Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
19eb7eb8
Commit
19eb7eb8
authored
Sep 03, 2021
by
Leif
Browse files
Merge remote-tracking branch 'origin/dygraph' into dy1
parents
0afe6c32
03b7daa5
Changes
364
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2973 additions
and
136 deletions
+2973
-136
ppocr/modeling/heads/e2e_pg_head.py
ppocr/modeling/heads/e2e_pg_head.py
+253
-0
ppocr/modeling/heads/multiheadAttention.py
ppocr/modeling/heads/multiheadAttention.py
+178
-0
ppocr/modeling/heads/rec_ctc_head.py
ppocr/modeling/heads/rec_ctc_head.py
+41
-16
ppocr/modeling/heads/rec_nrtr_head.py
ppocr/modeling/heads/rec_nrtr_head.py
+844
-0
ppocr/modeling/heads/rec_srn_head.py
ppocr/modeling/heads/rec_srn_head.py
+2
-1
ppocr/modeling/heads/self_attention.py
ppocr/modeling/heads/self_attention.py
+2
-5
ppocr/modeling/heads/table_att_head.py
ppocr/modeling/heads/table_att_head.py
+238
-0
ppocr/modeling/necks/__init__.py
ppocr/modeling/necks/__init__.py
+4
-1
ppocr/modeling/necks/db_fpn.py
ppocr/modeling/necks/db_fpn.py
+8
-16
ppocr/modeling/necks/pg_fpn.py
ppocr/modeling/necks/pg_fpn.py
+314
-0
ppocr/modeling/necks/table_fpn.py
ppocr/modeling/necks/table_fpn.py
+110
-0
ppocr/modeling/transforms/tps.py
ppocr/modeling/transforms/tps.py
+2
-9
ppocr/postprocess/__init__.py
ppocr/postprocess/__init__.py
+9
-7
ppocr/postprocess/db_postprocess.py
ppocr/postprocess/db_postprocess.py
+60
-1
ppocr/postprocess/pg_postprocess.py
ppocr/postprocess/pg_postprocess.py
+52
-0
ppocr/postprocess/rec_postprocess.py
ppocr/postprocess/rec_postprocess.py
+237
-8
ppocr/postprocess/sast_postprocess.py
ppocr/postprocess/sast_postprocess.py
+127
-72
ppocr/utils/dict/arabic_dict.txt
ppocr/utils/dict/arabic_dict.txt
+162
-0
ppocr/utils/dict/cyrillic_dict.txt
ppocr/utils/dict/cyrillic_dict.txt
+163
-0
ppocr/utils/dict/devanagari_dict.txt
ppocr/utils/dict/devanagari_dict.txt
+167
-0
No files found.
ppocr/modeling/heads/e2e_pg_head.py
0 → 100644
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
padding
,
groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
self
.
bn
=
nn
.
BatchNorm
(
num_channels
=
out_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
"bn_"
+
name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
"bn_"
+
name
+
"_offset"
),
moving_mean_name
=
"bn_"
+
name
+
"_mean"
,
moving_variance_name
=
"bn_"
+
name
+
"_variance"
,
use_global_stats
=
False
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
return
x
class
PGHead
(
nn
.
Layer
):
"""
"""
def
__init__
(
self
,
in_channels
,
**
kwargs
):
super
(
PGHead
,
self
).
__init__
()
self
.
conv_f_score1
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
64
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_score{}"
.
format
(
1
))
self
.
conv_f_score2
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
name
=
"conv_f_score{}"
.
format
(
2
))
self
.
conv_f_score3
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_score{}"
.
format
(
3
))
self
.
conv1
=
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
1
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
1
,
weight_attr
=
ParamAttr
(
name
=
"conv_f_score{}"
.
format
(
4
)),
bias_attr
=
False
)
self
.
conv_f_boder1
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
64
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_boder{}"
.
format
(
1
))
self
.
conv_f_boder2
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
name
=
"conv_f_boder{}"
.
format
(
2
))
self
.
conv_f_boder3
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_boder{}"
.
format
(
3
))
self
.
conv2
=
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
4
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
1
,
weight_attr
=
ParamAttr
(
name
=
"conv_f_boder{}"
.
format
(
4
)),
bias_attr
=
False
)
self
.
conv_f_char1
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_char{}"
.
format
(
1
))
self
.
conv_f_char2
=
ConvBNLayer
(
in_channels
=
128
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
name
=
"conv_f_char{}"
.
format
(
2
))
self
.
conv_f_char3
=
ConvBNLayer
(
in_channels
=
128
,
out_channels
=
256
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_char{}"
.
format
(
3
))
self
.
conv_f_char4
=
ConvBNLayer
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
name
=
"conv_f_char{}"
.
format
(
4
))
self
.
conv_f_char5
=
ConvBNLayer
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_char{}"
.
format
(
5
))
self
.
conv3
=
nn
.
Conv2D
(
in_channels
=
256
,
out_channels
=
37
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
1
,
weight_attr
=
ParamAttr
(
name
=
"conv_f_char{}"
.
format
(
6
)),
bias_attr
=
False
)
self
.
conv_f_direc1
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
64
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_direc{}"
.
format
(
1
))
self
.
conv_f_direc2
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
name
=
"conv_f_direc{}"
.
format
(
2
))
self
.
conv_f_direc3
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
'relu'
,
name
=
"conv_f_direc{}"
.
format
(
3
))
self
.
conv4
=
nn
.
Conv2D
(
in_channels
=
128
,
out_channels
=
2
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
1
,
weight_attr
=
ParamAttr
(
name
=
"conv_f_direc{}"
.
format
(
4
)),
bias_attr
=
False
)
def
forward
(
self
,
x
,
targets
=
None
):
f_score
=
self
.
conv_f_score1
(
x
)
f_score
=
self
.
conv_f_score2
(
f_score
)
f_score
=
self
.
conv_f_score3
(
f_score
)
f_score
=
self
.
conv1
(
f_score
)
f_score
=
F
.
sigmoid
(
f_score
)
# f_border
f_border
=
self
.
conv_f_boder1
(
x
)
f_border
=
self
.
conv_f_boder2
(
f_border
)
f_border
=
self
.
conv_f_boder3
(
f_border
)
f_border
=
self
.
conv2
(
f_border
)
f_char
=
self
.
conv_f_char1
(
x
)
f_char
=
self
.
conv_f_char2
(
f_char
)
f_char
=
self
.
conv_f_char3
(
f_char
)
f_char
=
self
.
conv_f_char4
(
f_char
)
f_char
=
self
.
conv_f_char5
(
f_char
)
f_char
=
self
.
conv3
(
f_char
)
f_direction
=
self
.
conv_f_direc1
(
x
)
f_direction
=
self
.
conv_f_direc2
(
f_direction
)
f_direction
=
self
.
conv_f_direc3
(
f_direction
)
f_direction
=
self
.
conv4
(
f_direction
)
predicts
=
{}
predicts
[
'f_score'
]
=
f_score
predicts
[
'f_border'
]
=
f_border
predicts
[
'f_char'
]
=
f_char
predicts
[
'f_direction'
]
=
f_direction
return
predicts
ppocr/modeling/heads/multiheadAttention.py
0 → 100755
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Linear
from
paddle.nn.initializer
import
XavierUniform
as
xavier_uniform_
from
paddle.nn.initializer
import
Constant
as
constant_
from
paddle.nn.initializer
import
XavierNormal
as
xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
class
MultiheadAttention
(
nn
.
Layer
):
"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\t
ext{MultiHead}(Q, K, V) =
\t
ext{Concat}(head_1,\dots,head_h)W^O
\t
ext{where} head_i =
\t
ext{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model
num_heads: parallel attention layers, or heads
"""
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout
=
0.
,
bias
=
True
,
add_bias_kv
=
False
,
add_zero_attn
=
False
):
super
(
MultiheadAttention
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
dropout
=
dropout
self
.
head_dim
=
embed_dim
//
num_heads
assert
self
.
head_dim
*
num_heads
==
self
.
embed_dim
,
"embed_dim must be divisible by num_heads"
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
out_proj
=
Linear
(
embed_dim
,
embed_dim
,
bias_attr
=
bias
)
self
.
_reset_parameters
()
self
.
conv1
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
self
.
conv3
=
paddle
.
nn
.
Conv2D
(
in_channels
=
embed_dim
,
out_channels
=
embed_dim
,
kernel_size
=
(
1
,
1
))
def
_reset_parameters
(
self
):
xavier_uniform_
(
self
.
out_proj
.
weight
)
def
forward
(
self
,
query
,
key
,
value
,
key_padding_mask
=
None
,
incremental_state
=
None
,
need_weights
=
True
,
static_kv
=
False
,
attn_mask
=
None
):
"""
Inputs of forward function
query: [target length, batch size, embed dim]
key: [sequence length, batch size, embed dim]
value: [sequence length, batch size, embed dim]
key_padding_mask: if True, mask padding based on batch size
incremental_state: if provided, previous time steps are cashed
need_weights: output attn_output_weights
static_kv: key and value are static
Outputs of forward function
attn_output: [target length, batch size, embed dim]
attn_output_weights: [batch size, target length, sequence length]
"""
tgt_len
,
bsz
,
embed_dim
=
query
.
shape
assert
embed_dim
==
self
.
embed_dim
assert
list
(
query
.
shape
)
==
[
tgt_len
,
bsz
,
embed_dim
]
assert
key
.
shape
==
value
.
shape
q
=
self
.
_in_proj_q
(
query
)
k
=
self
.
_in_proj_k
(
key
)
v
=
self
.
_in_proj_v
(
value
)
q
*=
self
.
scaling
q
=
q
.
reshape
([
tgt_len
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
[
1
,
0
,
2
])
k
=
k
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
[
1
,
0
,
2
])
v
=
v
.
reshape
([
-
1
,
bsz
*
self
.
num_heads
,
self
.
head_dim
]).
transpose
(
[
1
,
0
,
2
])
src_len
=
k
.
shape
[
1
]
if
key_padding_mask
is
not
None
:
assert
key_padding_mask
.
shape
[
0
]
==
bsz
assert
key_padding_mask
.
shape
[
1
]
==
src_len
attn_output_weights
=
paddle
.
bmm
(
q
,
k
.
transpose
([
0
,
2
,
1
]))
assert
list
(
attn_output_weights
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
]
if
attn_mask
is
not
None
:
attn_mask
=
attn_mask
.
unsqueeze
(
0
)
attn_output_weights
+=
attn_mask
if
key_padding_mask
is
not
None
:
attn_output_weights
=
attn_output_weights
.
reshape
(
[
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
key
=
key_padding_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
).
astype
(
'float32'
)
y
=
paddle
.
full
(
shape
=
key
.
shape
,
dtype
=
'float32'
,
fill_value
=
'-inf'
)
y
=
paddle
.
where
(
key
==
0.
,
key
,
y
)
attn_output_weights
+=
y
attn_output_weights
=
attn_output_weights
.
reshape
(
[
bsz
*
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
F
.
softmax
(
attn_output_weights
.
astype
(
'float32'
),
axis
=-
1
,
dtype
=
paddle
.
float32
if
attn_output_weights
.
dtype
==
paddle
.
float16
else
attn_output_weights
.
dtype
)
attn_output_weights
=
F
.
dropout
(
attn_output_weights
,
p
=
self
.
dropout
,
training
=
self
.
training
)
attn_output
=
paddle
.
bmm
(
attn_output_weights
,
v
)
assert
list
(
attn_output
.
shape
)
==
[
bsz
*
self
.
num_heads
,
tgt_len
,
self
.
head_dim
]
attn_output
=
attn_output
.
transpose
([
1
,
0
,
2
]).
reshape
(
[
tgt_len
,
bsz
,
embed_dim
])
attn_output
=
self
.
out_proj
(
attn_output
)
if
need_weights
:
# average attention weights over heads
attn_output_weights
=
attn_output_weights
.
reshape
(
[
bsz
,
self
.
num_heads
,
tgt_len
,
src_len
])
attn_output_weights
=
attn_output_weights
.
sum
(
axis
=
1
)
/
self
.
num_heads
else
:
attn_output_weights
=
None
return
attn_output
,
attn_output_weights
def
_in_proj_q
(
self
,
query
):
query
=
query
.
transpose
([
1
,
2
,
0
])
query
=
paddle
.
unsqueeze
(
query
,
axis
=
2
)
res
=
self
.
conv1
(
query
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_k
(
self
,
key
):
key
=
key
.
transpose
([
1
,
2
,
0
])
key
=
paddle
.
unsqueeze
(
key
,
axis
=
2
)
res
=
self
.
conv2
(
key
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
def
_in_proj_v
(
self
,
value
):
value
=
value
.
transpose
([
1
,
2
,
0
])
#(1, 2, 0)
value
=
paddle
.
unsqueeze
(
value
,
axis
=
2
)
res
=
self
.
conv3
(
value
)
res
=
paddle
.
squeeze
(
res
,
axis
=
2
)
res
=
res
.
transpose
([
2
,
0
,
1
])
return
res
ppocr/modeling/heads/rec_ctc_head.py
View file @
19eb7eb8
...
...
@@ -23,32 +23,57 @@ from paddle import ParamAttr, nn
from
paddle.nn
import
functional
as
F
def
get_para_bias_attr
(
l2_decay
,
k
,
name
):
def
get_para_bias_attr
(
l2_decay
,
k
):
regularizer
=
paddle
.
regularizer
.
L2Decay
(
l2_decay
)
stdv
=
1.0
/
math
.
sqrt
(
k
*
1.0
)
initializer
=
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)
weight_attr
=
ParamAttr
(
regularizer
=
regularizer
,
initializer
=
initializer
,
name
=
name
+
"_w_attr"
)
bias_attr
=
ParamAttr
(
regularizer
=
regularizer
,
initializer
=
initializer
,
name
=
name
+
"_b_attr"
)
weight_attr
=
ParamAttr
(
regularizer
=
regularizer
,
initializer
=
initializer
)
bias_attr
=
ParamAttr
(
regularizer
=
regularizer
,
initializer
=
initializer
)
return
[
weight_attr
,
bias_attr
]
class
CTCHead
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
fc_decay
=
0.0004
,
**
kwargs
):
def
__init__
(
self
,
in_channels
,
out_channels
,
fc_decay
=
0.0004
,
mid_channels
=
None
,
**
kwargs
):
super
(
CTCHead
,
self
).
__init__
()
weight_attr
,
bias_attr
=
get_para_bias_attr
(
l2_decay
=
fc_decay
,
k
=
in_channels
,
name
=
'ctc_fc'
)
self
.
fc
=
nn
.
Linear
(
in_channels
,
out_channels
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
,
name
=
'ctc_fc'
)
if
mid_channels
is
None
:
weight_attr
,
bias_attr
=
get_para_bias_attr
(
l2_decay
=
fc_decay
,
k
=
in_channels
)
self
.
fc
=
nn
.
Linear
(
in_channels
,
out_channels
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
else
:
weight_attr1
,
bias_attr1
=
get_para_bias_attr
(
l2_decay
=
fc_decay
,
k
=
in_channels
)
self
.
fc1
=
nn
.
Linear
(
in_channels
,
mid_channels
,
weight_attr
=
weight_attr1
,
bias_attr
=
bias_attr1
)
weight_attr2
,
bias_attr2
=
get_para_bias_attr
(
l2_decay
=
fc_decay
,
k
=
mid_channels
)
self
.
fc2
=
nn
.
Linear
(
mid_channels
,
out_channels
,
weight_attr
=
weight_attr2
,
bias_attr
=
bias_attr2
)
self
.
out_channels
=
out_channels
self
.
mid_channels
=
mid_channels
def
forward
(
self
,
x
,
labels
=
None
):
predicts
=
self
.
fc
(
x
)
def
forward
(
self
,
x
,
targets
=
None
):
if
self
.
mid_channels
is
None
:
predicts
=
self
.
fc
(
x
)
else
:
predicts
=
self
.
fc1
(
x
)
predicts
=
self
.
fc2
(
predicts
)
if
not
self
.
training
:
predicts
=
F
.
softmax
(
predicts
,
axis
=
2
)
return
predicts
ppocr/modeling/heads/rec_nrtr_head.py
0 → 100644
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
paddle
import
copy
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
LayerList
from
paddle.nn.initializer
import
XavierNormal
as
xavier_uniform_
from
paddle.nn
import
Dropout
,
Linear
,
LayerNorm
,
Conv2D
import
numpy
as
np
from
ppocr.modeling.heads.multiheadAttention
import
MultiheadAttention
from
paddle.nn.initializer
import
Constant
as
constant_
from
paddle.nn.initializer
import
XavierNormal
as
xavier_normal_
zeros_
=
constant_
(
value
=
0.
)
ones_
=
constant_
(
value
=
1.
)
class
Transformer
(
nn
.
Layer
):
"""A transformer model. User is able to modify the attributes as needed. The architechture
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 6000-6010.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
"""
def
__init__
(
self
,
d_model
=
512
,
nhead
=
8
,
num_encoder_layers
=
6
,
beam_size
=
0
,
num_decoder_layers
=
6
,
dim_feedforward
=
1024
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
,
custom_encoder
=
None
,
custom_decoder
=
None
,
in_channels
=
0
,
out_channels
=
0
,
dst_vocab_size
=
99
,
scale_embedding
=
True
):
super
(
Transformer
,
self
).
__init__
()
self
.
embedding
=
Embeddings
(
d_model
=
d_model
,
vocab
=
dst_vocab_size
,
padding_idx
=
0
,
scale_embedding
=
scale_embedding
)
self
.
positional_encoding
=
PositionalEncoding
(
dropout
=
residual_dropout_rate
,
dim
=
d_model
,
)
if
custom_encoder
is
not
None
:
self
.
encoder
=
custom_encoder
else
:
if
num_encoder_layers
>
0
:
encoder_layer
=
TransformerEncoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
self
.
encoder
=
TransformerEncoder
(
encoder_layer
,
num_encoder_layers
)
else
:
self
.
encoder
=
None
if
custom_decoder
is
not
None
:
self
.
decoder
=
custom_decoder
else
:
decoder_layer
=
TransformerDecoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
attention_dropout_rate
,
residual_dropout_rate
)
self
.
decoder
=
TransformerDecoder
(
decoder_layer
,
num_decoder_layers
)
self
.
_reset_parameters
()
self
.
beam_size
=
beam_size
self
.
d_model
=
d_model
self
.
nhead
=
nhead
self
.
tgt_word_prj
=
nn
.
Linear
(
d_model
,
dst_vocab_size
,
bias_attr
=
False
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,
(
d_model
,
dst_vocab_size
)).
astype
(
np
.
float32
)
self
.
tgt_word_prj
.
weight
.
set_value
(
w0
)
self
.
apply
(
self
.
_init_weights
)
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Conv2D
):
xavier_normal_
(
m
.
weight
)
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
def
forward_train
(
self
,
src
,
tgt
):
tgt
=
tgt
[:,
:
-
1
]
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
tgt
)
tgt
=
self
.
embedding
(
tgt
).
transpose
([
1
,
0
,
2
])
tgt
=
self
.
positional_encoding
(
tgt
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
tgt
.
shape
[
0
])
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
output
=
self
.
decoder
(
tgt
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
output
=
output
.
transpose
([
1
,
0
,
2
])
logit
=
self
.
tgt_word_prj
(
output
)
return
logit
def
forward
(
self
,
src
,
targets
=
None
):
"""Take in and process masked source/target sequences.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
Shape:
- src: :math:`(S, N, E)`.
- tgt: :math:`(T, N, E)`.
Examples:
>>> output = transformer_model(src, tgt)
"""
if
self
.
training
:
max_len
=
targets
[
1
].
max
()
tgt
=
targets
[
0
][:,
:
2
+
max_len
]
return
self
.
forward_train
(
src
,
tgt
)
else
:
if
self
.
beam_size
>
0
:
return
self
.
forward_beam
(
src
)
else
:
return
self
.
forward_test
(
src
)
def
forward_test
(
self
,
src
):
bs
=
src
.
shape
[
0
]
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
src
.
transpose
([
1
,
0
,
2
]))
memory
=
self
.
encoder
(
src
)
else
:
memory
=
src
.
squeeze
(
2
).
transpose
([
2
,
0
,
1
])
dec_seq
=
paddle
.
full
((
bs
,
1
),
2
,
dtype
=
paddle
.
int64
)
for
len_dec_seq
in
range
(
1
,
25
):
src_enc
=
memory
.
clone
()
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq_embed
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq_embed
=
self
.
positional_encoding
(
dec_seq_embed
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq_embed
.
shape
[
0
])
output
=
self
.
decoder
(
dec_seq_embed
,
src_enc
,
tgt_mask
=
tgt_mask
,
memory_mask
=
None
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
None
)
dec_output
=
output
.
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
1
,
bs
,
-
1
])
preds_idx
=
word_prob
.
argmax
(
axis
=
2
)
if
paddle
.
equal_all
(
preds_idx
[
-
1
],
paddle
.
full
(
preds_idx
[
-
1
].
shape
,
3
,
dtype
=
'int64'
)):
break
preds_prob
=
word_prob
.
max
(
axis
=
2
)
dec_seq
=
paddle
.
concat
(
[
dec_seq
,
preds_idx
.
reshape
([
-
1
,
1
])],
axis
=
1
)
return
dec_seq
def
forward_beam
(
self
,
images
):
''' Translation work in one batch '''
def
get_inst_idx_to_tensor_position_map
(
inst_idx_list
):
''' Indicate the position of an instance in a tensor. '''
return
{
inst_idx
:
tensor_position
for
tensor_position
,
inst_idx
in
enumerate
(
inst_idx_list
)
}
def
collect_active_part
(
beamed_tensor
,
curr_active_inst_idx
,
n_prev_active_inst
,
n_bm
):
''' Collect tensor parts associated to active instances. '''
_
,
*
d_hs
=
beamed_tensor
.
shape
n_curr_active_inst
=
len
(
curr_active_inst_idx
)
new_shape
=
(
n_curr_active_inst
*
n_bm
,
*
d_hs
)
beamed_tensor
=
beamed_tensor
.
reshape
([
n_prev_active_inst
,
-
1
])
beamed_tensor
=
beamed_tensor
.
index_select
(
paddle
.
to_tensor
(
curr_active_inst_idx
),
axis
=
0
)
beamed_tensor
=
beamed_tensor
.
reshape
([
*
new_shape
])
return
beamed_tensor
def
collate_active_info
(
src_enc
,
inst_idx_to_position_map
,
active_inst_idx_list
):
# Sentences which are still active are collected,
# so the decoder will not run on completed sentences.
n_prev_active_inst
=
len
(
inst_idx_to_position_map
)
active_inst_idx
=
[
inst_idx_to_position_map
[
k
]
for
k
in
active_inst_idx_list
]
active_inst_idx
=
paddle
.
to_tensor
(
active_inst_idx
,
dtype
=
'int64'
)
active_src_enc
=
collect_active_part
(
src_enc
.
transpose
([
1
,
0
,
2
]),
active_inst_idx
,
n_prev_active_inst
,
n_bm
).
transpose
([
1
,
0
,
2
])
active_inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
return
active_src_enc
,
active_inst_idx_to_position_map
def
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
enc_output
,
inst_idx_to_position_map
,
n_bm
,
memory_key_padding_mask
):
''' Decode and update beam status, and then return active beam idx '''
def
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
):
dec_partial_seq
=
[
b
.
get_current_state
()
for
b
in
inst_dec_beams
if
not
b
.
done
]
dec_partial_seq
=
paddle
.
stack
(
dec_partial_seq
)
dec_partial_seq
=
dec_partial_seq
.
reshape
([
-
1
,
len_dec_seq
])
return
dec_partial_seq
def
prepare_beam_memory_key_padding_mask
(
inst_dec_beams
,
memory_key_padding_mask
,
n_bm
):
keep
=
[]
for
idx
in
(
memory_key_padding_mask
):
if
not
inst_dec_beams
[
idx
].
done
:
keep
.
append
(
idx
)
memory_key_padding_mask
=
memory_key_padding_mask
[
paddle
.
to_tensor
(
keep
)]
len_s
=
memory_key_padding_mask
.
shape
[
-
1
]
n_inst
=
memory_key_padding_mask
.
shape
[
0
]
memory_key_padding_mask
=
paddle
.
concat
(
[
memory_key_padding_mask
for
i
in
range
(
n_bm
)],
axis
=
1
)
memory_key_padding_mask
=
memory_key_padding_mask
.
reshape
(
[
n_inst
*
n_bm
,
len_s
])
#repeat(1, n_bm)
return
memory_key_padding_mask
def
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
):
tgt_key_padding_mask
=
self
.
generate_padding_mask
(
dec_seq
)
dec_seq
=
self
.
embedding
(
dec_seq
).
transpose
([
1
,
0
,
2
])
dec_seq
=
self
.
positional_encoding
(
dec_seq
)
tgt_mask
=
self
.
generate_square_subsequent_mask
(
dec_seq
.
shape
[
0
])
dec_output
=
self
.
decoder
(
dec_seq
,
enc_output
,
tgt_mask
=
tgt_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
,
).
transpose
([
1
,
0
,
2
])
dec_output
=
dec_output
[:,
-
1
,
:]
# Pick the last step: (bh * bm) * d_h
word_prob
=
F
.
log_softmax
(
self
.
tgt_word_prj
(
dec_output
),
axis
=
1
)
word_prob
=
word_prob
.
reshape
([
n_active_inst
,
n_bm
,
-
1
])
return
word_prob
def
collect_active_inst_idx_list
(
inst_beams
,
word_prob
,
inst_idx_to_position_map
):
active_inst_idx_list
=
[]
for
inst_idx
,
inst_position
in
inst_idx_to_position_map
.
items
():
is_inst_complete
=
inst_beams
[
inst_idx
].
advance
(
word_prob
[
inst_position
])
if
not
is_inst_complete
:
active_inst_idx_list
+=
[
inst_idx
]
return
active_inst_idx_list
n_active_inst
=
len
(
inst_idx_to_position_map
)
dec_seq
=
prepare_beam_dec_seq
(
inst_dec_beams
,
len_dec_seq
)
memory_key_padding_mask
=
None
word_prob
=
predict_word
(
dec_seq
,
enc_output
,
n_active_inst
,
n_bm
,
memory_key_padding_mask
)
# Update the beam with predicted word prob information and collect incomplete instances
active_inst_idx_list
=
collect_active_inst_idx_list
(
inst_dec_beams
,
word_prob
,
inst_idx_to_position_map
)
return
active_inst_idx_list
def
collect_hypothesis_and_scores
(
inst_dec_beams
,
n_best
):
all_hyp
,
all_scores
=
[],
[]
for
inst_idx
in
range
(
len
(
inst_dec_beams
)):
scores
,
tail_idxs
=
inst_dec_beams
[
inst_idx
].
sort_scores
()
all_scores
+=
[
scores
[:
n_best
]]
hyps
=
[
inst_dec_beams
[
inst_idx
].
get_hypothesis
(
i
)
for
i
in
tail_idxs
[:
n_best
]
]
all_hyp
+=
[
hyps
]
return
all_hyp
,
all_scores
with
paddle
.
no_grad
():
#-- Encode
if
self
.
encoder
is
not
None
:
src
=
self
.
positional_encoding
(
images
.
transpose
([
1
,
0
,
2
]))
src_enc
=
self
.
encoder
(
src
).
transpose
([
1
,
0
,
2
])
else
:
src_enc
=
images
.
squeeze
(
2
).
transpose
([
0
,
2
,
1
])
#-- Repeat data for beam search
n_bm
=
self
.
beam_size
n_inst
,
len_s
,
d_h
=
src_enc
.
shape
src_enc
=
paddle
.
concat
([
src_enc
for
i
in
range
(
n_bm
)],
axis
=
1
)
src_enc
=
src_enc
.
reshape
([
n_inst
*
n_bm
,
len_s
,
d_h
]).
transpose
(
[
1
,
0
,
2
])
#-- Prepare beams
inst_dec_beams
=
[
Beam
(
n_bm
)
for
_
in
range
(
n_inst
)]
#-- Bookkeeping for active or not
active_inst_idx_list
=
list
(
range
(
n_inst
))
inst_idx_to_position_map
=
get_inst_idx_to_tensor_position_map
(
active_inst_idx_list
)
#-- Decode
for
len_dec_seq
in
range
(
1
,
25
):
src_enc_copy
=
src_enc
.
clone
()
active_inst_idx_list
=
beam_decode_step
(
inst_dec_beams
,
len_dec_seq
,
src_enc_copy
,
inst_idx_to_position_map
,
n_bm
,
None
)
if
not
active_inst_idx_list
:
break
# all instances have finished their path to <EOS>
src_enc
,
inst_idx_to_position_map
=
collate_active_info
(
src_enc_copy
,
inst_idx_to_position_map
,
active_inst_idx_list
)
batch_hyp
,
batch_scores
=
collect_hypothesis_and_scores
(
inst_dec_beams
,
1
)
result_hyp
=
[]
for
bs_hyp
in
batch_hyp
:
bs_hyp_pad
=
bs_hyp
[
0
]
+
[
3
]
*
(
25
-
len
(
bs_hyp
[
0
]))
result_hyp
.
append
(
bs_hyp_pad
)
return
paddle
.
to_tensor
(
np
.
array
(
result_hyp
),
dtype
=
paddle
.
int64
)
def
generate_square_subsequent_mask
(
self
,
sz
):
"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
Unmasked positions are filled with float(0.0).
"""
mask
=
paddle
.
zeros
([
sz
,
sz
],
dtype
=
'float32'
)
mask_inf
=
paddle
.
triu
(
paddle
.
full
(
shape
=
[
sz
,
sz
],
dtype
=
'float32'
,
fill_value
=
'-inf'
),
diagonal
=
1
)
mask
=
mask
+
mask_inf
return
mask
def
generate_padding_mask
(
self
,
x
):
padding_mask
=
x
.
equal
(
paddle
.
to_tensor
(
0
,
dtype
=
x
.
dtype
))
return
padding_mask
def
_reset_parameters
(
self
):
"""Initiate parameters in the transformer model."""
for
p
in
self
.
parameters
():
if
p
.
dim
()
>
1
:
xavier_uniform_
(
p
)
class
TransformerEncoder
(
nn
.
Layer
):
"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
"""
def
__init__
(
self
,
encoder_layer
,
num_layers
):
super
(
TransformerEncoder
,
self
).
__init__
()
self
.
layers
=
_get_clones
(
encoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
def
forward
(
self
,
src
):
"""Pass the input through the endocder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
output
=
src
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
src_mask
=
None
,
src_key_padding_mask
=
None
)
return
output
class
TransformerDecoder
(
nn
.
Layer
):
"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
"""
def
__init__
(
self
,
decoder_layer
,
num_layers
):
super
(
TransformerDecoder
,
self
).
__init__
()
self
.
layers
=
_get_clones
(
decoder_layer
,
num_layers
)
self
.
num_layers
=
num_layers
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
output
=
tgt
for
i
in
range
(
self
.
num_layers
):
output
=
self
.
layers
[
i
](
output
,
memory
,
tgt_mask
=
tgt_mask
,
memory_mask
=
memory_mask
,
tgt_key_padding_mask
=
tgt_key_padding_mask
,
memory_key_padding_mask
=
memory_key_padding_mask
)
return
output
class
TransformerEncoderLayer
(
nn
.
Layer
):
"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerEncoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttention
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
src
,
src_mask
=
None
,
src_key_padding_mask
=
None
):
"""Pass the input through the endocder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
"""
src2
=
self
.
self_attn
(
src
,
src
,
src
,
attn_mask
=
src_mask
,
key_padding_mask
=
src_key_padding_mask
)[
0
]
src
=
src
+
self
.
dropout1
(
src2
)
src
=
self
.
norm1
(
src
)
src
=
src
.
transpose
([
1
,
2
,
0
])
src
=
paddle
.
unsqueeze
(
src
,
2
)
src2
=
self
.
conv2
(
F
.
relu
(
self
.
conv1
(
src
)))
src2
=
paddle
.
squeeze
(
src2
,
2
)
src2
=
src2
.
transpose
([
2
,
0
,
1
])
src
=
paddle
.
squeeze
(
src
,
2
)
src
=
src
.
transpose
([
2
,
0
,
1
])
src
=
src
+
self
.
dropout2
(
src2
)
src
=
self
.
norm2
(
src
)
return
src
class
TransformerDecoderLayer
(
nn
.
Layer
):
"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
This standard decoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
"""
def
__init__
(
self
,
d_model
,
nhead
,
dim_feedforward
=
2048
,
attention_dropout_rate
=
0.0
,
residual_dropout_rate
=
0.1
):
super
(
TransformerDecoderLayer
,
self
).
__init__
()
self
.
self_attn
=
MultiheadAttention
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
multihead_attn
=
MultiheadAttention
(
d_model
,
nhead
,
dropout
=
attention_dropout_rate
)
self
.
conv1
=
Conv2D
(
in_channels
=
d_model
,
out_channels
=
dim_feedforward
,
kernel_size
=
(
1
,
1
))
self
.
conv2
=
Conv2D
(
in_channels
=
dim_feedforward
,
out_channels
=
d_model
,
kernel_size
=
(
1
,
1
))
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm3
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
residual_dropout_rate
)
self
.
dropout2
=
Dropout
(
residual_dropout_rate
)
self
.
dropout3
=
Dropout
(
residual_dropout_rate
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
tgt_key_padding_mask
=
None
,
memory_key_padding_mask
=
None
):
"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequnce from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
"""
tgt2
=
self
.
self_attn
(
tgt
,
tgt
,
tgt
,
attn_mask
=
tgt_mask
,
key_padding_mask
=
tgt_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout1
(
tgt2
)
tgt
=
self
.
norm1
(
tgt
)
tgt2
=
self
.
multihead_attn
(
tgt
,
memory
,
memory
,
attn_mask
=
memory_mask
,
key_padding_mask
=
memory_key_padding_mask
)[
0
]
tgt
=
tgt
+
self
.
dropout2
(
tgt2
)
tgt
=
self
.
norm2
(
tgt
)
# default
tgt
=
tgt
.
transpose
([
1
,
2
,
0
])
tgt
=
paddle
.
unsqueeze
(
tgt
,
2
)
tgt2
=
self
.
conv2
(
F
.
relu
(
self
.
conv1
(
tgt
)))
tgt2
=
paddle
.
squeeze
(
tgt2
,
2
)
tgt2
=
tgt2
.
transpose
([
2
,
0
,
1
])
tgt
=
paddle
.
squeeze
(
tgt
,
2
)
tgt
=
tgt
.
transpose
([
2
,
0
,
1
])
tgt
=
tgt
+
self
.
dropout3
(
tgt2
)
tgt
=
self
.
norm3
(
tgt
)
return
tgt
def
_get_clones
(
module
,
N
):
return
LayerList
([
copy
.
deepcopy
(
module
)
for
i
in
range
(
N
)])
class
PositionalEncoding
(
nn
.
Layer
):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\t
ext{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\t
ext{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\t
ext{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def
__init__
(
self
,
dropout
,
dim
,
max_len
=
5000
):
super
(
PositionalEncoding
,
self
).
__init__
()
self
.
dropout
=
nn
.
Dropout
(
p
=
dropout
)
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
)
pe
=
pe
.
transpose
([
1
,
0
,
2
])
self
.
register_buffer
(
'pe'
,
pe
)
def
forward
(
self
,
x
):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x
=
x
+
self
.
pe
[:
x
.
shape
[
0
],
:]
return
self
.
dropout
(
x
)
class
PositionalEncoding_2d
(
nn
.
Layer
):
"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\t
ext{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\t
ext{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\t
ext{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def
__init__
(
self
,
dropout
,
dim
,
max_len
=
5000
):
super
(
PositionalEncoding_2d
,
self
).
__init__
()
self
.
dropout
=
nn
.
Dropout
(
p
=
dropout
)
pe
=
paddle
.
zeros
([
max_len
,
dim
])
position
=
paddle
.
arange
(
0
,
max_len
,
dtype
=
paddle
.
float32
).
unsqueeze
(
1
)
div_term
=
paddle
.
exp
(
paddle
.
arange
(
0
,
dim
,
2
).
astype
(
'float32'
)
*
(
-
math
.
log
(
10000.0
)
/
dim
))
pe
[:,
0
::
2
]
=
paddle
.
sin
(
position
*
div_term
)
pe
[:,
1
::
2
]
=
paddle
.
cos
(
position
*
div_term
)
pe
=
pe
.
unsqueeze
(
0
).
transpose
([
1
,
0
,
2
])
self
.
register_buffer
(
'pe'
,
pe
)
self
.
avg_pool_1
=
nn
.
AdaptiveAvgPool2D
((
1
,
1
))
self
.
linear1
=
nn
.
Linear
(
dim
,
dim
)
self
.
linear1
.
weight
.
data
.
fill_
(
1.
)
self
.
avg_pool_2
=
nn
.
AdaptiveAvgPool2D
((
1
,
1
))
self
.
linear2
=
nn
.
Linear
(
dim
,
dim
)
self
.
linear2
.
weight
.
data
.
fill_
(
1.
)
def
forward
(
self
,
x
):
"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
w_pe
=
self
.
pe
[:
x
.
shape
[
-
1
],
:]
w1
=
self
.
linear1
(
self
.
avg_pool_1
(
x
).
squeeze
()).
unsqueeze
(
0
)
w_pe
=
w_pe
*
w1
w_pe
=
w_pe
.
transpose
([
1
,
2
,
0
])
w_pe
=
w_pe
.
unsqueeze
(
2
)
h_pe
=
self
.
pe
[:
x
.
shape
[
-
2
],
:]
w2
=
self
.
linear2
(
self
.
avg_pool_2
(
x
).
squeeze
()).
unsqueeze
(
0
)
h_pe
=
h_pe
*
w2
h_pe
=
h_pe
.
transpose
([
1
,
2
,
0
])
h_pe
=
h_pe
.
unsqueeze
(
3
)
x
=
x
+
w_pe
+
h_pe
x
=
x
.
reshape
(
[
x
.
shape
[
0
],
x
.
shape
[
1
],
x
.
shape
[
2
]
*
x
.
shape
[
3
]]).
transpose
(
[
2
,
0
,
1
])
return
self
.
dropout
(
x
)
class
Embeddings
(
nn
.
Layer
):
def
__init__
(
self
,
d_model
,
vocab
,
padding_idx
,
scale_embedding
):
super
(
Embeddings
,
self
).
__init__
()
self
.
embedding
=
nn
.
Embedding
(
vocab
,
d_model
,
padding_idx
=
padding_idx
)
w0
=
np
.
random
.
normal
(
0.0
,
d_model
**-
0.5
,
(
vocab
,
d_model
)).
astype
(
np
.
float32
)
self
.
embedding
.
weight
.
set_value
(
w0
)
self
.
d_model
=
d_model
self
.
scale_embedding
=
scale_embedding
def
forward
(
self
,
x
):
if
self
.
scale_embedding
:
x
=
self
.
embedding
(
x
)
return
x
*
math
.
sqrt
(
self
.
d_model
)
return
self
.
embedding
(
x
)
class
Beam
():
''' Beam search '''
def
__init__
(
self
,
size
,
device
=
False
):
self
.
size
=
size
self
.
_done
=
False
# The score for each translation on the beam.
self
.
scores
=
paddle
.
zeros
((
size
,
),
dtype
=
paddle
.
float32
)
self
.
all_scores
=
[]
# The backpointers at each time-step.
self
.
prev_ks
=
[]
# The outputs at each time-step.
self
.
next_ys
=
[
paddle
.
full
((
size
,
),
0
,
dtype
=
paddle
.
int64
)]
self
.
next_ys
[
0
][
0
]
=
2
def
get_current_state
(
self
):
"Get the outputs for the current timestep."
return
self
.
get_tentative_hypothesis
()
def
get_current_origin
(
self
):
"Get the backpointers for the current timestep."
return
self
.
prev_ks
[
-
1
]
@
property
def
done
(
self
):
return
self
.
_done
def
advance
(
self
,
word_prob
):
"Update beam status and check if finished or not."
num_words
=
word_prob
.
shape
[
1
]
# Sum the previous scores.
if
len
(
self
.
prev_ks
)
>
0
:
beam_lk
=
word_prob
+
self
.
scores
.
unsqueeze
(
1
).
expand_as
(
word_prob
)
else
:
beam_lk
=
word_prob
[
0
]
flat_beam_lk
=
beam_lk
.
reshape
([
-
1
])
best_scores
,
best_scores_id
=
flat_beam_lk
.
topk
(
self
.
size
,
0
,
True
,
True
)
# 1st sort
self
.
all_scores
.
append
(
self
.
scores
)
self
.
scores
=
best_scores
# bestScoresId is flattened as a (beam x word) array,
# so we need to calculate which word and beam each score came from
prev_k
=
best_scores_id
//
num_words
self
.
prev_ks
.
append
(
prev_k
)
self
.
next_ys
.
append
(
best_scores_id
-
prev_k
*
num_words
)
# End condition is when top-of-beam is EOS.
if
self
.
next_ys
[
-
1
][
0
]
==
3
:
self
.
_done
=
True
self
.
all_scores
.
append
(
self
.
scores
)
return
self
.
_done
def
sort_scores
(
self
):
"Sort the scores."
return
self
.
scores
,
paddle
.
to_tensor
(
[
i
for
i
in
range
(
self
.
scores
.
shape
[
0
])],
dtype
=
'int32'
)
def
get_the_best_score_and_idx
(
self
):
"Get the score of the best in the beam."
scores
,
ids
=
self
.
sort_scores
()
return
scores
[
1
],
ids
[
1
]
def
get_tentative_hypothesis
(
self
):
"Get the decoded sequence for the current timestep."
if
len
(
self
.
next_ys
)
==
1
:
dec_seq
=
self
.
next_ys
[
0
].
unsqueeze
(
1
)
else
:
_
,
keys
=
self
.
sort_scores
()
hyps
=
[
self
.
get_hypothesis
(
k
)
for
k
in
keys
]
hyps
=
[[
2
]
+
h
for
h
in
hyps
]
dec_seq
=
paddle
.
to_tensor
(
hyps
,
dtype
=
'int64'
)
return
dec_seq
def
get_hypothesis
(
self
,
k
):
""" Walk back to construct the full hypothesis. """
hyp
=
[]
for
j
in
range
(
len
(
self
.
prev_ks
)
-
1
,
-
1
,
-
1
):
hyp
.
append
(
self
.
next_ys
[
j
+
1
][
k
])
k
=
self
.
prev_ks
[
j
][
k
]
return
list
(
map
(
lambda
x
:
x
.
item
(),
hyp
[::
-
1
]))
ppocr/modeling/heads/rec_srn_head.py
View file @
19eb7eb8
...
...
@@ -250,7 +250,8 @@ class SRNHead(nn.Layer):
self
.
gsrm
.
wrap_encoder1
.
prepare_decoder
.
emb0
=
self
.
gsrm
.
wrap_encoder0
.
prepare_decoder
.
emb0
def
forward
(
self
,
inputs
,
others
):
def
forward
(
self
,
inputs
,
targets
=
None
):
others
=
targets
[
-
4
:]
encoder_word_pos
=
others
[
0
]
gsrm_word_pos
=
others
[
1
]
gsrm_slf_attn_bias1
=
others
[
2
]
...
...
ppocr/modeling/heads/self_attention.py
View file @
19eb7eb8
...
...
@@ -285,8 +285,7 @@ class PrePostProcessLayer(nn.Layer):
elif
cmd
==
"n"
:
# add layer normalization
self
.
functors
.
append
(
self
.
add_sublayer
(
"layer_norm_%d"
%
len
(
self
.
sublayers
(
include_sublayers
=
False
)),
"layer_norm_%d"
%
len
(
self
.
sublayers
()),
paddle
.
nn
.
LayerNorm
(
normalized_shape
=
d_model
,
weight_attr
=
fluid
.
ParamAttr
(
...
...
@@ -320,9 +319,7 @@ class PrepareEncoder(nn.Layer):
self
.
src_emb_dim
=
src_emb_dim
self
.
src_max_len
=
src_max_len
self
.
emb
=
paddle
.
nn
.
Embedding
(
num_embeddings
=
self
.
src_max_len
,
embedding_dim
=
self
.
src_emb_dim
,
sparse
=
True
)
num_embeddings
=
self
.
src_max_len
,
embedding_dim
=
self
.
src_emb_dim
)
self
.
dropout_rate
=
dropout_rate
def
forward
(
self
,
src_word
,
src_pos
):
...
...
ppocr/modeling/heads/table_att_head.py
0 → 100644
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
numpy
as
np
class
TableAttentionHead
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
hidden_size
,
loc_type
,
in_max_len
=
488
,
**
kwargs
):
super
(
TableAttentionHead
,
self
).
__init__
()
self
.
input_size
=
in_channels
[
-
1
]
self
.
hidden_size
=
hidden_size
self
.
elem_num
=
30
self
.
max_text_length
=
100
self
.
max_elem_length
=
500
self
.
max_cell_num
=
500
self
.
structure_attention_cell
=
AttentionGRUCell
(
self
.
input_size
,
hidden_size
,
self
.
elem_num
,
use_gru
=
False
)
self
.
structure_generator
=
nn
.
Linear
(
hidden_size
,
self
.
elem_num
)
self
.
loc_type
=
loc_type
self
.
in_max_len
=
in_max_len
if
self
.
loc_type
==
1
:
self
.
loc_generator
=
nn
.
Linear
(
hidden_size
,
4
)
else
:
if
self
.
in_max_len
==
640
:
self
.
loc_fea_trans
=
nn
.
Linear
(
400
,
self
.
max_elem_length
+
1
)
elif
self
.
in_max_len
==
800
:
self
.
loc_fea_trans
=
nn
.
Linear
(
625
,
self
.
max_elem_length
+
1
)
else
:
self
.
loc_fea_trans
=
nn
.
Linear
(
256
,
self
.
max_elem_length
+
1
)
self
.
loc_generator
=
nn
.
Linear
(
self
.
input_size
+
hidden_size
,
4
)
def
_char_to_onehot
(
self
,
input_char
,
onehot_dim
):
input_ont_hot
=
F
.
one_hot
(
input_char
,
onehot_dim
)
return
input_ont_hot
def
forward
(
self
,
inputs
,
targets
=
None
):
# if and else branch are both needed when you want to assign a variable
# if you modify the var in just one branch, then the modification will not work.
fea
=
inputs
[
-
1
]
if
len
(
fea
.
shape
)
==
3
:
pass
else
:
last_shape
=
int
(
np
.
prod
(
fea
.
shape
[
2
:]))
# gry added
fea
=
paddle
.
reshape
(
fea
,
[
fea
.
shape
[
0
],
fea
.
shape
[
1
],
last_shape
])
fea
=
fea
.
transpose
([
0
,
2
,
1
])
# (NTC)(batch, width, channels)
batch_size
=
fea
.
shape
[
0
]
hidden
=
paddle
.
zeros
((
batch_size
,
self
.
hidden_size
))
output_hiddens
=
[]
if
self
.
training
and
targets
is
not
None
:
structure
=
targets
[
0
]
for
i
in
range
(
self
.
max_elem_length
+
1
):
elem_onehots
=
self
.
_char_to_onehot
(
structure
[:,
i
],
onehot_dim
=
self
.
elem_num
)
(
outputs
,
hidden
),
alpha
=
self
.
structure_attention_cell
(
hidden
,
fea
,
elem_onehots
)
output_hiddens
.
append
(
paddle
.
unsqueeze
(
outputs
,
axis
=
1
))
output
=
paddle
.
concat
(
output_hiddens
,
axis
=
1
)
structure_probs
=
self
.
structure_generator
(
output
)
if
self
.
loc_type
==
1
:
loc_preds
=
self
.
loc_generator
(
output
)
loc_preds
=
F
.
sigmoid
(
loc_preds
)
else
:
loc_fea
=
fea
.
transpose
([
0
,
2
,
1
])
loc_fea
=
self
.
loc_fea_trans
(
loc_fea
)
loc_fea
=
loc_fea
.
transpose
([
0
,
2
,
1
])
loc_concat
=
paddle
.
concat
([
output
,
loc_fea
],
axis
=
2
)
loc_preds
=
self
.
loc_generator
(
loc_concat
)
loc_preds
=
F
.
sigmoid
(
loc_preds
)
else
:
temp_elem
=
paddle
.
zeros
(
shape
=
[
batch_size
],
dtype
=
"int32"
)
structure_probs
=
None
loc_preds
=
None
elem_onehots
=
None
outputs
=
None
alpha
=
None
max_elem_length
=
paddle
.
to_tensor
(
self
.
max_elem_length
)
i
=
0
while
i
<
max_elem_length
+
1
:
elem_onehots
=
self
.
_char_to_onehot
(
temp_elem
,
onehot_dim
=
self
.
elem_num
)
(
outputs
,
hidden
),
alpha
=
self
.
structure_attention_cell
(
hidden
,
fea
,
elem_onehots
)
output_hiddens
.
append
(
paddle
.
unsqueeze
(
outputs
,
axis
=
1
))
structure_probs_step
=
self
.
structure_generator
(
outputs
)
temp_elem
=
structure_probs_step
.
argmax
(
axis
=
1
,
dtype
=
"int32"
)
i
+=
1
output
=
paddle
.
concat
(
output_hiddens
,
axis
=
1
)
structure_probs
=
self
.
structure_generator
(
output
)
structure_probs
=
F
.
softmax
(
structure_probs
)
if
self
.
loc_type
==
1
:
loc_preds
=
self
.
loc_generator
(
output
)
loc_preds
=
F
.
sigmoid
(
loc_preds
)
else
:
loc_fea
=
fea
.
transpose
([
0
,
2
,
1
])
loc_fea
=
self
.
loc_fea_trans
(
loc_fea
)
loc_fea
=
loc_fea
.
transpose
([
0
,
2
,
1
])
loc_concat
=
paddle
.
concat
([
output
,
loc_fea
],
axis
=
2
)
loc_preds
=
self
.
loc_generator
(
loc_concat
)
loc_preds
=
F
.
sigmoid
(
loc_preds
)
return
{
'structure_probs'
:
structure_probs
,
'loc_preds'
:
loc_preds
}
class
AttentionGRUCell
(
nn
.
Layer
):
def
__init__
(
self
,
input_size
,
hidden_size
,
num_embeddings
,
use_gru
=
False
):
super
(
AttentionGRUCell
,
self
).
__init__
()
self
.
i2h
=
nn
.
Linear
(
input_size
,
hidden_size
,
bias_attr
=
False
)
self
.
h2h
=
nn
.
Linear
(
hidden_size
,
hidden_size
)
self
.
score
=
nn
.
Linear
(
hidden_size
,
1
,
bias_attr
=
False
)
self
.
rnn
=
nn
.
GRUCell
(
input_size
=
input_size
+
num_embeddings
,
hidden_size
=
hidden_size
)
self
.
hidden_size
=
hidden_size
def
forward
(
self
,
prev_hidden
,
batch_H
,
char_onehots
):
batch_H_proj
=
self
.
i2h
(
batch_H
)
prev_hidden_proj
=
paddle
.
unsqueeze
(
self
.
h2h
(
prev_hidden
),
axis
=
1
)
res
=
paddle
.
add
(
batch_H_proj
,
prev_hidden_proj
)
res
=
paddle
.
tanh
(
res
)
e
=
self
.
score
(
res
)
alpha
=
F
.
softmax
(
e
,
axis
=
1
)
alpha
=
paddle
.
transpose
(
alpha
,
[
0
,
2
,
1
])
context
=
paddle
.
squeeze
(
paddle
.
mm
(
alpha
,
batch_H
),
axis
=
1
)
concat_context
=
paddle
.
concat
([
context
,
char_onehots
],
1
)
cur_hidden
=
self
.
rnn
(
concat_context
,
prev_hidden
)
return
cur_hidden
,
alpha
class
AttentionLSTM
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
hidden_size
,
**
kwargs
):
super
(
AttentionLSTM
,
self
).
__init__
()
self
.
input_size
=
in_channels
self
.
hidden_size
=
hidden_size
self
.
num_classes
=
out_channels
self
.
attention_cell
=
AttentionLSTMCell
(
in_channels
,
hidden_size
,
out_channels
,
use_gru
=
False
)
self
.
generator
=
nn
.
Linear
(
hidden_size
,
out_channels
)
def
_char_to_onehot
(
self
,
input_char
,
onehot_dim
):
input_ont_hot
=
F
.
one_hot
(
input_char
,
onehot_dim
)
return
input_ont_hot
def
forward
(
self
,
inputs
,
targets
=
None
,
batch_max_length
=
25
):
batch_size
=
inputs
.
shape
[
0
]
num_steps
=
batch_max_length
hidden
=
(
paddle
.
zeros
((
batch_size
,
self
.
hidden_size
)),
paddle
.
zeros
(
(
batch_size
,
self
.
hidden_size
)))
output_hiddens
=
[]
if
targets
is
not
None
:
for
i
in
range
(
num_steps
):
# one-hot vectors for a i-th char
char_onehots
=
self
.
_char_to_onehot
(
targets
[:,
i
],
onehot_dim
=
self
.
num_classes
)
hidden
,
alpha
=
self
.
attention_cell
(
hidden
,
inputs
,
char_onehots
)
hidden
=
(
hidden
[
1
][
0
],
hidden
[
1
][
1
])
output_hiddens
.
append
(
paddle
.
unsqueeze
(
hidden
[
0
],
axis
=
1
))
output
=
paddle
.
concat
(
output_hiddens
,
axis
=
1
)
probs
=
self
.
generator
(
output
)
else
:
targets
=
paddle
.
zeros
(
shape
=
[
batch_size
],
dtype
=
"int32"
)
probs
=
None
for
i
in
range
(
num_steps
):
char_onehots
=
self
.
_char_to_onehot
(
targets
,
onehot_dim
=
self
.
num_classes
)
hidden
,
alpha
=
self
.
attention_cell
(
hidden
,
inputs
,
char_onehots
)
probs_step
=
self
.
generator
(
hidden
[
0
])
hidden
=
(
hidden
[
1
][
0
],
hidden
[
1
][
1
])
if
probs
is
None
:
probs
=
paddle
.
unsqueeze
(
probs_step
,
axis
=
1
)
else
:
probs
=
paddle
.
concat
(
[
probs
,
paddle
.
unsqueeze
(
probs_step
,
axis
=
1
)],
axis
=
1
)
next_input
=
probs_step
.
argmax
(
axis
=
1
)
targets
=
next_input
return
probs
class
AttentionLSTMCell
(
nn
.
Layer
):
def
__init__
(
self
,
input_size
,
hidden_size
,
num_embeddings
,
use_gru
=
False
):
super
(
AttentionLSTMCell
,
self
).
__init__
()
self
.
i2h
=
nn
.
Linear
(
input_size
,
hidden_size
,
bias_attr
=
False
)
self
.
h2h
=
nn
.
Linear
(
hidden_size
,
hidden_size
)
self
.
score
=
nn
.
Linear
(
hidden_size
,
1
,
bias_attr
=
False
)
if
not
use_gru
:
self
.
rnn
=
nn
.
LSTMCell
(
input_size
=
input_size
+
num_embeddings
,
hidden_size
=
hidden_size
)
else
:
self
.
rnn
=
nn
.
GRUCell
(
input_size
=
input_size
+
num_embeddings
,
hidden_size
=
hidden_size
)
self
.
hidden_size
=
hidden_size
def
forward
(
self
,
prev_hidden
,
batch_H
,
char_onehots
):
batch_H_proj
=
self
.
i2h
(
batch_H
)
prev_hidden_proj
=
paddle
.
unsqueeze
(
self
.
h2h
(
prev_hidden
[
0
]),
axis
=
1
)
res
=
paddle
.
add
(
batch_H_proj
,
prev_hidden_proj
)
res
=
paddle
.
tanh
(
res
)
e
=
self
.
score
(
res
)
alpha
=
F
.
softmax
(
e
,
axis
=
1
)
alpha
=
paddle
.
transpose
(
alpha
,
[
0
,
2
,
1
])
context
=
paddle
.
squeeze
(
paddle
.
mm
(
alpha
,
batch_H
),
axis
=
1
)
concat_context
=
paddle
.
concat
([
context
,
char_onehots
],
1
)
cur_hidden
=
self
.
rnn
(
concat_context
,
prev_hidden
)
return
cur_hidden
,
alpha
ppocr/modeling/necks/__init__.py
View file @
19eb7eb8
...
...
@@ -14,12 +14,15 @@
__all__
=
[
'build_neck'
]
def
build_neck
(
config
):
from
.db_fpn
import
DBFPN
from
.east_fpn
import
EASTFPN
from
.sast_fpn
import
SASTFPN
from
.rnn
import
SequenceEncoder
support_dict
=
[
'DBFPN'
,
'EASTFPN'
,
'SASTFPN'
,
'SequenceEncoder'
]
from
.pg_fpn
import
PGFPN
from
.table_fpn
import
TableFPN
support_dict
=
[
'DBFPN'
,
'EASTFPN'
,
'SASTFPN'
,
'SequenceEncoder'
,
'PGFPN'
,
'TableFPN'
]
module_name
=
config
.
pop
(
'name'
)
assert
module_name
in
support_dict
,
Exception
(
'neck only support {}'
.
format
(
...
...
ppocr/modeling/necks/db_fpn.py
View file @
19eb7eb8
...
...
@@ -32,61 +32,53 @@ class DBFPN(nn.Layer):
in_channels
=
in_channels
[
0
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_51.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in3_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
1
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_50.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in4_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
2
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_49.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in5_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
3
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_48.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p5_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_52.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p4_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_53.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p3_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_54.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p2_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
name
=
'conv2d_55.w_0'
,
initializer
=
weight_attr
),
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
def
forward
(
self
,
x
):
...
...
ppocr/modeling/necks/pg_fpn.py
0 → 100644
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
nn
.
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
nn
.
BatchNorm
(
out_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
use_global_stats
=
False
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
DeConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
=
4
,
stride
=
2
,
padding
=
1
,
groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
):
super
(
DeConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
deconv
=
nn
.
Conv2DTranspose
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
'_weights'
),
bias_attr
=
False
)
self
.
bn
=
nn
.
BatchNorm
(
num_channels
=
out_channels
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
"bn_"
+
name
+
"_scale"
),
bias_attr
=
ParamAttr
(
name
=
"bn_"
+
name
+
"_offset"
),
moving_mean_name
=
"bn_"
+
name
+
"_mean"
,
moving_variance_name
=
"bn_"
+
name
+
"_variance"
,
use_global_stats
=
False
)
def
forward
(
self
,
x
):
x
=
self
.
deconv
(
x
)
x
=
self
.
bn
(
x
)
return
x
class
PGFPN
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
**
kwargs
):
super
(
PGFPN
,
self
).
__init__
()
num_inputs
=
[
2048
,
2048
,
1024
,
512
,
256
]
num_outputs
=
[
256
,
256
,
192
,
192
,
128
]
self
.
out_channels
=
128
self
.
conv_bn_layer_1
=
ConvBNLayer
(
in_channels
=
3
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
'FPN_d1'
)
self
.
conv_bn_layer_2
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
'FPN_d2'
)
self
.
conv_bn_layer_3
=
ConvBNLayer
(
in_channels
=
256
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
'FPN_d3'
)
self
.
conv_bn_layer_4
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'FPN_d4'
)
self
.
conv_bn_layer_5
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'FPN_d5'
)
self
.
conv_bn_layer_6
=
ConvBNLayer
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
'FPN_d6'
)
self
.
conv_bn_layer_7
=
ConvBNLayer
(
in_channels
=
128
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'FPN_d7'
)
self
.
conv_bn_layer_8
=
ConvBNLayer
(
in_channels
=
128
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
'FPN_d8'
)
self
.
conv_h0
=
ConvBNLayer
(
in_channels
=
num_inputs
[
0
],
out_channels
=
num_outputs
[
0
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_h{}"
.
format
(
0
))
self
.
conv_h1
=
ConvBNLayer
(
in_channels
=
num_inputs
[
1
],
out_channels
=
num_outputs
[
1
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_h{}"
.
format
(
1
))
self
.
conv_h2
=
ConvBNLayer
(
in_channels
=
num_inputs
[
2
],
out_channels
=
num_outputs
[
2
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_h{}"
.
format
(
2
))
self
.
conv_h3
=
ConvBNLayer
(
in_channels
=
num_inputs
[
3
],
out_channels
=
num_outputs
[
3
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_h{}"
.
format
(
3
))
self
.
conv_h4
=
ConvBNLayer
(
in_channels
=
num_inputs
[
4
],
out_channels
=
num_outputs
[
4
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_h{}"
.
format
(
4
))
self
.
dconv0
=
DeConvBNLayer
(
in_channels
=
num_outputs
[
0
],
out_channels
=
num_outputs
[
0
+
1
],
name
=
"dconv_{}"
.
format
(
0
))
self
.
dconv1
=
DeConvBNLayer
(
in_channels
=
num_outputs
[
1
],
out_channels
=
num_outputs
[
1
+
1
],
act
=
None
,
name
=
"dconv_{}"
.
format
(
1
))
self
.
dconv2
=
DeConvBNLayer
(
in_channels
=
num_outputs
[
2
],
out_channels
=
num_outputs
[
2
+
1
],
act
=
None
,
name
=
"dconv_{}"
.
format
(
2
))
self
.
dconv3
=
DeConvBNLayer
(
in_channels
=
num_outputs
[
3
],
out_channels
=
num_outputs
[
3
+
1
],
act
=
None
,
name
=
"dconv_{}"
.
format
(
3
))
self
.
conv_g1
=
ConvBNLayer
(
in_channels
=
num_outputs
[
1
],
out_channels
=
num_outputs
[
1
],
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv_g{}"
.
format
(
1
))
self
.
conv_g2
=
ConvBNLayer
(
in_channels
=
num_outputs
[
2
],
out_channels
=
num_outputs
[
2
],
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv_g{}"
.
format
(
2
))
self
.
conv_g3
=
ConvBNLayer
(
in_channels
=
num_outputs
[
3
],
out_channels
=
num_outputs
[
3
],
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv_g{}"
.
format
(
3
))
self
.
conv_g4
=
ConvBNLayer
(
in_channels
=
num_outputs
[
4
],
out_channels
=
num_outputs
[
4
],
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv_g{}"
.
format
(
4
))
self
.
convf
=
ConvBNLayer
(
in_channels
=
num_outputs
[
4
],
out_channels
=
num_outputs
[
4
],
kernel_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
"conv_f{}"
.
format
(
4
))
def
forward
(
self
,
x
):
c0
,
c1
,
c2
,
c3
,
c4
,
c5
,
c6
=
x
# FPN_Down_Fusion
f
=
[
c0
,
c1
,
c2
]
g
=
[
None
,
None
,
None
]
h
=
[
None
,
None
,
None
]
h
[
0
]
=
self
.
conv_bn_layer_1
(
f
[
0
])
h
[
1
]
=
self
.
conv_bn_layer_2
(
f
[
1
])
h
[
2
]
=
self
.
conv_bn_layer_3
(
f
[
2
])
g
[
0
]
=
self
.
conv_bn_layer_4
(
h
[
0
])
g
[
1
]
=
paddle
.
add
(
g
[
0
],
h
[
1
])
g
[
1
]
=
F
.
relu
(
g
[
1
])
g
[
1
]
=
self
.
conv_bn_layer_5
(
g
[
1
])
g
[
1
]
=
self
.
conv_bn_layer_6
(
g
[
1
])
g
[
2
]
=
paddle
.
add
(
g
[
1
],
h
[
2
])
g
[
2
]
=
F
.
relu
(
g
[
2
])
g
[
2
]
=
self
.
conv_bn_layer_7
(
g
[
2
])
f_down
=
self
.
conv_bn_layer_8
(
g
[
2
])
# FPN UP Fusion
f1
=
[
c6
,
c5
,
c4
,
c3
,
c2
]
g
=
[
None
,
None
,
None
,
None
,
None
]
h
=
[
None
,
None
,
None
,
None
,
None
]
h
[
0
]
=
self
.
conv_h0
(
f1
[
0
])
h
[
1
]
=
self
.
conv_h1
(
f1
[
1
])
h
[
2
]
=
self
.
conv_h2
(
f1
[
2
])
h
[
3
]
=
self
.
conv_h3
(
f1
[
3
])
h
[
4
]
=
self
.
conv_h4
(
f1
[
4
])
g
[
0
]
=
self
.
dconv0
(
h
[
0
])
g
[
1
]
=
paddle
.
add
(
g
[
0
],
h
[
1
])
g
[
1
]
=
F
.
relu
(
g
[
1
])
g
[
1
]
=
self
.
conv_g1
(
g
[
1
])
g
[
1
]
=
self
.
dconv1
(
g
[
1
])
g
[
2
]
=
paddle
.
add
(
g
[
1
],
h
[
2
])
g
[
2
]
=
F
.
relu
(
g
[
2
])
g
[
2
]
=
self
.
conv_g2
(
g
[
2
])
g
[
2
]
=
self
.
dconv2
(
g
[
2
])
g
[
3
]
=
paddle
.
add
(
g
[
2
],
h
[
3
])
g
[
3
]
=
F
.
relu
(
g
[
3
])
g
[
3
]
=
self
.
conv_g3
(
g
[
3
])
g
[
3
]
=
self
.
dconv3
(
g
[
3
])
g
[
4
]
=
paddle
.
add
(
x
=
g
[
3
],
y
=
h
[
4
])
g
[
4
]
=
F
.
relu
(
g
[
4
])
g
[
4
]
=
self
.
conv_g4
(
g
[
4
])
f_up
=
self
.
convf
(
g
[
4
])
f_common
=
paddle
.
add
(
f_down
,
f_up
)
f_common
=
F
.
relu
(
f_common
)
return
f_common
ppocr/modeling/necks/table_fpn.py
0 → 100644
View file @
19eb7eb8
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
class
TableFPN
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
**
kwargs
):
super
(
TableFPN
,
self
).
__init__
()
self
.
out_channels
=
512
weight_attr
=
paddle
.
nn
.
initializer
.
KaimingUniform
()
self
.
in2_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
0
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in3_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
1
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
stride
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in4_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
2
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
in5_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
[
3
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p5_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p4_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p3_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
p2_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
self
.
fuse_conv
=
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
*
4
,
out_channels
=
512
,
kernel_size
=
3
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
)
def
forward
(
self
,
x
):
c2
,
c3
,
c4
,
c5
=
x
in5
=
self
.
in5_conv
(
c5
)
in4
=
self
.
in4_conv
(
c4
)
in3
=
self
.
in3_conv
(
c3
)
in2
=
self
.
in2_conv
(
c2
)
out4
=
in4
+
F
.
upsample
(
in5
,
size
=
in4
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
# 1/16
out3
=
in3
+
F
.
upsample
(
out4
,
size
=
in3
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
# 1/8
out2
=
in2
+
F
.
upsample
(
out3
,
size
=
in2
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
# 1/4
p4
=
F
.
upsample
(
out4
,
size
=
in5
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
p3
=
F
.
upsample
(
out3
,
size
=
in5
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
p2
=
F
.
upsample
(
out2
,
size
=
in5
.
shape
[
2
:
4
],
mode
=
"nearest"
,
align_mode
=
1
)
fuse
=
paddle
.
concat
([
in5
,
p4
,
p3
,
p2
],
axis
=
1
)
fuse_conv
=
self
.
fuse_conv
(
fuse
)
*
0.005
return
[
c5
+
fuse_conv
]
ppocr/modeling/transforms/tps.py
View file @
19eb7eb8
...
...
@@ -230,15 +230,8 @@ class GridGenerator(nn.Layer):
def
build_inv_delta_C_paddle
(
self
,
C
):
""" Return inv_delta_C which is needed to calculate T """
F
=
self
.
F
hat_C
=
paddle
.
zeros
((
F
,
F
),
dtype
=
'float64'
)
# F x F
for
i
in
range
(
0
,
F
):
for
j
in
range
(
i
,
F
):
if
i
==
j
:
hat_C
[
i
,
j
]
=
1
else
:
r
=
paddle
.
norm
(
C
[
i
]
-
C
[
j
])
hat_C
[
i
,
j
]
=
r
hat_C
[
j
,
i
]
=
r
hat_eye
=
paddle
.
eye
(
F
,
dtype
=
'float64'
)
# F x F
hat_C
=
paddle
.
norm
(
C
.
reshape
([
1
,
F
,
2
])
-
C
.
reshape
([
F
,
1
,
2
]),
axis
=
2
)
+
hat_eye
hat_C
=
(
hat_C
**
2
)
*
paddle
.
log
(
hat_C
)
delta_C
=
paddle
.
concat
(
# F+3 x F+3
[
...
...
ppocr/postprocess/__init__.py
View file @
19eb7eb8
...
...
@@ -21,17 +21,19 @@ import copy
__all__
=
[
'build_post_process'
]
from
.db_postprocess
import
DBPostProcess
,
DistillationDBPostProcess
from
.east_postprocess
import
EASTPostProcess
from
.sast_postprocess
import
SASTPostProcess
from
.rec_postprocess
import
CTCLabelDecode
,
AttnLabelDecode
,
SRNLabelDecode
,
DistillationCTCLabelDecode
,
NRTRLabelDecode
,
\
TableLabelDecode
from
.cls_postprocess
import
ClsPostProcess
from
.pg_postprocess
import
PGPostProcess
def
build_post_process
(
config
,
global_config
=
None
):
from
.db_postprocess
import
DBPostProcess
from
.east_postprocess
import
EASTPostProcess
from
.sast_postprocess
import
SASTPostProcess
from
.rec_postprocess
import
CTCLabelDecode
,
AttnLabelDecode
,
SRNLabelDecode
from
.cls_postprocess
import
ClsPostProcess
support_dict
=
[
'DBPostProcess'
,
'EASTPostProcess'
,
'SASTPostProcess'
,
'CTCLabelDecode'
,
'AttnLabelDecode'
,
'ClsPostProcess'
,
'SRNLabelDecode'
'AttnLabelDecode'
,
'ClsPostProcess'
,
'SRNLabelDecode'
,
'PGPostProcess'
,
'DistillationCTCLabelDecode'
,
'NRTRLabelDecode'
,
'TableLabelDecode'
,
'DistillationDBPostProcess'
]
config
=
copy
.
deepcopy
(
config
)
...
...
ppocr/postprocess/db_postprocess.py
View file @
19eb7eb8
...
...
@@ -34,12 +34,18 @@ class DBPostProcess(object):
max_candidates
=
1000
,
unclip_ratio
=
2.0
,
use_dilation
=
False
,
score_mode
=
"fast"
,
**
kwargs
):
self
.
thresh
=
thresh
self
.
box_thresh
=
box_thresh
self
.
max_candidates
=
max_candidates
self
.
unclip_ratio
=
unclip_ratio
self
.
min_size
=
3
self
.
score_mode
=
score_mode
assert
score_mode
in
[
"slow"
,
"fast"
],
"Score mode must be in [slow, fast] but got: {}"
.
format
(
score_mode
)
self
.
dilation_kernel
=
None
if
not
use_dilation
else
np
.
array
(
[[
1
,
1
],
[
1
,
1
]])
...
...
@@ -69,7 +75,10 @@ class DBPostProcess(object):
if
sside
<
self
.
min_size
:
continue
points
=
np
.
array
(
points
)
score
=
self
.
box_score_fast
(
pred
,
points
.
reshape
(
-
1
,
2
))
if
self
.
score_mode
==
"fast"
:
score
=
self
.
box_score_fast
(
pred
,
points
.
reshape
(
-
1
,
2
))
else
:
score
=
self
.
box_score_slow
(
pred
,
contour
)
if
self
.
box_thresh
>
score
:
continue
...
...
@@ -120,6 +129,9 @@ class DBPostProcess(object):
return
box
,
min
(
bounding_box
[
1
])
def
box_score_fast
(
self
,
bitmap
,
_box
):
'''
box_score_fast: use bbox mean score as the mean score
'''
h
,
w
=
bitmap
.
shape
[:
2
]
box
=
_box
.
copy
()
xmin
=
np
.
clip
(
np
.
floor
(
box
[:,
0
].
min
()).
astype
(
np
.
int
),
0
,
w
-
1
)
...
...
@@ -133,6 +145,27 @@ class DBPostProcess(object):
cv2
.
fillPoly
(
mask
,
box
.
reshape
(
1
,
-
1
,
2
).
astype
(
np
.
int32
),
1
)
return
cv2
.
mean
(
bitmap
[
ymin
:
ymax
+
1
,
xmin
:
xmax
+
1
],
mask
)[
0
]
def
box_score_slow
(
self
,
bitmap
,
contour
):
'''
box_score_slow: use polyon mean score as the mean score
'''
h
,
w
=
bitmap
.
shape
[:
2
]
contour
=
contour
.
copy
()
contour
=
np
.
reshape
(
contour
,
(
-
1
,
2
))
xmin
=
np
.
clip
(
np
.
min
(
contour
[:,
0
]),
0
,
w
-
1
)
xmax
=
np
.
clip
(
np
.
max
(
contour
[:,
0
]),
0
,
w
-
1
)
ymin
=
np
.
clip
(
np
.
min
(
contour
[:,
1
]),
0
,
h
-
1
)
ymax
=
np
.
clip
(
np
.
max
(
contour
[:,
1
]),
0
,
h
-
1
)
mask
=
np
.
zeros
((
ymax
-
ymin
+
1
,
xmax
-
xmin
+
1
),
dtype
=
np
.
uint8
)
contour
[:,
0
]
=
contour
[:,
0
]
-
xmin
contour
[:,
1
]
=
contour
[:,
1
]
-
ymin
cv2
.
fillPoly
(
mask
,
contour
.
reshape
(
1
,
-
1
,
2
).
astype
(
np
.
int32
),
1
)
return
cv2
.
mean
(
bitmap
[
ymin
:
ymax
+
1
,
xmin
:
xmax
+
1
],
mask
)[
0
]
def
__call__
(
self
,
outs_dict
,
shape_list
):
pred
=
outs_dict
[
'maps'
]
if
isinstance
(
pred
,
paddle
.
Tensor
):
...
...
@@ -154,3 +187,29 @@ class DBPostProcess(object):
boxes_batch
.
append
({
'points'
:
boxes
})
return
boxes_batch
class
DistillationDBPostProcess
(
object
):
def
__init__
(
self
,
model_name
=
[
"student"
],
key
=
None
,
thresh
=
0.3
,
box_thresh
=
0.6
,
max_candidates
=
1000
,
unclip_ratio
=
1.5
,
use_dilation
=
False
,
score_mode
=
"fast"
,
**
kwargs
):
self
.
model_name
=
model_name
self
.
key
=
key
self
.
post_process
=
DBPostProcess
(
thresh
=
thresh
,
box_thresh
=
box_thresh
,
max_candidates
=
max_candidates
,
unclip_ratio
=
unclip_ratio
,
use_dilation
=
use_dilation
,
score_mode
=
score_mode
)
def
__call__
(
self
,
predicts
,
shape_list
):
results
=
{}
for
k
in
self
.
model_name
:
results
[
k
]
=
self
.
post_process
(
predicts
[
k
],
shape_list
=
shape_list
)
return
results
ppocr/postprocess/pg_postprocess.py
0 → 100644
View file @
19eb7eb8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
__file__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
))
from
ppocr.utils.e2e_utils.pgnet_pp_utils
import
PGNet_PostProcess
class
PGPostProcess
(
object
):
"""
The post process for PGNet.
"""
def
__init__
(
self
,
character_dict_path
,
valid_set
,
score_thresh
,
mode
,
**
kwargs
):
self
.
character_dict_path
=
character_dict_path
self
.
valid_set
=
valid_set
self
.
score_thresh
=
score_thresh
self
.
mode
=
mode
# c++ la-nms is faster, but only support python 3.5
self
.
is_python35
=
False
if
sys
.
version_info
.
major
==
3
and
sys
.
version_info
.
minor
==
5
:
self
.
is_python35
=
True
def
__call__
(
self
,
outs_dict
,
shape_list
):
post
=
PGNet_PostProcess
(
self
.
character_dict_path
,
self
.
valid_set
,
self
.
score_thresh
,
outs_dict
,
shape_list
)
if
self
.
mode
==
'fast'
:
data
=
post
.
pg_postprocess_fast
()
else
:
data
=
post
.
pg_postprocess_slow
()
return
data
ppocr/postprocess/rec_postprocess.py
View file @
19eb7eb8
...
...
@@ -28,7 +28,7 @@ class BaseRecLabelDecode(object):
'ch'
,
'en'
,
'EN_symbol'
,
'french'
,
'german'
,
'japan'
,
'korean'
,
'it'
,
'xi'
,
'pu'
,
'ru'
,
'ar'
,
'ta'
,
'ug'
,
'fa'
,
'ur'
,
'rs'
,
'oc'
,
'rsc'
,
'bg'
,
'uk'
,
'be'
,
'te'
,
'ka'
,
'chinese_cht'
,
'hi'
,
'mr'
,
'ne'
,
'EN'
'ne'
,
'EN'
,
'latin'
,
'arabic'
,
'cyrillic'
,
'devanagari'
]
assert
character_type
in
support_character_type
,
"Only {} are supported now but get {}"
.
format
(
support_character_type
,
character_type
)
...
...
@@ -44,16 +44,16 @@ class BaseRecLabelDecode(object):
self
.
character_str
=
string
.
printable
[:
-
6
]
dict_character
=
list
(
self
.
character_str
)
elif
character_type
in
support_character_type
:
self
.
character_str
=
""
self
.
character_str
=
[]
assert
character_dict_path
is
not
None
,
"character_dict_path should not be None when character_type is {}"
.
format
(
character_type
)
with
open
(
character_dict_path
,
"rb"
)
as
fin
:
lines
=
fin
.
readlines
()
for
line
in
lines
:
line
=
line
.
decode
(
'utf-8'
).
strip
(
"
\n
"
).
strip
(
"
\r\n
"
)
self
.
character_str
+=
line
self
.
character_str
.
append
(
line
)
if
use_space_char
:
self
.
character_str
+=
" "
self
.
character_str
.
append
(
" "
)
dict_character
=
list
(
self
.
character_str
)
else
:
...
...
@@ -125,6 +125,100 @@ class CTCLabelDecode(BaseRecLabelDecode):
return
dict_character
class
DistillationCTCLabelDecode
(
CTCLabelDecode
):
"""
Convert
Convert between text-label and text-index
"""
def
__init__
(
self
,
character_dict_path
=
None
,
character_type
=
'ch'
,
use_space_char
=
False
,
model_name
=
[
"student"
],
key
=
None
,
**
kwargs
):
super
(
DistillationCTCLabelDecode
,
self
).
__init__
(
character_dict_path
,
character_type
,
use_space_char
)
if
not
isinstance
(
model_name
,
list
):
model_name
=
[
model_name
]
self
.
model_name
=
model_name
self
.
key
=
key
def
__call__
(
self
,
preds
,
label
=
None
,
*
args
,
**
kwargs
):
output
=
dict
()
for
name
in
self
.
model_name
:
pred
=
preds
[
name
]
if
self
.
key
is
not
None
:
pred
=
pred
[
self
.
key
]
output
[
name
]
=
super
().
__call__
(
pred
,
label
=
label
,
*
args
,
**
kwargs
)
return
output
class
NRTRLabelDecode
(
BaseRecLabelDecode
):
""" Convert between text-label and text-index """
def
__init__
(
self
,
character_dict_path
=
None
,
character_type
=
'EN_symbol'
,
use_space_char
=
True
,
**
kwargs
):
super
(
NRTRLabelDecode
,
self
).
__init__
(
character_dict_path
,
character_type
,
use_space_char
)
def
__call__
(
self
,
preds
,
label
=
None
,
*
args
,
**
kwargs
):
if
preds
.
dtype
==
paddle
.
int64
:
if
isinstance
(
preds
,
paddle
.
Tensor
):
preds
=
preds
.
numpy
()
if
preds
[
0
][
0
]
==
2
:
preds_idx
=
preds
[:,
1
:]
else
:
preds_idx
=
preds
text
=
self
.
decode
(
preds_idx
)
if
label
is
None
:
return
text
label
=
self
.
decode
(
label
[:,
1
:])
else
:
if
isinstance
(
preds
,
paddle
.
Tensor
):
preds
=
preds
.
numpy
()
preds_idx
=
preds
.
argmax
(
axis
=
2
)
preds_prob
=
preds
.
max
(
axis
=
2
)
text
=
self
.
decode
(
preds_idx
,
preds_prob
,
is_remove_duplicate
=
False
)
if
label
is
None
:
return
text
label
=
self
.
decode
(
label
[:,
1
:])
return
text
,
label
def
add_special_char
(
self
,
dict_character
):
dict_character
=
[
'blank'
,
'<unk>'
,
'<s>'
,
'</s>'
]
+
dict_character
return
dict_character
def
decode
(
self
,
text_index
,
text_prob
=
None
,
is_remove_duplicate
=
False
):
""" convert text-index into text-label. """
result_list
=
[]
batch_size
=
len
(
text_index
)
for
batch_idx
in
range
(
batch_size
):
char_list
=
[]
conf_list
=
[]
for
idx
in
range
(
len
(
text_index
[
batch_idx
])):
if
text_index
[
batch_idx
][
idx
]
==
3
:
# end
break
try
:
char_list
.
append
(
self
.
character
[
int
(
text_index
[
batch_idx
][
idx
])])
except
:
continue
if
text_prob
is
not
None
:
conf_list
.
append
(
text_prob
[
batch_idx
][
idx
])
else
:
conf_list
.
append
(
1
)
text
=
''
.
join
(
char_list
)
result_list
.
append
((
text
.
lower
(),
np
.
mean
(
conf_list
)))
return
result_list
class
AttnLabelDecode
(
BaseRecLabelDecode
):
""" Convert between text-label and text-index """
...
...
@@ -162,8 +256,7 @@ class AttnLabelDecode(BaseRecLabelDecode):
if
idx
>
0
and
text_index
[
batch_idx
][
idx
-
1
]
==
text_index
[
batch_idx
][
idx
]:
continue
char_list
.
append
(
self
.
character
[
int
(
text_index
[
batch_idx
][
idx
])])
char_list
.
append
(
self
.
character
[
int
(
text_index
[
batch_idx
][
idx
])])
if
text_prob
is
not
None
:
conf_list
.
append
(
text_prob
[
batch_idx
][
idx
])
else
:
...
...
@@ -218,6 +311,7 @@ class SRNLabelDecode(BaseRecLabelDecode):
**
kwargs
):
super
(
SRNLabelDecode
,
self
).
__init__
(
character_dict_path
,
character_type
,
use_space_char
)
self
.
max_text_length
=
kwargs
.
get
(
'max_text_length'
,
25
)
def
__call__
(
self
,
preds
,
label
=
None
,
*
args
,
**
kwargs
):
pred
=
preds
[
'predict'
]
...
...
@@ -229,9 +323,9 @@ class SRNLabelDecode(BaseRecLabelDecode):
preds_idx
=
np
.
argmax
(
pred
,
axis
=
1
)
preds_prob
=
np
.
max
(
pred
,
axis
=
1
)
preds_idx
=
np
.
reshape
(
preds_idx
,
[
-
1
,
25
])
preds_idx
=
np
.
reshape
(
preds_idx
,
[
-
1
,
self
.
max_text_length
])
preds_prob
=
np
.
reshape
(
preds_prob
,
[
-
1
,
25
])
preds_prob
=
np
.
reshape
(
preds_prob
,
[
-
1
,
self
.
max_text_length
])
text
=
self
.
decode
(
preds_idx
,
preds_prob
)
...
...
@@ -287,3 +381,138 @@ class SRNLabelDecode(BaseRecLabelDecode):
assert
False
,
"unsupport type %s in get_beg_end_flag_idx"
\
%
beg_or_end
return
idx
class
TableLabelDecode
(
object
):
""" """
def
__init__
(
self
,
character_dict_path
,
**
kwargs
):
list_character
,
list_elem
=
self
.
load_char_elem_dict
(
character_dict_path
)
list_character
=
self
.
add_special_char
(
list_character
)
list_elem
=
self
.
add_special_char
(
list_elem
)
self
.
dict_character
=
{}
self
.
dict_idx_character
=
{}
for
i
,
char
in
enumerate
(
list_character
):
self
.
dict_idx_character
[
i
]
=
char
self
.
dict_character
[
char
]
=
i
self
.
dict_elem
=
{}
self
.
dict_idx_elem
=
{}
for
i
,
elem
in
enumerate
(
list_elem
):
self
.
dict_idx_elem
[
i
]
=
elem
self
.
dict_elem
[
elem
]
=
i
def
load_char_elem_dict
(
self
,
character_dict_path
):
list_character
=
[]
list_elem
=
[]
with
open
(
character_dict_path
,
"rb"
)
as
fin
:
lines
=
fin
.
readlines
()
substr
=
lines
[
0
].
decode
(
'utf-8'
).
strip
(
"
\n
"
).
strip
(
"
\r\n
"
).
split
(
"
\t
"
)
character_num
=
int
(
substr
[
0
])
elem_num
=
int
(
substr
[
1
])
for
cno
in
range
(
1
,
1
+
character_num
):
character
=
lines
[
cno
].
decode
(
'utf-8'
).
strip
(
"
\n
"
).
strip
(
"
\r\n
"
)
list_character
.
append
(
character
)
for
eno
in
range
(
1
+
character_num
,
1
+
character_num
+
elem_num
):
elem
=
lines
[
eno
].
decode
(
'utf-8'
).
strip
(
"
\n
"
).
strip
(
"
\r\n
"
)
list_elem
.
append
(
elem
)
return
list_character
,
list_elem
def
add_special_char
(
self
,
list_character
):
self
.
beg_str
=
"sos"
self
.
end_str
=
"eos"
list_character
=
[
self
.
beg_str
]
+
list_character
+
[
self
.
end_str
]
return
list_character
def
__call__
(
self
,
preds
):
structure_probs
=
preds
[
'structure_probs'
]
loc_preds
=
preds
[
'loc_preds'
]
if
isinstance
(
structure_probs
,
paddle
.
Tensor
):
structure_probs
=
structure_probs
.
numpy
()
if
isinstance
(
loc_preds
,
paddle
.
Tensor
):
loc_preds
=
loc_preds
.
numpy
()
structure_idx
=
structure_probs
.
argmax
(
axis
=
2
)
structure_probs
=
structure_probs
.
max
(
axis
=
2
)
structure_str
,
structure_pos
,
result_score_list
,
result_elem_idx_list
=
self
.
decode
(
structure_idx
,
structure_probs
,
'elem'
)
res_html_code_list
=
[]
res_loc_list
=
[]
batch_num
=
len
(
structure_str
)
for
bno
in
range
(
batch_num
):
res_loc
=
[]
for
sno
in
range
(
len
(
structure_str
[
bno
])):
text
=
structure_str
[
bno
][
sno
]
if
text
in
[
'<td>'
,
'<td'
]:
pos
=
structure_pos
[
bno
][
sno
]
res_loc
.
append
(
loc_preds
[
bno
,
pos
])
res_html_code
=
''
.
join
(
structure_str
[
bno
])
res_loc
=
np
.
array
(
res_loc
)
res_html_code_list
.
append
(
res_html_code
)
res_loc_list
.
append
(
res_loc
)
return
{
'res_html_code'
:
res_html_code_list
,
'res_loc'
:
res_loc_list
,
'res_score_list'
:
result_score_list
,
'res_elem_idx_list'
:
result_elem_idx_list
,
'structure_str_list'
:
structure_str
}
def
decode
(
self
,
text_index
,
structure_probs
,
char_or_elem
):
"""convert text-label into text-index.
"""
if
char_or_elem
==
"char"
:
current_dict
=
self
.
dict_idx_character
else
:
current_dict
=
self
.
dict_idx_elem
ignored_tokens
=
self
.
get_ignored_tokens
(
'elem'
)
beg_idx
,
end_idx
=
ignored_tokens
result_list
=
[]
result_pos_list
=
[]
result_score_list
=
[]
result_elem_idx_list
=
[]
batch_size
=
len
(
text_index
)
for
batch_idx
in
range
(
batch_size
):
char_list
=
[]
elem_pos_list
=
[]
elem_idx_list
=
[]
score_list
=
[]
for
idx
in
range
(
len
(
text_index
[
batch_idx
])):
tmp_elem_idx
=
int
(
text_index
[
batch_idx
][
idx
])
if
idx
>
0
and
tmp_elem_idx
==
end_idx
:
break
if
tmp_elem_idx
in
ignored_tokens
:
continue
char_list
.
append
(
current_dict
[
tmp_elem_idx
])
elem_pos_list
.
append
(
idx
)
score_list
.
append
(
structure_probs
[
batch_idx
,
idx
])
elem_idx_list
.
append
(
tmp_elem_idx
)
result_list
.
append
(
char_list
)
result_pos_list
.
append
(
elem_pos_list
)
result_score_list
.
append
(
score_list
)
result_elem_idx_list
.
append
(
elem_idx_list
)
return
result_list
,
result_pos_list
,
result_score_list
,
result_elem_idx_list
def
get_ignored_tokens
(
self
,
char_or_elem
):
beg_idx
=
self
.
get_beg_end_flag_idx
(
"beg"
,
char_or_elem
)
end_idx
=
self
.
get_beg_end_flag_idx
(
"end"
,
char_or_elem
)
return
[
beg_idx
,
end_idx
]
def
get_beg_end_flag_idx
(
self
,
beg_or_end
,
char_or_elem
):
if
char_or_elem
==
"char"
:
if
beg_or_end
==
"beg"
:
idx
=
self
.
dict_character
[
self
.
beg_str
]
elif
beg_or_end
==
"end"
:
idx
=
self
.
dict_character
[
self
.
end_str
]
else
:
assert
False
,
"Unsupport type %s in get_beg_end_flag_idx of char"
\
%
beg_or_end
elif
char_or_elem
==
"elem"
:
if
beg_or_end
==
"beg"
:
idx
=
self
.
dict_elem
[
self
.
beg_str
]
elif
beg_or_end
==
"end"
:
idx
=
self
.
dict_elem
[
self
.
end_str
]
else
:
assert
False
,
"Unsupport type %s in get_beg_end_flag_idx of elem"
\
%
beg_or_end
else
:
assert
False
,
"Unsupport type %s in char_or_elem"
\
%
char_or_elem
return
idx
ppocr/postprocess/sast_postprocess.py
View file @
19eb7eb8
...
...
@@ -18,6 +18,7 @@ from __future__ import print_function
import
os
import
sys
__dir__
=
os
.
path
.
dirname
(
__file__
)
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
join
(
__dir__
,
'..'
))
...
...
@@ -49,12 +50,12 @@ class SASTPostProcess(object):
self
.
shrink_ratio_of_width
=
shrink_ratio_of_width
self
.
expand_scale
=
expand_scale
self
.
tcl_map_thresh
=
tcl_map_thresh
# c++ la-nms is faster, but only support python 3.5
self
.
is_python35
=
False
if
sys
.
version_info
.
major
==
3
and
sys
.
version_info
.
minor
==
5
:
self
.
is_python35
=
True
def
point_pair2poly
(
self
,
point_pair_list
):
"""
Transfer vertical point_pairs into poly point in clockwise.
...
...
@@ -66,31 +67,42 @@ class SASTPostProcess(object):
point_list
[
idx
]
=
point_pair
[
0
]
point_list
[
point_num
-
1
-
idx
]
=
point_pair
[
1
]
return
np
.
array
(
point_list
).
reshape
(
-
1
,
2
)
def
shrink_quad_along_width
(
self
,
quad
,
begin_width_ratio
=
0.
,
end_width_ratio
=
1.
):
def
shrink_quad_along_width
(
self
,
quad
,
begin_width_ratio
=
0.
,
end_width_ratio
=
1.
):
"""
Generate shrink_quad_along_width.
"""
ratio_pair
=
np
.
array
([[
begin_width_ratio
],
[
end_width_ratio
]],
dtype
=
np
.
float32
)
ratio_pair
=
np
.
array
(
[[
begin_width_ratio
],
[
end_width_ratio
]],
dtype
=
np
.
float32
)
p0_1
=
quad
[
0
]
+
(
quad
[
1
]
-
quad
[
0
])
*
ratio_pair
p3_2
=
quad
[
3
]
+
(
quad
[
2
]
-
quad
[
3
])
*
ratio_pair
return
np
.
array
([
p0_1
[
0
],
p0_1
[
1
],
p3_2
[
1
],
p3_2
[
0
]])
def
expand_poly_along_width
(
self
,
poly
,
shrink_ratio_of_width
=
0.3
):
"""
expand poly along width.
"""
point_num
=
poly
.
shape
[
0
]
left_quad
=
np
.
array
([
poly
[
0
],
poly
[
1
],
poly
[
-
2
],
poly
[
-
1
]],
dtype
=
np
.
float32
)
left_quad
=
np
.
array
(
[
poly
[
0
],
poly
[
1
],
poly
[
-
2
],
poly
[
-
1
]],
dtype
=
np
.
float32
)
left_ratio
=
-
shrink_ratio_of_width
*
np
.
linalg
.
norm
(
left_quad
[
0
]
-
left_quad
[
3
])
/
\
(
np
.
linalg
.
norm
(
left_quad
[
0
]
-
left_quad
[
1
])
+
1e-6
)
left_quad_expand
=
self
.
shrink_quad_along_width
(
left_quad
,
left_ratio
,
1.0
)
right_quad
=
np
.
array
([
poly
[
point_num
//
2
-
2
],
poly
[
point_num
//
2
-
1
],
poly
[
point_num
//
2
],
poly
[
point_num
//
2
+
1
]],
dtype
=
np
.
float32
)
(
np
.
linalg
.
norm
(
left_quad
[
0
]
-
left_quad
[
1
])
+
1e-6
)
left_quad_expand
=
self
.
shrink_quad_along_width
(
left_quad
,
left_ratio
,
1.0
)
right_quad
=
np
.
array
(
[
poly
[
point_num
//
2
-
2
],
poly
[
point_num
//
2
-
1
],
poly
[
point_num
//
2
],
poly
[
point_num
//
2
+
1
]
],
dtype
=
np
.
float32
)
right_ratio
=
1.0
+
\
shrink_ratio_of_width
*
np
.
linalg
.
norm
(
right_quad
[
0
]
-
right_quad
[
3
])
/
\
(
np
.
linalg
.
norm
(
right_quad
[
0
]
-
right_quad
[
1
])
+
1e-6
)
right_quad_expand
=
self
.
shrink_quad_along_width
(
right_quad
,
0.0
,
right_ratio
)
shrink_ratio_of_width
*
np
.
linalg
.
norm
(
right_quad
[
0
]
-
right_quad
[
3
])
/
\
(
np
.
linalg
.
norm
(
right_quad
[
0
]
-
right_quad
[
1
])
+
1e-6
)
right_quad_expand
=
self
.
shrink_quad_along_width
(
right_quad
,
0.0
,
right_ratio
)
poly
[
0
]
=
left_quad_expand
[
0
]
poly
[
-
1
]
=
left_quad_expand
[
-
1
]
poly
[
point_num
//
2
-
1
]
=
right_quad_expand
[
1
]
...
...
@@ -100,7 +112,7 @@ class SASTPostProcess(object):
def
restore_quad
(
self
,
tcl_map
,
tcl_map_thresh
,
tvo_map
):
"""Restore quad."""
xy_text
=
np
.
argwhere
(
tcl_map
[:,
:,
0
]
>
tcl_map_thresh
)
xy_text
=
xy_text
[:,
::
-
1
]
# (n, 2)
xy_text
=
xy_text
[:,
::
-
1
]
# (n, 2)
# Sort the text boxes via the y axis
xy_text
=
xy_text
[
np
.
argsort
(
xy_text
[:,
1
])]
...
...
@@ -112,7 +124,7 @@ class SASTPostProcess(object):
point_num
=
int
(
tvo_map
.
shape
[
-
1
]
/
2
)
assert
point_num
==
4
tvo_map
=
tvo_map
[
xy_text
[:,
1
],
xy_text
[:,
0
],
:]
xy_text_tile
=
np
.
tile
(
xy_text
,
(
1
,
point_num
))
# (n, point_num * 2)
xy_text_tile
=
np
.
tile
(
xy_text
,
(
1
,
point_num
))
# (n, point_num * 2)
quads
=
xy_text_tile
-
tvo_map
return
scores
,
quads
,
xy_text
...
...
@@ -121,14 +133,12 @@ class SASTPostProcess(object):
"""
compute area of a quad.
"""
edge
=
[
(
quad
[
1
][
0
]
-
quad
[
0
][
0
])
*
(
quad
[
1
][
1
]
+
quad
[
0
][
1
]),
(
quad
[
2
][
0
]
-
quad
[
1
][
0
])
*
(
quad
[
2
][
1
]
+
quad
[
1
][
1
]),
(
quad
[
3
][
0
]
-
quad
[
2
][
0
])
*
(
quad
[
3
][
1
]
+
quad
[
2
][
1
]),
(
quad
[
0
][
0
]
-
quad
[
3
][
0
])
*
(
quad
[
0
][
1
]
+
quad
[
3
][
1
])
]
edge
=
[(
quad
[
1
][
0
]
-
quad
[
0
][
0
])
*
(
quad
[
1
][
1
]
+
quad
[
0
][
1
]),
(
quad
[
2
][
0
]
-
quad
[
1
][
0
])
*
(
quad
[
2
][
1
]
+
quad
[
1
][
1
]),
(
quad
[
3
][
0
]
-
quad
[
2
][
0
])
*
(
quad
[
3
][
1
]
+
quad
[
2
][
1
]),
(
quad
[
0
][
0
]
-
quad
[
3
][
0
])
*
(
quad
[
0
][
1
]
+
quad
[
3
][
1
])]
return
np
.
sum
(
edge
)
/
2.
def
nms
(
self
,
dets
):
if
self
.
is_python35
:
import
lanms
...
...
@@ -141,7 +151,7 @@ class SASTPostProcess(object):
"""
Cluster pixels in tcl_map based on quads.
"""
instance_count
=
quads
.
shape
[
0
]
+
1
# contain background
instance_count
=
quads
.
shape
[
0
]
+
1
# contain background
instance_label_map
=
np
.
zeros
(
tcl_map
.
shape
[:
2
],
dtype
=
np
.
int32
)
if
instance_count
==
1
:
return
instance_count
,
instance_label_map
...
...
@@ -149,18 +159,19 @@ class SASTPostProcess(object):
# predict text center
xy_text
=
np
.
argwhere
(
tcl_map
[:,
:,
0
]
>
tcl_map_thresh
)
n
=
xy_text
.
shape
[
0
]
xy_text
=
xy_text
[:,
::
-
1
]
# (n, 2)
tco
=
tco_map
[
xy_text
[:,
1
],
xy_text
[:,
0
],
:]
# (n, 2)
xy_text
=
xy_text
[:,
::
-
1
]
# (n, 2)
tco
=
tco_map
[
xy_text
[:,
1
],
xy_text
[:,
0
],
:]
# (n, 2)
pred_tc
=
xy_text
-
tco
# get gt text center
m
=
quads
.
shape
[
0
]
gt_tc
=
np
.
mean
(
quads
,
axis
=
1
)
# (m, 2)
gt_tc
=
np
.
mean
(
quads
,
axis
=
1
)
# (m, 2)
pred_tc_tile
=
np
.
tile
(
pred_tc
[:,
np
.
newaxis
,
:],
(
1
,
m
,
1
))
# (n, m, 2)
gt_tc_tile
=
np
.
tile
(
gt_tc
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
# (n, m, 2)
dist_mat
=
np
.
linalg
.
norm
(
pred_tc_tile
-
gt_tc_tile
,
axis
=
2
)
# (n, m)
xy_text_assign
=
np
.
argmin
(
dist_mat
,
axis
=
1
)
+
1
# (n,)
pred_tc_tile
=
np
.
tile
(
pred_tc
[:,
np
.
newaxis
,
:],
(
1
,
m
,
1
))
# (n, m, 2)
gt_tc_tile
=
np
.
tile
(
gt_tc
[
np
.
newaxis
,
:,
:],
(
n
,
1
,
1
))
# (n, m, 2)
dist_mat
=
np
.
linalg
.
norm
(
pred_tc_tile
-
gt_tc_tile
,
axis
=
2
)
# (n, m)
xy_text_assign
=
np
.
argmin
(
dist_mat
,
axis
=
1
)
+
1
# (n,)
instance_label_map
[
xy_text
[:,
1
],
xy_text
[:,
0
]]
=
xy_text_assign
return
instance_count
,
instance_label_map
...
...
@@ -169,26 +180,47 @@ class SASTPostProcess(object):
"""
Estimate sample points number.
"""
eh
=
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
3
])
+
np
.
linalg
.
norm
(
quad
[
1
]
-
quad
[
2
]))
/
2.0
ew
=
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
1
])
+
np
.
linalg
.
norm
(
quad
[
2
]
-
quad
[
3
]))
/
2.0
eh
=
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
3
])
+
np
.
linalg
.
norm
(
quad
[
1
]
-
quad
[
2
]))
/
2.0
ew
=
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
1
])
+
np
.
linalg
.
norm
(
quad
[
2
]
-
quad
[
3
]))
/
2.0
dense_sample_pts_num
=
max
(
2
,
int
(
ew
))
dense_xy_center_line
=
xy_text
[
np
.
linspace
(
0
,
xy_text
.
shape
[
0
]
-
1
,
dense_sample_pts_num
,
endpoint
=
True
,
dtype
=
np
.
float32
).
astype
(
np
.
int32
)]
dense_xy_center_line_diff
=
dense_xy_center_line
[
1
:]
-
dense_xy_center_line
[:
-
1
]
estimate_arc_len
=
np
.
sum
(
np
.
linalg
.
norm
(
dense_xy_center_line_diff
,
axis
=
1
))
dense_xy_center_line
=
xy_text
[
np
.
linspace
(
0
,
xy_text
.
shape
[
0
]
-
1
,
dense_sample_pts_num
,
endpoint
=
True
,
dtype
=
np
.
float32
).
astype
(
np
.
int32
)]
dense_xy_center_line_diff
=
dense_xy_center_line
[
1
:]
-
dense_xy_center_line
[:
-
1
]
estimate_arc_len
=
np
.
sum
(
np
.
linalg
.
norm
(
dense_xy_center_line_diff
,
axis
=
1
))
sample_pts_num
=
max
(
2
,
int
(
estimate_arc_len
/
eh
))
return
sample_pts_num
def
detect_sast
(
self
,
tcl_map
,
tvo_map
,
tbo_map
,
tco_map
,
ratio_w
,
ratio_h
,
src_w
,
src_h
,
shrink_ratio_of_width
=
0.3
,
tcl_map_thresh
=
0.5
,
offset_expand
=
1.0
,
out_strid
=
4.0
):
def
detect_sast
(
self
,
tcl_map
,
tvo_map
,
tbo_map
,
tco_map
,
ratio_w
,
ratio_h
,
src_w
,
src_h
,
shrink_ratio_of_width
=
0.3
,
tcl_map_thresh
=
0.5
,
offset_expand
=
1.0
,
out_strid
=
4.0
):
"""
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
"""
# restore quad
scores
,
quads
,
xy_text
=
self
.
restore_quad
(
tcl_map
,
tcl_map_thresh
,
tvo_map
)
scores
,
quads
,
xy_text
=
self
.
restore_quad
(
tcl_map
,
tcl_map_thresh
,
tvo_map
)
dets
=
np
.
hstack
((
quads
,
scores
)).
astype
(
np
.
float32
,
copy
=
False
)
dets
=
self
.
nms
(
dets
)
if
dets
.
shape
[
0
]
==
0
:
...
...
@@ -202,7 +234,8 @@ class SASTPostProcess(object):
# instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count
,
instance_label_map
=
self
.
cluster_by_quads_tco
(
tcl_map
,
tcl_map_thresh
,
quads
,
tco_map
)
instance_count
,
instance_label_map
=
self
.
cluster_by_quads_tco
(
tcl_map
,
tcl_map_thresh
,
quads
,
tco_map
)
# restore single poly with tcl instance.
poly_list
=
[]
...
...
@@ -212,10 +245,10 @@ class SASTPostProcess(object):
q_area
=
quad_areas
[
instance_idx
-
1
]
if
q_area
<
5
:
continue
#
len1
=
float
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
1
]))
len2
=
float
(
np
.
linalg
.
norm
(
quad
[
1
]
-
quad
[
2
]))
len1
=
float
(
np
.
linalg
.
norm
(
quad
[
0
]
-
quad
[
1
]))
len2
=
float
(
np
.
linalg
.
norm
(
quad
[
1
]
-
quad
[
2
]))
min_len
=
min
(
len1
,
len2
)
if
min_len
<
3
:
continue
...
...
@@ -225,16 +258,18 @@ class SASTPostProcess(object):
continue
# filter low confidence instance
xy_text_scores
=
tcl_map
[
xy_text
[:,
1
],
xy_text
[:,
0
],
0
]
xy_text_scores
=
tcl_map
[
xy_text
[:,
1
],
xy_text
[:,
0
],
0
]
if
np
.
sum
(
xy_text_scores
)
/
quad_areas
[
instance_idx
-
1
]
<
0.1
:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue
# sort xy_text
left_center_pt
=
np
.
array
([[(
quad
[
0
,
0
]
+
quad
[
-
1
,
0
])
/
2.0
,
(
quad
[
0
,
1
]
+
quad
[
-
1
,
1
])
/
2.0
]])
# (1, 2)
right_center_pt
=
np
.
array
([[(
quad
[
1
,
0
]
+
quad
[
2
,
0
])
/
2.0
,
(
quad
[
1
,
1
]
+
quad
[
2
,
1
])
/
2.0
]])
# (1, 2)
left_center_pt
=
np
.
array
(
[[(
quad
[
0
,
0
]
+
quad
[
-
1
,
0
])
/
2.0
,
(
quad
[
0
,
1
]
+
quad
[
-
1
,
1
])
/
2.0
]])
# (1, 2)
right_center_pt
=
np
.
array
(
[[(
quad
[
1
,
0
]
+
quad
[
2
,
0
])
/
2.0
,
(
quad
[
1
,
1
]
+
quad
[
2
,
1
])
/
2.0
]])
# (1, 2)
proj_unit_vec
=
(
right_center_pt
-
left_center_pt
)
/
\
(
np
.
linalg
.
norm
(
right_center_pt
-
left_center_pt
)
+
1e-6
)
proj_value
=
np
.
sum
(
xy_text
*
proj_unit_vec
,
axis
=
1
)
...
...
@@ -245,33 +280,45 @@ class SASTPostProcess(object):
sample_pts_num
=
self
.
estimate_sample_pts_num
(
quad
,
xy_text
)
else
:
sample_pts_num
=
self
.
sample_pts_num
xy_center_line
=
xy_text
[
np
.
linspace
(
0
,
xy_text
.
shape
[
0
]
-
1
,
sample_pts_num
,
endpoint
=
True
,
dtype
=
np
.
float32
).
astype
(
np
.
int32
)]
xy_center_line
=
xy_text
[
np
.
linspace
(
0
,
xy_text
.
shape
[
0
]
-
1
,
sample_pts_num
,
endpoint
=
True
,
dtype
=
np
.
float32
).
astype
(
np
.
int32
)]
point_pair_list
=
[]
for
x
,
y
in
xy_center_line
:
# get corresponding offset
offset
=
tbo_map
[
y
,
x
,
:].
reshape
(
2
,
2
)
if
offset_expand
!=
1.0
:
offset_length
=
np
.
linalg
.
norm
(
offset
,
axis
=
1
,
keepdims
=
True
)
expand_length
=
np
.
clip
(
offset_length
*
(
offset_expand
-
1
),
a_min
=
0.5
,
a_max
=
3.0
)
offset_length
=
np
.
linalg
.
norm
(
offset
,
axis
=
1
,
keepdims
=
True
)
expand_length
=
np
.
clip
(
offset_length
*
(
offset_expand
-
1
),
a_min
=
0.5
,
a_max
=
3.0
)
offset_detal
=
offset
/
offset_length
*
expand_length
offset
=
offset
+
offset_detal
# original point
offset
=
offset
+
offset_detal
# original point
ori_yx
=
np
.
array
([
y
,
x
],
dtype
=
np
.
float32
)
point_pair
=
(
ori_yx
+
offset
)[:,
::
-
1
]
*
out_strid
/
np
.
array
([
ratio_w
,
ratio_h
]).
reshape
(
-
1
,
2
)
point_pair
=
(
ori_yx
+
offset
)[:,
::
-
1
]
*
out_strid
/
np
.
array
(
[
ratio_w
,
ratio_h
]).
reshape
(
-
1
,
2
)
point_pair_list
.
append
(
point_pair
)
# ndarry: (x, 2), expand poly along width
detected_poly
=
self
.
point_pair2poly
(
point_pair_list
)
detected_poly
=
self
.
expand_poly_along_width
(
detected_poly
,
shrink_ratio_of_width
)
detected_poly
[:,
0
]
=
np
.
clip
(
detected_poly
[:,
0
],
a_min
=
0
,
a_max
=
src_w
)
detected_poly
[:,
1
]
=
np
.
clip
(
detected_poly
[:,
1
],
a_min
=
0
,
a_max
=
src_h
)
detected_poly
=
self
.
expand_poly_along_width
(
detected_poly
,
shrink_ratio_of_width
)
detected_poly
[:,
0
]
=
np
.
clip
(
detected_poly
[:,
0
],
a_min
=
0
,
a_max
=
src_w
)
detected_poly
[:,
1
]
=
np
.
clip
(
detected_poly
[:,
1
],
a_min
=
0
,
a_max
=
src_h
)
poly_list
.
append
(
detected_poly
)
return
poly_list
def
__call__
(
self
,
outs_dict
,
shape_list
):
def
__call__
(
self
,
outs_dict
,
shape_list
):
score_list
=
outs_dict
[
'f_score'
]
border_list
=
outs_dict
[
'f_border'
]
tvo_list
=
outs_dict
[
'f_tvo'
]
...
...
@@ -281,20 +328,28 @@ class SASTPostProcess(object):
border_list
=
border_list
.
numpy
()
tvo_list
=
tvo_list
.
numpy
()
tco_list
=
tco_list
.
numpy
()
img_num
=
len
(
shape_list
)
poly_lists
=
[]
for
ino
in
range
(
img_num
):
p_score
=
score_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_border
=
border_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_tvo
=
tvo_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_tco
=
tco_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_score
=
score_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_border
=
border_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_tvo
=
tvo_list
[
ino
].
transpose
((
1
,
2
,
0
))
p_tco
=
tco_list
[
ino
].
transpose
((
1
,
2
,
0
))
src_h
,
src_w
,
ratio_h
,
ratio_w
=
shape_list
[
ino
]
poly_list
=
self
.
detect_sast
(
p_score
,
p_tvo
,
p_border
,
p_tco
,
ratio_w
,
ratio_h
,
src_w
,
src_h
,
shrink_ratio_of_width
=
self
.
shrink_ratio_of_width
,
tcl_map_thresh
=
self
.
tcl_map_thresh
,
offset_expand
=
self
.
expand_scale
)
poly_list
=
self
.
detect_sast
(
p_score
,
p_tvo
,
p_border
,
p_tco
,
ratio_w
,
ratio_h
,
src_w
,
src_h
,
shrink_ratio_of_width
=
self
.
shrink_ratio_of_width
,
tcl_map_thresh
=
self
.
tcl_map_thresh
,
offset_expand
=
self
.
expand_scale
)
poly_lists
.
append
({
'points'
:
np
.
array
(
poly_list
)})
return
poly_lists
ppocr/utils/dict/arabic_dict.txt
0 → 100644
View file @
19eb7eb8
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
ء
آ
أ
ؤ
إ
ئ
ا
ب
ة
ت
ث
ج
ح
خ
د
ذ
ر
ز
س
ش
ص
ض
ط
ظ
ع
غ
ف
ق
ك
ل
م
ن
ه
و
ى
ي
ً
ٌ
ٍ
َ
ُ
ِ
ّ
ْ
ٓ
ٔ
ٰ
ٱ
ٹ
پ
چ
ڈ
ڑ
ژ
ک
ڭ
گ
ں
ھ
ۀ
ہ
ۂ
ۃ
ۆ
ۇ
ۈ
ۋ
ی
ې
ے
ۓ
ە
١
٢
٣
٤
٥
٦
٧
٨
٩
ppocr/utils/dict/cyrillic_dict.txt
0 → 100644
View file @
19eb7eb8
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
Ё
Є
І
Ј
Љ
Ў
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Ъ
Ы
Ь
Э
Ю
Я
а
б
в
г
д
е
ж
з
и
й
к
л
м
н
о
п
р
с
т
у
ф
х
ц
ч
ш
щ
ъ
ы
ь
э
ю
я
ё
ђ
є
і
ј
љ
њ
ћ
ў
џ
Ґ
ґ
ppocr/utils/dict/devanagari_dict.txt
0 → 100644
View file @
19eb7eb8
!
#
$
%
&
'
(
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
É
é
ँ
ं
ः
अ
आ
इ
ई
उ
ऊ
ऋ
ए
ऐ
ऑ
ओ
औ
क
ख
ग
घ
ङ
च
छ
ज
झ
ञ
ट
ठ
ड
ढ
ण
त
थ
द
ध
न
ऩ
प
फ
ब
भ
म
य
र
ऱ
ल
ळ
व
श
ष
स
ह
़
ा
ि
ी
ु
ू
ृ
ॅ
े
ै
ॉ
ो
ौ
्
॒
क़
ख़
ग़
ज़
ड़
ढ़
फ़
ॠ
।
०
१
२
३
४
५
६
७
८
९
॰
Prev
1
…
11
12
13
14
15
16
17
18
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment