Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
19eb7eb8
Commit
19eb7eb8
authored
Sep 03, 2021
by
Leif
Browse files
Merge remote-tracking branch 'origin/dygraph' into dy1
parents
0afe6c32
03b7daa5
Changes
364
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
221 additions
and
54 deletions
+221
-54
tools/infer_rec.py
tools/infer_rec.py
+60
-31
tools/infer_table.py
tools/infer_table.py
+107
-0
tools/program.py
tools/program.py
+44
-19
tools/train.py
tools/train.py
+10
-4
No files found.
tools/infer_rec.py
View file @
19eb7eb8
...
@@ -20,6 +20,7 @@ import numpy as np
...
@@ -20,6 +20,7 @@ import numpy as np
import
os
import
os
import
sys
import
sys
import
json
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
__dir__
)
...
@@ -46,12 +47,18 @@ def main():
...
@@ -46,12 +47,18 @@ def main():
# build model
# build model
if
hasattr
(
post_process_class
,
'character'
):
if
hasattr
(
post_process_class
,
'character'
):
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
len
(
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
getattr
(
post_process_class
,
'character'
))
if
config
[
'Architecture'
][
"algorithm"
]
in
[
"Distillation"
,
]:
# distillation model
for
key
in
config
[
'Architecture'
][
"Models"
]:
config
[
'Architecture'
][
"Models"
][
key
][
"Head"
][
'out_channels'
]
=
char_num
else
:
# base rec model
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
model
=
build_model
(
config
[
'Architecture'
])
init_model
(
config
,
model
,
logger
)
init_model
(
config
,
model
)
# create data ops
# create data ops
transforms
=
[]
transforms
=
[]
...
@@ -73,35 +80,57 @@ def main():
...
@@ -73,35 +80,57 @@ def main():
global_config
[
'infer_mode'
]
=
True
global_config
[
'infer_mode'
]
=
True
ops
=
create_operators
(
transforms
,
global_config
)
ops
=
create_operators
(
transforms
,
global_config
)
save_res_path
=
config
[
'Global'
].
get
(
'save_res_path'
,
"./output/rec/predicts_rec.txt"
)
if
not
os
.
path
.
exists
(
os
.
path
.
dirname
(
save_res_path
)):
os
.
makedirs
(
os
.
path
.
dirname
(
save_res_path
))
model
.
eval
()
model
.
eval
()
for
file
in
get_image_file_list
(
config
[
'Global'
][
'infer_img'
]):
logger
.
info
(
"infer_img: {}"
.
format
(
file
))
with
open
(
save_res_path
,
"w"
)
as
fout
:
with
open
(
file
,
'rb'
)
as
f
:
for
file
in
get_image_file_list
(
config
[
'Global'
][
'infer_img'
]):
img
=
f
.
read
()
logger
.
info
(
"infer_img: {}"
.
format
(
file
))
data
=
{
'image'
:
img
}
with
open
(
file
,
'rb'
)
as
f
:
batch
=
transform
(
data
,
ops
)
img
=
f
.
read
()
if
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
:
data
=
{
'image'
:
img
}
encoder_word_pos_list
=
np
.
expand_dims
(
batch
[
1
],
axis
=
0
)
batch
=
transform
(
data
,
ops
)
gsrm_word_pos_list
=
np
.
expand_dims
(
batch
[
2
],
axis
=
0
)
if
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
:
gsrm_slf_attn_bias1_list
=
np
.
expand_dims
(
batch
[
3
],
axis
=
0
)
encoder_word_pos_list
=
np
.
expand_dims
(
batch
[
1
],
axis
=
0
)
gsrm_slf_attn_bias2_list
=
np
.
expand_dims
(
batch
[
4
],
axis
=
0
)
gsrm_word_pos_list
=
np
.
expand_dims
(
batch
[
2
],
axis
=
0
)
gsrm_slf_attn_bias1_list
=
np
.
expand_dims
(
batch
[
3
],
axis
=
0
)
others
=
[
gsrm_slf_attn_bias2_list
=
np
.
expand_dims
(
batch
[
4
],
axis
=
0
)
paddle
.
to_tensor
(
encoder_word_pos_list
),
paddle
.
to_tensor
(
gsrm_word_pos_list
),
others
=
[
paddle
.
to_tensor
(
gsrm_slf_attn_bias1_list
),
paddle
.
to_tensor
(
encoder_word_pos_list
),
paddle
.
to_tensor
(
gsrm_slf_attn_bias2_list
)
paddle
.
to_tensor
(
gsrm_word_pos_list
),
]
paddle
.
to_tensor
(
gsrm_slf_attn_bias1_list
),
paddle
.
to_tensor
(
gsrm_slf_attn_bias2_list
)
images
=
np
.
expand_dims
(
batch
[
0
],
axis
=
0
)
]
images
=
paddle
.
to_tensor
(
images
)
if
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
:
images
=
np
.
expand_dims
(
batch
[
0
],
axis
=
0
)
preds
=
model
(
images
,
others
)
images
=
paddle
.
to_tensor
(
images
)
else
:
if
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
:
preds
=
model
(
images
)
preds
=
model
(
images
,
others
)
post_result
=
post_process_class
(
preds
)
else
:
for
rec_reuslt
in
post_result
:
preds
=
model
(
images
)
logger
.
info
(
'
\t
result: {}'
.
format
(
rec_reuslt
))
post_result
=
post_process_class
(
preds
)
info
=
None
if
isinstance
(
post_result
,
dict
):
rec_info
=
dict
()
for
key
in
post_result
:
if
len
(
post_result
[
key
][
0
])
>=
2
:
rec_info
[
key
]
=
{
"label"
:
post_result
[
key
][
0
][
0
],
"score"
:
float
(
post_result
[
key
][
0
][
1
]),
}
info
=
json
.
dumps
(
rec_info
)
else
:
if
len
(
post_result
[
0
])
>=
2
:
info
=
post_result
[
0
][
0
]
+
"
\t
"
+
str
(
post_result
[
0
][
1
])
if
info
is
not
None
:
logger
.
info
(
"
\t
result: {}"
.
format
(
info
))
fout
.
write
(
file
+
"
\t
"
+
info
)
logger
.
info
(
"success!"
)
logger
.
info
(
"success!"
)
...
...
tools/infer_table.py
0 → 100644
View file @
19eb7eb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
os
import
sys
import
json
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
os
.
environ
[
"FLAGS_allocator_strategy"
]
=
'auto_growth'
import
paddle
from
paddle.jit
import
to_static
from
ppocr.data
import
create_operators
,
transform
from
ppocr.modeling.architectures
import
build_model
from
ppocr.postprocess
import
build_post_process
from
ppocr.utils.save_load
import
init_model
from
ppocr.utils.utility
import
get_image_file_list
import
tools.program
as
program
import
cv2
def
main
(
config
,
device
,
logger
,
vdl_writer
):
global_config
=
config
[
'Global'
]
# build post process
post_process_class
=
build_post_process
(
config
[
'PostProcess'
],
global_config
)
# build model
if
hasattr
(
post_process_class
,
'character'
):
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
len
(
getattr
(
post_process_class
,
'character'
))
model
=
build_model
(
config
[
'Architecture'
])
init_model
(
config
,
model
,
logger
)
# create data ops
transforms
=
[]
use_padding
=
False
for
op
in
config
[
'Eval'
][
'dataset'
][
'transforms'
]:
op_name
=
list
(
op
)[
0
]
if
'Label'
in
op_name
:
continue
if
op_name
==
'KeepKeys'
:
op
[
op_name
][
'keep_keys'
]
=
[
'image'
]
if
op_name
==
"ResizeTableImage"
:
use_padding
=
True
padding_max_len
=
op
[
'ResizeTableImage'
][
'max_len'
]
transforms
.
append
(
op
)
global_config
[
'infer_mode'
]
=
True
ops
=
create_operators
(
transforms
,
global_config
)
model
.
eval
()
for
file
in
get_image_file_list
(
config
[
'Global'
][
'infer_img'
]):
logger
.
info
(
"infer_img: {}"
.
format
(
file
))
with
open
(
file
,
'rb'
)
as
f
:
img
=
f
.
read
()
data
=
{
'image'
:
img
}
batch
=
transform
(
data
,
ops
)
images
=
np
.
expand_dims
(
batch
[
0
],
axis
=
0
)
images
=
paddle
.
to_tensor
(
images
)
preds
=
model
(
images
)
post_result
=
post_process_class
(
preds
)
res_html_code
=
post_result
[
'res_html_code'
]
res_loc
=
post_result
[
'res_loc'
]
img
=
cv2
.
imread
(
file
)
imgh
,
imgw
=
img
.
shape
[
0
:
2
]
res_loc_final
=
[]
for
rno
in
range
(
len
(
res_loc
[
0
])):
x0
,
y0
,
x1
,
y1
=
res_loc
[
0
][
rno
]
left
=
max
(
int
(
imgw
*
x0
),
0
)
top
=
max
(
int
(
imgh
*
y0
),
0
)
right
=
min
(
int
(
imgw
*
x1
),
imgw
-
1
)
bottom
=
min
(
int
(
imgh
*
y1
),
imgh
-
1
)
cv2
.
rectangle
(
img
,
(
left
,
top
),
(
right
,
bottom
),
(
0
,
0
,
255
),
2
)
res_loc_final
.
append
([
left
,
top
,
right
,
bottom
])
res_loc_str
=
json
.
dumps
(
res_loc_final
)
logger
.
info
(
"result: {}, {}"
.
format
(
res_html_code
,
res_loc_final
))
logger
.
info
(
"success!"
)
if
__name__
==
'__main__'
:
config
,
device
,
logger
,
vdl_writer
=
program
.
preprocess
()
main
(
config
,
device
,
logger
,
vdl_writer
)
tools/program.py
View file @
19eb7eb8
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -18,6 +18,7 @@ from __future__ import print_function
...
@@ -18,6 +18,7 @@ from __future__ import print_function
import
os
import
os
import
sys
import
sys
import
platform
import
yaml
import
yaml
import
time
import
time
import
shutil
import
shutil
...
@@ -159,6 +160,8 @@ def train(config,
...
@@ -159,6 +160,8 @@ def train(config,
eval_batch_step
=
config
[
'Global'
][
'eval_batch_step'
]
eval_batch_step
=
config
[
'Global'
][
'eval_batch_step'
]
global_step
=
0
global_step
=
0
if
'global_step'
in
pre_best_model_dict
:
global_step
=
pre_best_model_dict
[
'global_step'
]
start_eval_step
=
0
start_eval_step
=
0
if
type
(
eval_batch_step
)
==
list
and
len
(
eval_batch_step
)
>=
2
:
if
type
(
eval_batch_step
)
==
list
and
len
(
eval_batch_step
)
>=
2
:
start_eval_step
=
eval_batch_step
[
0
]
start_eval_step
=
eval_batch_step
[
0
]
...
@@ -183,6 +186,12 @@ def train(config,
...
@@ -183,6 +186,12 @@ def train(config,
model
.
train
()
model
.
train
()
use_srn
=
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
use_srn
=
config
[
'Architecture'
][
'algorithm'
]
==
"SRN"
use_nrtr
=
config
[
'Architecture'
][
'algorithm'
]
==
"NRTR"
try
:
model_type
=
config
[
'Architecture'
][
'model_type'
]
except
:
model_type
=
None
if
'start_epoch'
in
best_model_dict
:
if
'start_epoch'
in
best_model_dict
:
start_epoch
=
best_model_dict
[
'start_epoch'
]
start_epoch
=
best_model_dict
[
'start_epoch'
]
...
@@ -196,16 +205,18 @@ def train(config,
...
@@ -196,16 +205,18 @@ def train(config,
train_reader_cost
=
0.0
train_reader_cost
=
0.0
batch_sum
=
0
batch_sum
=
0
batch_start
=
time
.
time
()
batch_start
=
time
.
time
()
max_iter
=
len
(
train_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
train_dataloader
)
for
idx
,
batch
in
enumerate
(
train_dataloader
):
for
idx
,
batch
in
enumerate
(
train_dataloader
):
train_reader_cost
+=
time
.
time
()
-
batch_start
train_reader_cost
+=
time
.
time
()
-
batch_start
if
idx
>=
len
(
train_dataload
er
)
:
if
idx
>=
max_it
er
:
break
break
lr
=
optimizer
.
get_lr
()
lr
=
optimizer
.
get_lr
()
images
=
batch
[
0
]
images
=
batch
[
0
]
if
use_srn
:
if
use_srn
:
others
=
batch
[
-
4
:]
preds
=
model
(
images
,
others
)
model_average
=
True
model_average
=
True
if
use_srn
or
model_type
==
'table'
or
use_nrtr
:
preds
=
model
(
images
,
data
=
batch
[
1
:])
else
:
else
:
preds
=
model
(
images
)
preds
=
model
(
images
)
loss
=
loss_class
(
preds
,
batch
)
loss
=
loss_class
(
preds
,
batch
)
...
@@ -227,8 +238,11 @@ def train(config,
...
@@ -227,8 +238,11 @@ def train(config,
if
cal_metric_during_train
:
# only rec and cls need
if
cal_metric_during_train
:
# only rec and cls need
batch
=
[
item
.
numpy
()
for
item
in
batch
]
batch
=
[
item
.
numpy
()
for
item
in
batch
]
post_result
=
post_process_class
(
preds
,
batch
[
1
])
if
model_type
==
'table'
:
eval_class
(
post_result
,
batch
)
eval_class
(
preds
,
batch
)
else
:
post_result
=
post_process_class
(
preds
,
batch
[
1
])
eval_class
(
post_result
,
batch
)
metric
=
eval_class
.
get_metric
()
metric
=
eval_class
.
get_metric
()
train_stats
.
update
(
metric
)
train_stats
.
update
(
metric
)
...
@@ -264,6 +278,7 @@ def train(config,
...
@@ -264,6 +278,7 @@ def train(config,
valid_dataloader
,
valid_dataloader
,
post_process_class
,
post_process_class
,
eval_class
,
eval_class
,
model_type
,
use_srn
=
use_srn
)
use_srn
=
use_srn
)
cur_metric_str
=
'cur metric, {}'
.
format
(
', '
.
join
(
cur_metric_str
=
'cur metric, {}'
.
format
(
', '
.
join
(
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
cur_metric
.
items
()]))
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
cur_metric
.
items
()]))
...
@@ -287,7 +302,8 @@ def train(config,
...
@@ -287,7 +302,8 @@ def train(config,
is_best
=
True
,
is_best
=
True
,
prefix
=
'best_accuracy'
,
prefix
=
'best_accuracy'
,
best_model_dict
=
best_model_dict
,
best_model_dict
=
best_model_dict
,
epoch
=
epoch
)
epoch
=
epoch
,
global_step
=
global_step
)
best_str
=
'best metric, {}'
.
format
(
', '
.
join
([
best_str
=
'best metric, {}'
.
format
(
', '
.
join
([
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
best_model_dict
.
items
()
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
best_model_dict
.
items
()
]))
]))
...
@@ -309,7 +325,8 @@ def train(config,
...
@@ -309,7 +325,8 @@ def train(config,
is_best
=
False
,
is_best
=
False
,
prefix
=
'latest'
,
prefix
=
'latest'
,
best_model_dict
=
best_model_dict
,
best_model_dict
=
best_model_dict
,
epoch
=
epoch
)
epoch
=
epoch
,
global_step
=
global_step
)
if
dist
.
get_rank
()
==
0
and
epoch
>
0
and
epoch
%
save_epoch_step
==
0
:
if
dist
.
get_rank
()
==
0
and
epoch
>
0
and
epoch
%
save_epoch_step
==
0
:
save_model
(
save_model
(
model
,
model
,
...
@@ -319,7 +336,8 @@ def train(config,
...
@@ -319,7 +336,8 @@ def train(config,
is_best
=
False
,
is_best
=
False
,
prefix
=
'iter_epoch_{}'
.
format
(
epoch
),
prefix
=
'iter_epoch_{}'
.
format
(
epoch
),
best_model_dict
=
best_model_dict
,
best_model_dict
=
best_model_dict
,
epoch
=
epoch
)
epoch
=
epoch
,
global_step
=
global_step
)
best_str
=
'best metric, {}'
.
format
(
', '
.
join
(
best_str
=
'best metric, {}'
.
format
(
', '
.
join
(
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
best_model_dict
.
items
()]))
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
best_model_dict
.
items
()]))
logger
.
info
(
best_str
)
logger
.
info
(
best_str
)
...
@@ -328,31 +346,37 @@ def train(config,
...
@@ -328,31 +346,37 @@ def train(config,
return
return
def
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
def
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
model_type
,
use_srn
=
False
):
use_srn
=
False
):
model
.
eval
()
model
.
eval
()
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
total_frame
=
0.0
total_frame
=
0.0
total_time
=
0.0
total_time
=
0.0
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
)
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
)
max_iter
=
len
(
valid_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
valid_dataloader
)
for
idx
,
batch
in
enumerate
(
valid_dataloader
):
for
idx
,
batch
in
enumerate
(
valid_dataloader
):
if
idx
>=
len
(
valid_dataload
er
)
:
if
idx
>=
max_it
er
:
break
break
images
=
batch
[
0
]
images
=
batch
[
0
]
start
=
time
.
time
()
start
=
time
.
time
()
if
use_srn
or
model_type
==
'table'
:
if
use_srn
:
preds
=
model
(
images
,
data
=
batch
[
1
:])
others
=
batch
[
-
4
:]
preds
=
model
(
images
,
others
)
else
:
else
:
preds
=
model
(
images
)
preds
=
model
(
images
)
batch
=
[
item
.
numpy
()
for
item
in
batch
]
batch
=
[
item
.
numpy
()
for
item
in
batch
]
# Obtain usable results from post-processing methods
# Obtain usable results from post-processing methods
post_result
=
post_process_class
(
preds
,
batch
[
1
])
total_time
+=
time
.
time
()
-
start
total_time
+=
time
.
time
()
-
start
# Evaluate the results of the current batch
# Evaluate the results of the current batch
eval_class
(
post_result
,
batch
)
if
model_type
==
'table'
:
eval_class
(
preds
,
batch
)
else
:
post_result
=
post_process_class
(
preds
,
batch
[
1
])
eval_class
(
post_result
,
batch
)
pbar
.
update
(
1
)
pbar
.
update
(
1
)
total_frame
+=
len
(
images
)
total_frame
+=
len
(
images
)
# Get final metric,eg. acc or hmean
# Get final metric,eg. acc or hmean
...
@@ -375,7 +399,8 @@ def preprocess(is_train=False):
...
@@ -375,7 +399,8 @@ def preprocess(is_train=False):
alg
=
config
[
'Architecture'
][
'algorithm'
]
alg
=
config
[
'Architecture'
][
'algorithm'
]
assert
alg
in
[
assert
alg
in
[
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
,
'CLS'
'EAST'
,
'DB'
,
'SAST'
,
'Rosetta'
,
'CRNN'
,
'STARNet'
,
'RARE'
,
'SRN'
,
'CLS'
,
'PGNet'
,
'Distillation'
,
'NRTR'
,
'TableAttn'
]
]
device
=
'gpu:{}'
.
format
(
dist
.
ParallelEnv
().
dev_id
)
if
use_gpu
else
'cpu'
device
=
'gpu:{}'
.
format
(
dist
.
ParallelEnv
().
dev_id
)
if
use_gpu
else
'cpu'
...
...
tools/train.py
View file @
19eb7eb8
...
@@ -35,7 +35,7 @@ from ppocr.losses import build_loss
...
@@ -35,7 +35,7 @@ from ppocr.losses import build_loss
from
ppocr.optimizer
import
build_optimizer
from
ppocr.optimizer
import
build_optimizer
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
from
ppocr.metrics
import
build_metric
from
ppocr.metrics
import
build_metric
from
ppocr.utils.save_load
import
init_model
from
ppocr.utils.save_load
import
init_model
,
load_dygraph_params
import
tools.program
as
program
import
tools.program
as
program
dist
.
get_world_size
()
dist
.
get_world_size
()
...
@@ -72,7 +72,14 @@ def main(config, device, logger, vdl_writer):
...
@@ -72,7 +72,14 @@ def main(config, device, logger, vdl_writer):
# for rec algorithm
# for rec algorithm
if
hasattr
(
post_process_class
,
'character'
):
if
hasattr
(
post_process_class
,
'character'
):
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
if
config
[
'Architecture'
][
"algorithm"
]
in
[
"Distillation"
,
]:
# distillation model
for
key
in
config
[
'Architecture'
][
"Models"
]:
config
[
'Architecture'
][
"Models"
][
key
][
"Head"
][
'out_channels'
]
=
char_num
else
:
# base rec model
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
model
=
build_model
(
config
[
'Architecture'
])
if
config
[
'Global'
][
'distributed'
]:
if
config
[
'Global'
][
'distributed'
]:
model
=
paddle
.
DataParallel
(
model
)
model
=
paddle
.
DataParallel
(
model
)
...
@@ -90,8 +97,7 @@ def main(config, device, logger, vdl_writer):
...
@@ -90,8 +97,7 @@ def main(config, device, logger, vdl_writer):
# build metric
# build metric
eval_class
=
build_metric
(
config
[
'Metric'
])
eval_class
=
build_metric
(
config
[
'Metric'
])
# load pretrain model
# load pretrain model
pre_best_model_dict
=
init_model
(
config
,
model
,
logger
,
optimizer
)
pre_best_model_dict
=
load_dygraph_params
(
config
,
model
,
logger
,
optimizer
)
logger
.
info
(
'train dataloader has {} iters'
.
format
(
len
(
train_dataloader
)))
logger
.
info
(
'train dataloader has {} iters'
.
format
(
len
(
train_dataloader
)))
if
valid_dataloader
is
not
None
:
if
valid_dataloader
is
not
None
:
logger
.
info
(
'valid dataloader has {} iters'
.
format
(
logger
.
info
(
'valid dataloader has {} iters'
.
format
(
...
...
Prev
1
…
15
16
17
18
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment