Commit 19eb7eb8 authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'origin/dygraph' into dy1

parents 0afe6c32 03b7daa5
......@@ -9,6 +9,7 @@
- [English Recognition Model](#English)
- [Multilingual Recognition Model](#Multilingual)
- [3. Text Angle Classification Model](#Angle)
- [4. Paddle-Lite Model](#Paddle-Lite)
The downloadable models provided by PaddleOCR include `inference model`, `trained model`, `pre-trained model` and `slim model`. The differences between the models are as follows:
......@@ -27,7 +28,7 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |inference model (coming soon) / slim model (coming soon)|
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|2.6M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar)|
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
......@@ -39,8 +40,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......@@ -51,8 +52,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| 2.7M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
<a name="Multilingual"></a>
#### Multilingual Recognition Model(Updating...)
......@@ -96,33 +97,22 @@ python3 generate_multi_language_configs.py -l it \
--data_dir {path/to/data_dir} \
-o Global.use_gpu=False
```
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
| french_mobile_v2.0_rec |Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
| german_mobile_v2.0_rec |Lightweight model for German recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
| korean_mobile_v2.0_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
| japan_mobile_v2.0_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
| it_mobile_v2.0_rec |Lightweight model for Italian recognition|rec_it_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_train.tar) |
| xi_mobile_v2.0_rec |Lightweight model for Spanish recognition|rec_xi_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_train.tar) |
| pu_mobile_v2.0_rec |Lightweight model for Portuguese recognition|rec_pu_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_train.tar) |
| ru_mobile_v2.0_rec |Lightweight model for Russia recognition|rec_ru_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_train.tar) |
| ar_mobile_v2.0_rec |Lightweight model for Arabic recognition|rec_ar_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_train.tar) |
| hi_mobile_v2.0_rec |Lightweight model for Hindi recognition|rec_hi_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_train.tar) |
| chinese_cht_mobile_v2.0_rec |Lightweight model for chinese traditional recognition|rec_chinese_cht_lite_train.yml|5.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
| ug_mobile_v2.0_rec |Lightweight model for Uyghur recognition|rec_ug_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_train.tar) |
| fa_mobile_v2.0_rec |Lightweight model for Persian recognition|rec_fa_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_train.tar) |
| ur_mobile_v2.0_rec |Lightweight model for Urdu recognition|rec_ur_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_train.tar) |
| rs_mobile_v2.0_rec |Lightweight model for Serbian(latin) recognition|rec_rs_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_train.tar) |
| oc_mobile_v2.0_rec |Lightweight model for Occitan recognition|rec_oc_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_train.tar) |
| mr_mobile_v2.0_rec |Lightweight model for Marathi recognition|rec_mr_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_train.tar) |
| ne_mobile_v2.0_rec |Lightweight model for Nepali recognition|rec_ne_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_train.tar) |
| rsc_mobile_v2.0_rec |Lightweight model for Serbian(cyrillic) recognition|rec_rsc_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_train.tar) |
| bg_mobile_v2.0_rec |Lightweight model for Bulgarian recognition|rec_bg_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_train.tar) |
| uk_mobile_v2.0_rec |Lightweight model for Ukranian recognition|rec_uk_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_train.tar) |
| be_mobile_v2.0_rec |Lightweight model for Belarusian recognition|rec_be_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_train.tar) |
| te_mobile_v2.0_rec |Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
| ka_mobile_v2.0_rec |Lightweight model for Kannada recognition|rec_ka_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
| ta_mobile_v2.0_rec |Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|model name| dict file | description|config|model size|download|
| --- | --- | --- |--- | --- | --- |
| french_mobile_v2.0_rec | ppocr/utils/dict/french_dict.txt | Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
| german_mobile_v2.0_rec | ppocr/utils/dict/german_dict.txt | Lightweight model for German recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
| korean_mobile_v2.0_rec | ppocr/utils/dict/korean_dict.txt | Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
| japan_mobile_v2.0_rec | ppocr/utils/dict/japan_dict.txt | Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
| chinese_cht_mobile_v2.0_rec | ppocr/utils/dict/chinese_cht_dict.txt | Lightweight model for chinese cht recognition|rec_chinese_cht_lite_train.yml|5.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
| te_mobile_v2.0_rec | ppocr/utils/dict/te_dict.txt | Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
| ka_mobile_v2.0_rec | ppocr/utils/dict/ka_dict.txt | Lightweight model for Kannada recognition|rec_ka_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
| ta_mobile_v2.0_rec | ppocr/utils/dict/ta_dict.txt | Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
| latin_mobile_v2.0_rec | ppocr/utils/dict/latin_dict.txt | Lightweight model for latin recognition | [rec_latin_lite_train.yml](../../configs/rec/multi_language/rec_latin_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_train.tar) |
| arabic_mobile_v2.0_rec | ppocr/utils/dict/arabic_dict.txt | Lightweight model for arabic recognition | [rec_arabic_lite_train.yml](../../configs/rec/multi_language/rec_arabic_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_train.tar) |
| cyrillic_mobile_v2.0_rec | ppocr/utils/dict/cyrillic_dict.txt | Lightweight model for cyrillic recognition | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
| devanagari_mobile_v2.0_rec | ppocr/utils/dict/devanagari_dict.txt | Lightweight model for devanagari recognition | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
For more supported languages, please refer to : [Multi-language model](./multi_languages_en.md)
<a name="Angle"></a>
......@@ -130,5 +120,12 @@ python3 generate_multi_language_configs.py -l it \
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| 2.1M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
<a name="Paddle-Lite"></a>
### 4. Paddle-Lite Model
|Version|Introduction|Model size|Detection model|Text Direction model|Recognition model|Paddle-Lite branch|
|---|---|---|---|---|---|---|
|V2.0|extra-lightweight chinese OCR optimized model|7.8M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_opt.nb)|v2.9|
|V2.0(slim)|extra-lightweight chinese OCR optimized model|3.3M|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_rec_slim_opt.nb)|v2.9|
# Multi-language model
**Recent Update**
- 2021.4.9 supports the detection and recognition of 80 languages
- 2021.4.9 supports **lightweight high-precision** English model detection and recognition
PaddleOCR aims to create a rich, leading, and practical OCR tool library, which not only provides
Chinese and English models in general scenarios, but also provides models specifically trained
in English scenarios. And multilingual models covering [80 languages](#language_abbreviations).
Among them, the English model supports the detection and recognition of uppercase and lowercase
letters and common punctuation, and the recognition of space characters is optimized:
<div align="center">
<img src="../imgs_results/multi_lang/img_12.jpg" width="900" height="300">
</div>
The multilingual models cover Latin, Arabic, Traditional Chinese, Korean, Japanese, etc.:
<div align="center">
<img src="../imgs_results/multi_lang/japan_2.jpg" width="600" height="300">
<img src="../imgs_results/multi_lang/french_0.jpg" width="300" height="300">
<img src="../imgs_results/multi_lang/korean_0.jpg" width="500" height="300">
<img src="../imgs_results/multi_lang/arabic_0.jpg" width="300" height="300">
</div>
This document will briefly introduce how to use the multilingual model.
- [1 Installation](#Install)
- [1.1 paddle installation](#paddleinstallation)
- [1.2 paddleocr package installation](#paddleocr_package_install)
- [2 Quick Use](#Quick_Use)
- [2.1 Command line operation](#Command_line_operation)
- [2.2 python script running](#python_Script_running)
- [3 Custom Training](#Custom_Training)
- [4 Inference and Deployment](#inference)
- [4 Supported languages and abbreviations](#language_abbreviations)
<a name="Install"></a>
## 1 Installation
<a name="paddle_install"></a>
### 1.1 paddle installation
```
# cpu
pip install paddlepaddle
# gpu
pip install paddlepaddle-gpu
```
<a name="paddleocr_package_install"></a>
### 1.2 paddleocr package installation
pip install
```
pip install "paddleocr>=2.0.6" # 2.0.6 version is recommended
```
Build and install locally
```
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version number of paddleocr
```
<a name="Quick_use"></a>
## 2 Quick use
<a name="Command_line_operation"></a>
### 2.1 Command line operation
View help information
```
paddleocr -h
```
* Whole image prediction (detection + recognition)
Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.
The specific supported [language] (#language_abbreviations) can be viewed in the table.
``` bash
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
```
<div align="center">
<img src="../imgs_en/254.jpg" width="300" height="600">
<img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
The result is a list, each item contains a text box, text and recognition confidence
```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```
* Recognition
```bash
paddleocr --image_dir doc/imgs_words_en/word_308.png --det false --lang=en
```
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_words_en/word_308.png)
The result is a tuple, which returns the recognition result and recognition confidence
```text
(0.99879867, 'LITTLE')
```
* Detection
```
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
The result is a list, each item contains only text boxes
```
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```
<a name="python_script_running"></a>
### 2.2 python script running
ppocr also supports running in python scripts for easy embedding in your own code:
* Whole image prediction (detection + recognition)
```
from paddleocr import PaddleOCR, draw_ocr
# Also switch the language by modifying the lang parameter
ocr = PaddleOCR(lang="korean") # The model file will be downloaded automatically when executed for the first time
img_path ='doc/imgs/korean_1.jpg'
result = ocr.ocr(img_path)
# Recognition and detection can be performed separately through parameter control
# result = ocr.ocr(img_path, det=False) Only perform recognition
# result = ocr.ocr(img_path, rec=False) Only perform detection
# Print detection frame and recognition result
for line in result:
print(line)
# Visualization
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
Visualization of results:
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)
ppocr also supports direction classification. For more usage methods, please refer to: [whl package instructions](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/whl.md).
<a name="Custom_training"></a>
## 3 Custom training
ppocr supports using your own data for custom training or finetune, where the recognition model can refer to [French configuration file](../../configs/rec/multi_language/rec_french_lite_train.yml)
Modify the training data path, dictionary and other parameters.
For specific data preparation and training process, please refer to: [Text Detection](../doc_en/detection_en.md), [Text Recognition](../doc_en/recognition_en.md), more functions such as predictive deployment,
For functions such as data annotation, you can read the complete [Document Tutorial](../../README.md).
<a name="inference"></a>
## 4 Inference and Deployment
In addition to installing the whl package for quick forecasting,
ppocr also provides a variety of forecasting deployment methods.
If necessary, you can read related documents:
- [Python Inference](./inference_en.md)
- [C++ Inference](../../deploy/cpp_infer/readme_en.md)
- [Serving](../../deploy/hubserving/readme_en.md)
- [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
- [Benchmark](./benchmark_en.md)
<a name="language_abbreviations"></a>
## 5 Support languages and abbreviations
| Language | Abbreviation | | Language | Abbreviation |
| --- | --- | --- | --- | --- |
|chinese and english|ch| |Arabic|ar|
|english|en| |Hindi|hi|
|french|fr| |Uyghur|ug|
|german|german| |Persian|fa|
|japan|japan| |Urdu|ur|
|korean|korean| | Serbian(latin) |rs_latin|
|chinese traditional |ch_tra| |Occitan |oc|
| Italian |it| |Marathi|mr|
|Spanish |es| |Nepali|ne|
| Portuguese|pt| |Serbian(cyrillic)|rs_cyrillic|
|Russia|ru||Bulgarian |bg|
|Ukranian|uk| |Estonian |et|
|Belarusian|be| |Irish |ga|
|Telugu |te| |Croatian |hr|
|Saudi Arabia|sa| |Hungarian |hu|
|Tamil |ta| |Indonesian|id|
|Afrikaans |af| |Icelandic|is|
|Azerbaijani |az||Kurdish|ku|
|Bosnian|bs| |Lithuanian |lt|
|Czech|cs| |Latvian |lv|
|Welsh |cy| |Maori|mi|
|Danish|da| |Malay|ms|
|Maltese |mt| |Adyghe |ady|
|Dutch |nl| |Kabardian |kbd|
|Norwegian |no| |Avar |ava|
|Polish |pl| |Dargwa |dar|
|Romanian |ro| |Ingush |inh|
|Slovak |sk| |Lak |lbe|
|Slovenian |sl| |Lezghian |lez|
|Albanian |sq| |Tabassaran |tab|
|Swedish |sv| |Bihari |bh|
|Swahili |sw| |Maithili |mai|
|Tagalog |tl| |Angika |ang|
|Turkish |tr| |Bhojpuri |bho|
|Uzbek |uz| |Magahi |mah|
|Vietnamese |vi| |Nagpur |sck|
|Mongolian |mn| |Newari |new|
|Abaza |abq| |Goan Konkani|gom|
# End-to-end OCR Algorithm-PGNet
- [1. Brief Introduction](#Brief_Introduction)
- [2. Environment Configuration](#Environment_Configuration)
- [3. Quick Use](#Quick_Use)
- [4. Model Training,Evaluation And Inference](#Model_Training_Evaluation_And_Inference)
<a name="Brief_Introduction"></a>
## 1. Brief Introduction
OCR algorithm can be divided into two-stage algorithm and end-to-end algorithm. The two-stage OCR algorithm is generally divided into two parts, text detection and text recognition algorithm. The text detection algorithm gets the detection box of the text line from the image, and then the recognition algorithm identifies the content of the text box. The end-to-end OCR algorithm can complete text detection and recognition in one algorithm. Its basic idea is to design a model with both detection unit and recognition module, share the CNN features of both and train them together. Because one algorithm can complete character recognition, the end-to-end model is smaller and faster.
### Introduction Of PGNet Algorithm
In recent years, the end-to-end OCR algorithm has been well developed, including MaskTextSpotter series, TextSnake, TextDragon, PGNet series and so on. Among these algorithms, PGNet algorithm has the advantages that other algorithms do not
- Pgnet loss is designed to guide training, and no character-level annotations is needed
- NMS and ROI related operations are not needed, It can accelerate the prediction
- The reading order prediction module is proposed
- A graph based modification module (GRM) is proposed to further improve the performance of model recognition
- Higher accuracy and faster prediction speed
For details of PGNet algorithm, please refer to [paper](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) ,The schematic diagram of the algorithm is as follows:
![](../pgnet_framework.png)
After feature extraction, the input image is sent to four branches: TBO module for text edge offset prediction, TCL module for text centerline prediction, TDO module for text direction offset prediction, and TCC module for text character classification graph prediction.
The output of TBO and TCL can get text detection results after post-processing, and TCL, TDO and TCC are responsible for text recognition.
The results of detection and recognition are as follows:
![](../imgs_results/e2e_res_img293_pgnet.png)
![](../imgs_results/e2e_res_img295_pgnet.png)
### Performance
####Test set: Total Text
####Test environment: NVIDIA Tesla V100-SXM2-16GB
|PGNetA|det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS|download|
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|Paper|85.30|86.80|86.1|-|-|61.7|38.20 (size=640)|-|
|Ours|87.03|82.48|84.69|61.71|58.43|60.03|48.73 (size=768)|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)|
*note:PGNet in PaddleOCR optimizes the prediction speed, and can significantly improve the end-to-end prediction speed within the acceptable range of accuracy reduction*
<a name="Environment_Configuration"></a>
## 2. Environment Configuration
Please refer to [Quick Installation](./installation_en.md) Configure the PaddleOCR running environment.
<a name="Quick_Use"></a>
## 3. Quick Use
### inference model download
This section takes the trained end-to-end model as an example to quickly use the model prediction. First, download the trained end-to-end inference model [download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar)
```
mkdir inference && cd inference
# Download the English end-to-end model and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar && tar xf e2e_server_pgnetA_infer.tar
```
* In Windows environment, if 'wget' is not installed, the link can be copied to the browser when downloading the model, and decompressed and placed in the corresponding directory
After decompression, there should be the following file structure:
```
├── e2e_server_pgnetA_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
### Single image or image set prediction
```bash
# Prediction single image specified by image_dir
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
# Prediction the collection of images specified by image_dir
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
# If you want to use CPU for prediction, you need to set use_gpu parameter is false
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True --use_gpu=False
```
### Visualization results
The visualized end-to-end results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
<a name="Model_Training_Evaluation_And_Inference"></a>
## 4. Model Training,Evaluation And Inference
This section takes the totaltext dataset as an example to introduce the training, evaluation and testing of the end-to-end model in PaddleOCR.
### Data Preparation
Download and unzip [totaltext](https://paddleocr.bj.bcebos.com/dataset/total_text.tar) dataset to PaddleOCR/train_data/, dataset organization structure is as follow:
```
/PaddleOCR/train_data/total_text/train/
|- rgb/ # total_text training data of dataset
|- img11.png
| ...
|- train.txt # total_text training annotation of dataset
```
total_text.txt: the format of dimension file is as follows,the file name and annotation information are separated by "\t":
```
" Image file name Image annotation information encoded by json.dumps"
rgb/img11.jpg [{"transcription": "ASRAMA", "points": [[214.0, 325.0], [235.0, 308.0], [259.0, 296.0], [286.0, 291.0], [313.0, 295.0], [338.0, 305.0], [362.0, 320.0], [349.0, 347.0], [330.0, 337.0], [310.0, 329.0], [290.0, 324.0], [269.0, 328.0], [249.0, 336.0], [231.0, 346.0]]}, {...}]
```
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.
`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**
If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
### Start Training
PGNet training is divided into two steps: Step 1: training on the synthetic data to get the pretrain_model, and the accuracy of the model is still low; step 2: loading the pretrain_model and training on the totaltext data set; for fast training, we directly provide the pre training model of step 1[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar).
```shell
cd PaddleOCR/
download step1 pretrain_models
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar
You can get the following file format
./pretrain_models/train_step1/
└─ best_accuracy.pdopt
└─ best_accuracy.states
└─ best_accuracy.pdparams
```
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
```shell
# single GPU training
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/train_step1/best_accuracy Global.load_static_weights=False
# multi-GPU training
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/train_step1/best_accuracy Global.load_static_weights=False
```
In the above instruction, use `-c` to select the training to use the `configs/e2e/e2e_r50_vd_pg.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Optimizer.base_lr=0.0001
```
#### Load trained model and continue training
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./your/trained/model
```
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
PaddleOCR calculates three indicators for evaluating performance of OCR end-to-end task: Precision, Recall, and Hmean.
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `e2e_r50_vd_pg.yml`
When evaluating, set post-processing parameters `max_side_len=768`. If you use different datasets, different models for training.
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
```shell
python3 tools/eval.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints="{path/to/weights}/best_accuracy"
```
### Model Test
Test the end-to-end result on a single image:
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/e2e_pgnet/best_accuracy" Global.load_static_weights=false
```
Test the end-to-end result on all images in the folder:
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/e2e_pgnet/best_accuracy" Global.load_static_weights=false
```
### Model inference
#### (1).Quadrangle text detection model (ICDAR2015)
First, convert the model saved in the PGNet end-to-end training process into an inference model. In the first stage of training based on composite dataset, the model of English data set training is taken as an example[model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar), you can use the following command to convert:
```
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
**For PGNet quadrangle end-to-end model inference, you need to set the parameter `--e2e_algorithm="PGNet"`**, run the following command:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=False
```
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
![](../imgs_results/e2e_res_img_10_pgnet.jpg)
#### (2). Curved text detection model (Total-Text)
For the curved text example, we use the same model as the quadrilateral
**For PGNet end-to-end curved text detection model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_polygon=True`**, run the following command:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
```
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
......@@ -131,7 +131,7 @@ PaddleOCR has built-in dictionaries, which can be used on demand.
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters
`ppocr/utils/dict/en_dict.txt` is a English dictionary with 63 characters
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
......@@ -177,11 +177,11 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs
<a name="Data_Augmentation"></a>
#### 2.1 Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.
Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)
<a name="Training"></a>
#### 2.2 Training
......@@ -207,7 +207,7 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_mv3_tps_bilstm_att.yml | CRNN | Mobilenet_v3 | TPS | BiLSTM | att |
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
For training Chinese data, it is recommended to use
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
......@@ -237,7 +237,7 @@ Optimizer:
Train:
dataset:
# Type of dataset,we support LMDBDateSet and SimpleDataSet
# Type of dataset,we support LMDBDataSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data/
......@@ -257,7 +257,7 @@ Train:
Eval:
dataset:
# Type of dataset,we support LMDBDateSet and SimpleDataSet
# Type of dataset,we support LMDBDataSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data
......@@ -279,7 +279,7 @@ Eval:
<a name="Multi_language"></a>
#### 2.3 Multi-language
PaddleOCR currently supports 26 (except Chinese) language recognition. A multi-language configuration file template is
PaddleOCR currently supports 80 (except Chinese) language recognition. A multi-language configuration file template is
provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
There are two ways to create the required configuration file::
......@@ -329,6 +329,7 @@ There are two ways to create the required configuration file::
...
```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.
2. Manually modify the configuration file
......@@ -368,29 +369,16 @@ Currently, the multi-language algorithms supported by PaddleOCR are:
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German | german |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese | japan |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean | korean |
| rec_it_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Italian | it |
| rec_xi_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Spanish | xi |
| rec_pu_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Portuguese | pu |
| rec_ru_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Russia | ru |
| rec_ar_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Arabic | ar |
| rec_hi_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Hindi | hi |
| rec_ug_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Uyghur | ug |
| rec_fa_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Persian(Farsi) | fa |
| rec_ur_ite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Urdu | ur |
| rec_rs_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Serbian(latin) | rs |
| rec_oc_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Occitan | oc |
| rec_mr_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Marathi | mr |
| rec_ne_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Nepali | ne |
| rec_rsc_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Serbian(cyrillic) | rsc |
| rec_bg_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Bulgarian | bg |
| rec_uk_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Ukranian | uk |
| rec_be_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Belarusian | be |
| rec_te_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Telugu | te |
| rec_ka_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Kannada | ka |
| rec_ta_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Tamil | ta |
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded on [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin | latin |
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic | ar |
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic | cyrillic |
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari | devanagari |
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)
If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:
......@@ -409,7 +397,7 @@ Global:
Train:
dataset:
# Type of dataset,we support LMDBDateSet and SimpleDataSet
# Type of dataset,we support LMDBDataSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data/
......@@ -419,7 +407,7 @@ Train:
Eval:
dataset:
# Type of dataset,we support LMDBDateSet and SimpleDataSet
# Type of dataset,we support LMDBDataSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data
......
......@@ -15,8 +15,6 @@
- 2020.6.8 Add [datasets](./datasets_en.md) and keep updating
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.5.30 Provide Lightweight Chinese OCR online experience
- 2020.5.30 Model prediction and training support on Windows system
- 2020.5.30 Open source general Chinese OCR model
......
......@@ -59,7 +59,7 @@ Visualization of results
from paddleocr import PaddleOCR,draw_ocr
ocr = PaddleOCR(lang='en') # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
result = ocr.ocr(img_path, cls=False)
for line in result:
print(line)
......@@ -305,7 +305,8 @@ paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-f
Support numpy array as input only when used by code
```python
from paddleocr import PaddleOCR, draw_ocr
import cv2
from paddleocr import PaddleOCR, draw_ocr, download_with_progressbar
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
img = cv2.imread(img_path)
......@@ -316,7 +317,9 @@ for line in result:
# show result
from PIL import Image
image = Image.open(img_path).convert('RGB')
download_with_progressbar(img_path, 'tmp.jpg')
image = Image.open('tmp.jpg').convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
......@@ -362,3 +365,5 @@ im_show.save('result.jpg')
| det | Enable detction when `ppocr.ocr` func exec | TRUE |
| rec | Enable recognition when `ppocr.ocr` func exec | TRUE |
| cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE |
| show_log | Whether to print log in det and rec | FALSE |
| type | Perform ocr or table structuring, the value is selected in ['ocr','structure'] | ocr |
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment