Commit 07b6d635 authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'upstream/dygraph' into dy1

parents ee9c1bcf 3ce97f18
......@@ -52,7 +52,7 @@ python3 PPOCRLabel.py
```
pip3 install pyqt5
pip3 uninstall opencv-python # Uninstall opencv manually as it conflicts with pyqt
pip3 install opencv-contrib-python-headless # Install the headless version of opencv
pip3 install opencv-contrib-python-headless==4.2.0.32 # Install the headless version of opencv
cd ./PPOCRLabel # Change the directory to the PPOCRLabel folder
python3 PPOCRLabel.py
```
......@@ -162,9 +162,9 @@ For some data that are difficult to recognize, the recognition results will not
```
pyrcc5 -o libs/resources.py resources.qrc
```
- If you get an error ``` module 'cv2' has no attribute 'INTER_NEAREST'```, you need to delete all opencv related packages first, and then reinstall the headless version of opencv
- If you get an error ``` module 'cv2' has no attribute 'INTER_NEAREST'```, you need to delete all opencv related packages first, and then reinstall the 4.2.0.32 version of headless opencv
```
pip install opencv-contrib-python-headless
pip install opencv-contrib-python-headless==4.2.0.32
```
### Related
......
......@@ -52,7 +52,7 @@ python3 PPOCRLabel.py --lang ch
```
pip3 install pyqt5
pip3 uninstall opencv-python # 由于mac版本的opencv与pyqt有冲突,需先手动卸载opencv
pip3 install opencv-contrib-python-headless # 安装headless版本的open-cv
pip3 install opencv-contrib-python-headless==4.2.0.32 # 安装headless版本的open-cv
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python3 PPOCRLabel.py --lang ch
```
......@@ -149,9 +149,9 @@ PPOCRLabel支持三种保存方式:
pyrcc5 -o libs/resources.py resources.qrc
```
- 如果出现``` module 'cv2' has no attribute 'INTER_NEAREST'```错误,需要首先删除所有opencv相关包,然后重新安装headless版本的opencv
- 如果出现``` module 'cv2' has no attribute 'INTER_NEAREST'```错误,需要首先删除所有opencv相关包,然后重新安装4.2.0.32版本的headless opencv
```
pip install opencv-contrib-python-headless
pip install opencv-contrib-python-headless==4.2.0.32
```
### 参考资料
......
......@@ -8,8 +8,8 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本:develop分支
**近期更新**
- 2021.2.1 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数162个,每周一都会更新,欢迎大家持续关注。
- 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课,1月26日、28日、29日晚上19:30,[直播地址](https://live.bilibili.com/21689802)
- 2021.1.25 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数157个,每周一都会更新,欢迎大家持续关注。
- 2021.1.21 更新多语言识别模型,目前支持语种超过27种,[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
......
......@@ -38,7 +38,15 @@ class StyleTextRecPredictor(object):
self.std = config["Predictor"]["std"]
self.expand_result = config["Predictor"]["expand_result"]
def predict(self, style_input, text_input):
def reshape_to_same_height(self, img_list):
h = img_list[0].shape[0]
for idx in range(1, len(img_list)):
new_w = round(1.0 * img_list[idx].shape[1] /
img_list[idx].shape[0] * h)
img_list[idx] = cv2.resize(img_list[idx], (new_w, h))
return img_list
def predict_single_image(self, style_input, text_input):
style_input = self.rep_style_input(style_input, text_input)
tensor_style_input = self.preprocess(style_input)
tensor_text_input = self.preprocess(text_input)
......@@ -64,6 +72,21 @@ class StyleTextRecPredictor(object):
"fake_bg": fake_bg,
}
def predict(self, style_input, text_input_list):
if not isinstance(text_input_list, (tuple, list)):
return self.predict_single_image(style_input, text_input_list)
synth_result_list = []
for text_input in text_input_list:
synth_result = self.predict_single_image(style_input, text_input)
synth_result_list.append(synth_result)
for key in synth_result:
res = [r[key] for r in synth_result_list]
res = self.reshape_to_same_height(res)
synth_result[key] = np.concatenate(res, axis=1)
return synth_result
def preprocess(self, img):
img = (img.astype('float32') * self.scale - self.mean) / self.std
img_height, img_width, channel = img.shape
......
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import cv2
from utils.config import ArgsParser, load_config, override_config
from utils.logging import get_logger
......@@ -36,8 +38,9 @@ class ImageSynthesiser(object):
self.predictor = getattr(predictors, predictor_method)(self.config)
def synth_image(self, corpus, style_input, language="en"):
corpus, text_input = self.text_drawer.draw_text(corpus, language)
synth_result = self.predictor.predict(style_input, text_input)
corpus_list, text_input_list = self.text_drawer.draw_text(
corpus, language, style_input_width=style_input.shape[1])
synth_result = self.predictor.predict(style_input, text_input_list)
return synth_result
......@@ -59,12 +62,15 @@ class DatasetSynthesiser(ImageSynthesiser):
for i in range(self.output_num):
style_data = self.style_sampler.sample()
style_input = style_data["image"]
corpus_language, text_input_label = self.corpus_generator.generate(
)
text_input_label, text_input = self.text_drawer.draw_text(
text_input_label, corpus_language)
corpus_language, text_input_label = self.corpus_generator.generate()
text_input_label_list, text_input_list = self.text_drawer.draw_text(
text_input_label,
corpus_language,
style_input_width=style_input.shape[1])
synth_result = self.predictor.predict(style_input, text_input)
text_input_label = "".join(text_input_label_list)
synth_result = self.predictor.predict(style_input, text_input_list)
fake_fusion = synth_result["fake_fusion"]
self.writer.save_image(fake_fusion, text_input_label)
self.writer.save_label()
......
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import cv2
from utils.logging import get_logger
......@@ -28,7 +29,11 @@ class StdTextDrawer(object):
else:
return int((self.height - 4)**2 / font_height)
def draw_text(self, corpus, language="en", crop=True):
def draw_text(self,
corpus,
language="en",
crop=True,
style_input_width=None):
if language not in self.support_languages:
self.logger.warning(
"language {} not supported, use en instead.".format(language))
......@@ -37,21 +42,43 @@ class StdTextDrawer(object):
width = min(self.max_width, len(corpus) * self.height) + 4
else:
width = len(corpus) * self.height + 4
if style_input_width is not None:
width = min(width, style_input_width)
corpus_list = []
text_input_list = []
while len(corpus) != 0:
bg = Image.new("RGB", (width, self.height), color=(127, 127, 127))
draw = ImageDraw.Draw(bg)
char_x = 2
font = self.font_dict[language]
for i, char_i in enumerate(corpus):
i = 0
while i < len(corpus):
char_i = corpus[i]
char_size = font.getsize(char_i)[0]
# split when char_x exceeds char size and index is not 0 (at least 1 char should be wroten on the image)
if char_x + char_size >= width and i != 0:
text_input = np.array(bg).astype(np.uint8)
text_input = text_input[:, 0:char_x, :]
corpus_list.append(corpus[0:i])
text_input_list.append(text_input)
corpus = corpus[i:]
break
draw.text((char_x, 2), char_i, fill=(0, 0, 0), font=font)
char_x += char_size
if char_x >= width:
corpus = corpus[0:i + 1]
self.logger.warning("corpus length exceed limit: {}".format(
corpus))
break
i += 1
# the whole text is shorter than style input
if i == len(corpus):
text_input = np.array(bg).astype(np.uint8)
text_input = text_input[:, 0:char_x, :]
return corpus, text_input
corpus_list.append(corpus[0:i])
text_input_list.append(text_input)
corpus = corpus[i:]
break
return corpus_list, text_input_list
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 1000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1200
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1200
# evaluation is run every 2000 iterations
eval_batch_step: [0,2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
......
......@@ -7,7 +7,10 @@ Global:
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
# from static branch, load_static_weights must be set as True.
# 2. If you want to finetune the pretrained models we provide in the docs,
# you should set load_static_weights as False.
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
......
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
......@@ -7,7 +7,6 @@ Global:
save_epoch_step: 3
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
cal_metric_during_train: True
pretrained_model:
checkpoints:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment