the Paddle directory, the compilation method is as follows.
* After entering the Paddle directory, the commands to compile the paddle inference library are as follows.
```shell
rm -rf build
......@@ -119,7 +120,7 @@ make -j
make inference_lib_dist
```
For more compilation parameter options, please refer to the official website of the Paddle C++ inference library:[https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/05_inference_deployment/inference/build_and_install_lib_en.html](https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/05_inference_deployment/inference/build_and_install_lib_en.html).
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
......@@ -144,11 +145,11 @@ Among them, `paddle` is the Paddle library required for C++ prediction later, an
```
inference/
|-- det_db
| |--inference.pdparams
| |--inference.pdimodel
| |--inference.pdiparams
| |--inference.pdmodel
|-- rec_rcnn
| |--inference.pdparams
| |--inference.pdparams
| |--inference.pdiparams
| |--inference.pdmodel
```
......@@ -161,30 +162,13 @@ inference/
sh tools/build.sh
```
Specifically, the content in `tools/build.sh` is as follows.
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DDEMO_NAME=ocr_system \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DUSE_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
make -j
```
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`paddle_inference` folder)
......@@ -192,53 +176,90 @@ or the generated Paddle inference library path (`build/paddle_inference_install_
`CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
* After the compilation is completed, an executable file named `ocr_system` will be generated in the `build` folder.
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
### Run the demo
* Execute the following command to complete the OCR recognition and detection of an image.
Execute the built executable file:
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
```
Here, `mode` is a required parameter,and the value range is ['det', 'rec', 'system'], representing using detection only, using recognition only and using the end-to-end system respectively. Specifically,
##### 1. run det demo:
```shell
./build/ppocr det \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--image_dir=../../doc/imgs/12.jpg
```
##### 2. run rec demo:
```shell
./build/ppocr rec \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs_words/ch/
```
##### 3. run system demo:
```shell
sh tools/run.sh
# without text direction classifier
./build/ppocr system \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs/12.jpg
# with text direction classifier
./build/ppocr system \
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--use_angle_cls=true \
--cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--image_dir=../../doc/imgs/12.jpg
```
* If you want to orientation classifier to correct the detected boxes, you can set `use_angle_cls` in the file `tools/config.txt` as 1 to enable the function.
* What's more, Parameters and their meanings in `tools/config.txt` are as follows.
More parameters are as follows,
- common parameters
```
use_gpu 0 # Whether to use GPU, 0 means not to use, 1 means to use
gpu_id 0 # GPU id when use_gpu is 1
gpu_mem 4000 # GPU memory requested
cpu_math_library_num_threads 10 # Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed
use_mkldnn 1 # Whether to use mkdlnn library
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|use_mkldnn|bool|true|Whether to use mkdlnn library|
max_side_len 960 # Limit the maximum image height and width to 960
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
det_model_dir ./inference/det_db # Address of detection inference model
- detection related parameters
# cls config
use_angle_cls 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
cls_model_dir ./inference/cls # Address of direction classifier inference model
cls_thresh 0.9 # Score threshold of the direction classifier
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, The prediction result will be save in the image file `./ocr_vis.png`.|
# rec config
rec_model_dir ./inference/rec_crnn # Address of recognition inference model
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt # dictionary file
- classifier related parameters
# show the detection results
visualize 1 # Whether to visualize the results,when it is set as 1, The prediction result will be save in the image file `./ocr_vis.png`.
```
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the direction classifier|
- recogniton related parameters
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|rec_model_dir|string|-|Address of recognition inference model|
|char_list_file|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir` in file `tools/config.txt`.
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir`.
The detection results will be shown on the screen, which is as follows.
<div align="center">
<img src="../imgs/cpp_infer_pred_12.png" width="600">
<img src="./imgs/cpp_infer_pred_12.png" width="600">
</div>
......
......@@ -27,66 +27,257 @@
#include <fstream>
#include <numeric>
#include <include/config.h>
#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
#include <include/utility.h>
#include <sys/stat.h>
#include <gflags/gflags.h>
#include "auto_log/autolog.h"
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
using namespace std;
using namespace cv;
using namespace PaddleOCR;
static bool PathExists(const std::string& path){
#ifdef _WIN32
struct _stat buffer;
return (_stat(path.c_str(), &buffer) == 0);
#else
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0);
#endif // !_WIN32
}
int main_det(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
std::vector<std::vector<std::vector<int>>> boxes;
std::vector<double> det_times;
det.Run(srcimg, boxes, &det_times);
time_info[0] += det_times[0];
time_info[1] += det_times[1];
time_info[2] += det_times[2];
}
if (FLAGS_benchmark) {
AutoLogger autolog("ocr_det",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
return 0;
}
int main_rec(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
std::vector<double> rec_times;
rec.Run(srcimg, &rec_times);
time_info[0] += rec_times[0];
time_info[1] += rec_times[1];
time_info[2] += rec_times[2];
}
return 0;
}
int main_system(std::vector<cv::String> cv_all_img_names) {
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
Classifier *cls = nullptr;
if (FLAGS_use_angle_cls) {
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_cls_thresh,
FLAGS_use_tensorrt, FLAGS_precision);
}
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now();
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
std::vector<std::vector<std::vector<int>>> boxes;
std::vector<double> det_times;
std::vector<double> rec_times;
det.Run(srcimg, boxes, &det_times);
cv::Mat crop_img;
for (int j = 0; j < boxes.size(); j++) {
crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
if (cls != nullptr) {
crop_img = cls->Run(crop_img);
}
rec.Run(crop_img, &rec_times);
}
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< "s" << std::endl;
}
return 0;
}
void check_params(char* mode) {
if (strcmp(mode, "det")==0) {
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "rec")==0) {
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "system")==0) {
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--use_angle_cls=true "
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
exit(1);
}
}
int main(int argc, char **argv) {
if (argc < 3) {
std::cerr << "[ERROR] usage: " << argv[0]
<< " configure_filepath image_path\n";
exit(1);
}
OCRConfig config(argv[1]);
config.PrintConfigInfo();
std::string img_path(argv[2]);
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << img_path << "\n";
exit(1);
}
DBDetector det(config.det_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.max_side_len, config.det_db_thresh,
config.det_db_box_thresh, config.det_db_unclip_ratio,
config.visualize, config.use_tensorrt, config.use_fp16);
Classifier *cls = nullptr;
if (config.use_angle_cls == true) {
cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.cls_thresh,
config.use_tensorrt, config.use_fp16);
}
CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.char_list_file,
config.use_tensorrt, config.use_fp16);
auto start = std::chrono::system_clock::now();
std::vector<std::vector<std::vector<int>>> boxes;
det.Run(srcimg, boxes);
rec.Run(boxes, srcimg, cls);
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< "s" << std::endl;
return 0;
if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
return -1;
}
std::cout << "mode: " << argv[1] << endl;
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
check_params(argv[1]);
if (!PathExists(FLAGS_image_dir)) {
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
exit(1);
}
std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
if (strcmp(argv[1], "det")==0) {
return main_det(cv_all_img_names);
}
if (strcmp(argv[1], "rec")==0) {
return main_rec(cv_all_img_names);
}
if (strcmp(argv[1], "system")==0) {
return main_system(cv_all_img_names);
}
}
......@@ -77,10 +77,16 @@ void Classifier::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine(
1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
: paddle_infer::Config::Precision::kFloat32,
precision,
false, false);
}
} else {
......
......@@ -14,6 +14,7 @@
#include <include/ocr_det.h>
namespace PaddleOCR {
void DBDetector::LoadModel(const std::string &model_dir) {
......@@ -25,11 +26,53 @@ void DBDetector::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine(
1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
: paddle_infer::Config::Precision::kFloat32,
precision,
false, false);
std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 50, 50}},
{"conv2d_92.tmp_0", {1, 96, 20, 20}},
{"conv2d_91.tmp_0", {1, 96, 10, 10}},
{"nearest_interp_v2_1.tmp_0", {1, 96, 10, 10}},
{"nearest_interp_v2_2.tmp_0", {1, 96, 20, 20}},
{"nearest_interp_v2_3.tmp_0", {1, 24, 20, 20}},
{"nearest_interp_v2_4.tmp_0", {1, 24, 20, 20}},
{"nearest_interp_v2_5.tmp_0", {1, 24, 20, 20}},
{"elementwise_add_7", {1, 56, 2, 2}},
{"nearest_interp_v2_0.tmp_0", {1, 96, 2, 2}}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {1, 3, this->max_side_len_, this->max_side_len_}},
{"conv2d_92.tmp_0", {1, 96, 400, 400}},
{"conv2d_91.tmp_0", {1, 96, 200, 200}},
{"nearest_interp_v2_1.tmp_0", {1, 96, 200, 200}},
{"nearest_interp_v2_2.tmp_0", {1, 96, 400, 400}},
{"nearest_interp_v2_3.tmp_0", {1, 24, 400, 400}},
{"nearest_interp_v2_4.tmp_0", {1, 24, 400, 400}},
{"nearest_interp_v2_5.tmp_0", {1, 24, 400, 400}},
{"elementwise_add_7", {1, 56, 400, 400}},
{"nearest_interp_v2_0.tmp_0", {1, 96, 400, 400}}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 640, 640}},
{"conv2d_92.tmp_0", {1, 96, 160, 160}},
{"conv2d_91.tmp_0", {1, 96, 80, 80}},
{"nearest_interp_v2_1.tmp_0", {1, 96, 80, 80}},
{"nearest_interp_v2_2.tmp_0", {1, 96, 160, 160}},
{"nearest_interp_v2_3.tmp_0", {1, 24, 160, 160}},
{"nearest_interp_v2_4.tmp_0", {1, 24, 160, 160}},
{"nearest_interp_v2_5.tmp_0", {1, 24, 160, 160}},
{"elementwise_add_7", {1, 56, 40, 40}},
{"nearest_interp_v2_0.tmp_0", {1, 96, 40, 40}}};
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape);
}
} else {
config.DisableGpu();
......@@ -48,19 +91,22 @@ void DBDetector::LoadModel(const std::string &model_dir) {
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
// config.DisableGlogInfo();
this->predictor_ = CreatePredictor(config);
}
void DBDetector::Run(cv::Mat &img,
std::vector<std::vector<std::vector<int>>> &boxes) {
std::vector<std::vector<std::vector<int>>> &boxes,
std::vector<double> *times) {
float ratio_h{};
float ratio_w{};
cv::Mat srcimg;
cv::Mat resize_img;
img.copyTo(srcimg);
auto preprocess_start = std::chrono::steady_clock::now();
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
this->use_tensorrt_);
......@@ -69,14 +115,17 @@ void DBDetector::Run(cv::Mat &img,
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
......@@ -86,7 +135,9 @@ void DBDetector::Run(cv::Mat &img,
out_data.resize(out_num);
output_t->CopyToCpu(out_data.data());
auto inference_end = std::chrono::steady_clock::now();
auto postprocess_start = std::chrono::steady_clock::now();
int n2 = output_shape[2];
int n3 = output_shape[3];
int n = n2 * n3;
......@@ -109,12 +160,21 @@ void DBDetector::Run(cv::Mat &img,
cv::Mat dilation_map;
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, dilation_map, dila_ele);
boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
this->det_db_box_thresh_,
this->det_db_unclip_ratio_);
boxes = post_processor_.BoxesFromBitmap(
pred_map, dilation_map, this->det_db_box_thresh_,
this->det_db_unclip_ratio_, this->use_polygon_score_);
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
auto postprocess_end = std::chrono::steady_clock::now();
std::cout << "Detected boxes num: " << boxes.size() << endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
//// visualization
if (this->visualize_) {
Utility::VisualizeBboxes(srcimg, boxes);
......
......@@ -16,79 +16,80 @@
namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
cv::Mat &img, Classifier *cls) {
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
cv::Mat srcimg;
img.copyTo(srcimg);
cv::Mat crop_img;
cv::Mat resize_img;
std::cout << "The predicted text is :" << std::endl;
int index = 0;
for (int i = boxes.size() - 1; i >= 0; i--) {
crop_img = GetRotateCropImage(srcimg, boxes[i]);
if (cls != nullptr) {
crop_img = cls->Run(crop_img);
float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
auto preprocess_start = std::chrono::steady_clock::now();
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now();
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now();
std::vector<std::string> str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx =
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res.push_back(label_list_[argmax_idx]);
}
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
output_t->CopyToCpu(predict_batch.data());
// ctc decode
std::vector<std::string> str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
argmax_idx =
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res.push_back(label_list_[argmax_idx]);
}
last_index = argmax_idx;
}
score /= count;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
last_index = argmax_idx;
}
auto postprocess_end = std::chrono::steady_clock::now();
score /= count;
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
std::cout << "\tscore: " << score << std::endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
}
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
......@@ -100,11 +101,26 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine(
1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
: paddle_infer::Config::Precision::kFloat32,
precision,
false, false);
std::map<std::string, std::vector<int>> min_input_shape = {
{"x", {1, 3, 32, 10}}};
std::map<std::string, std::vector<int>> max_input_shape = {
{"x", {1, 3, 32, 2000}}};
std::map<std::string, std::vector<int>> opt_input_shape = {
{"x", {1, 3, 32, 320}}};
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
opt_input_shape);
}
} else {
config.DisableGpu();
......@@ -128,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
this->predictor_ = CreatePredictor(config);
}
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
} // namespace PaddleOCR
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment