Commit 03bb378f authored by LDOUBLEV's avatar LDOUBLEV
Browse files

fix TRT8 core bug

parents a2a12fe4 2e9abcb9
#!/bin/bash
source tests/common_func.sh
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==52, NR==66{print}' $FILENAME)
dataline=$(awk 'NR==1, NR==16{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser cpp inference model
use_opencv=$(func_parser_value "${lines[1]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[2]}")
cpp_infer_is_quant=$(func_parser_value "${lines[3]}")
model_name=$(func_parser_value "${lines[1]}")
use_opencv=$(func_parser_value "${lines[2]}")
cpp_infer_model_dir_list=$(func_parser_value "${lines[3]}")
cpp_infer_is_quant=$(func_parser_value "${lines[4]}")
# parser cpp inference
inference_cmd=$(func_parser_value "${lines[4]}")
cpp_use_gpu_key=$(func_parser_key "${lines[5]}")
cpp_use_gpu_list=$(func_parser_value "${lines[5]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[6]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[7]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[7]}")
cpp_batch_size_key=$(func_parser_key "${lines[8]}")
cpp_batch_size_list=$(func_parser_value "${lines[8]}")
cpp_use_trt_key=$(func_parser_key "${lines[9]}")
cpp_use_trt_list=$(func_parser_value "${lines[9]}")
cpp_precision_key=$(func_parser_key "${lines[10]}")
cpp_precision_list=$(func_parser_value "${lines[10]}")
cpp_infer_model_key=$(func_parser_key "${lines[11]}")
cpp_image_dir_key=$(func_parser_key "${lines[12]}")
cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
cpp_infer_key1=$(func_parser_key "${lines[13]}")
cpp_infer_value1=$(func_parser_value "${lines[13]}")
cpp_benchmark_key=$(func_parser_key "${lines[14]}")
cpp_benchmark_value=$(func_parser_value "${lines[14]}")
LOG_PATH="./tests/output"
inference_cmd=$(func_parser_value "${lines[5]}")
cpp_use_gpu_key=$(func_parser_key "${lines[6]}")
cpp_use_gpu_list=$(func_parser_value "${lines[6]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[7]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[7]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[8]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[8]}")
cpp_batch_size_key=$(func_parser_key "${lines[9]}")
cpp_batch_size_list=$(func_parser_value "${lines[9]}")
cpp_use_trt_key=$(func_parser_key "${lines[10]}")
cpp_use_trt_list=$(func_parser_value "${lines[10]}")
cpp_precision_key=$(func_parser_key "${lines[11]}")
cpp_precision_list=$(func_parser_value "${lines[11]}")
cpp_infer_model_key=$(func_parser_key "${lines[12]}")
cpp_image_dir_key=$(func_parser_key "${lines[13]}")
cpp_infer_img_dir=$(func_parser_value "${lines[13]}")
cpp_infer_key1=$(func_parser_key "${lines[14]}")
cpp_infer_value1=$(func_parser_value "${lines[14]}")
cpp_benchmark_key=$(func_parser_key "${lines[15]}")
cpp_benchmark_value=$(func_parser_value "${lines[15]}")
LOG_PATH="./test_tipc/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_cpp.log"
......
#!/bin/bash
source test_tipc/common_func.sh
source test_tipc/test_train_inference_python.sh
FILENAME=$1
# MODE be one of ['whole_infer']
MODE=$2
dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
infer_model_dir_list=$(func_parser_value "${lines[3]}")
infer_export_list=$(func_parser_value "${lines[4]}")
infer_is_quant=$(func_parser_value "${lines[5]}")
# parser inference
inference_py=$(func_parser_value "${lines[6]}")
use_gpu_key=$(func_parser_key "${lines[7]}")
use_gpu_list=$(func_parser_value "${lines[7]}")
use_mkldnn_key=$(func_parser_key "${lines[8]}")
use_mkldnn_list=$(func_parser_value "${lines[8]}")
cpu_threads_key=$(func_parser_key "${lines[9]}")
cpu_threads_list=$(func_parser_value "${lines[9]}")
batch_size_key=$(func_parser_key "${lines[10]}")
batch_size_list=$(func_parser_value "${lines[10]}")
use_trt_key=$(func_parser_key "${lines[11]}")
use_trt_list=$(func_parser_value "${lines[11]}")
precision_key=$(func_parser_key "${lines[12]}")
precision_list=$(func_parser_value "${lines[12]}")
infer_model_key=$(func_parser_key "${lines[13]}")
image_dir_key=$(func_parser_key "${lines[14]}")
infer_img_dir=$(func_parser_value "${lines[14]}")
save_log_key=$(func_parser_key "${lines[15]}")
benchmark_key=$(func_parser_key "${lines[16]}")
benchmark_value=$(func_parser_value "${lines[16]}")
infer_key1=$(func_parser_key "${lines[17]}")
infer_value1=$(func_parser_value "${lines[17]}")
LOG_PATH="./test_tipc/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
if [ ${MODE} = "whole_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
# set CUDA_VISIBLE_DEVICES
eval $env
export Count=0
IFS="|"
infer_run_exports=(${infer_export_list})
infer_quant_flag=(${infer_is_quant})
for infer_model in ${infer_model_dir_list[*]}; do
# run export
if [ ${infer_run_exports[Count]} != "null" ];then
save_infer_dir=$(dirname $infer_model)
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
status_check $status_export "${export_cmd}" "${status_log}"
else
save_infer_dir=${infer_model}
fi
#run inference
is_quant=${infer_quant_flag[Count]}
if [ ${MODE} = "klquant_infer" ]; then
is_quant="True"
fi
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
fi
#!/bin/bash
source ./common_func.sh
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
FILENAME=$1
dataline=$(cat $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
# parser lite inference
inference_cmd=$(func_parser_value "${lines[1]}")
runtime_device=$(func_parser_value "${lines[2]}")
det_model_list=$(func_parser_value "${lines[3]}")
rec_model_list=$(func_parser_value "${lines[4]}")
cls_model_list=$(func_parser_value "${lines[5]}")
cpu_threads_list=$(func_parser_value "${lines[6]}")
det_batch_size_list=$(func_parser_value "${lines[7]}")
rec_batch_size_list=$(func_parser_value "${lines[8]}")
infer_img_dir_list=$(func_parser_value "${lines[9]}")
config_dir=$(func_parser_value "${lines[10]}")
rec_dict_dir=$(func_parser_value "${lines[11]}")
benchmark_value=$(func_parser_value "${lines[12]}")
if [[ $inference_cmd =~ "det" ]]; then
lite_model_list=${det_lite_model_list}
elif [[ $inference_cmd =~ "rec" ]]; then
lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
elif [[ $inference_cmd =~ "system" ]]; then
lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
else
echo "inference_cmd is wrong, please check."
exit 1
fi
LOG_PATH="./output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"
function func_test_det(){
IFS='|'
_script=$1
_det_model=$2
_log_path=$3
_img_dir=$4
_config=$5
if [[ $_det_model =~ "slim" ]]; then
precision="INT8"
else
precision="FP32"
fi
# lite inference
for num_threads in ${cpu_threads_list[*]}; do
for det_batchsize in ${det_batch_size_list[*]}; do
_save_log_path="${_log_path}/lite_${_det_model}_runtime_device_${runtime_device}_precision_${precision}_det_batchsize_${det_batchsize}_threads_${num_threads}.log"
command="${_script} ${_det_model} ${runtime_device} ${precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${benchmark_value} > ${_save_log_path} 2>&1"
eval ${command}
status_check $? "${command}" "${status_log}"
done
done
}
function func_test_rec(){
IFS='|'
_script=$1
_rec_model=$2
_cls_model=$3
_log_path=$4
_img_dir=$5
_config=$6
_rec_dict_dir=$7
if [[ $_det_model =~ "slim" ]]; then
_precision="INT8"
else
_precision="FP32"
fi
# lite inference
for num_threads in ${cpu_threads_list[*]}; do
for rec_batchsize in ${rec_batch_size_list[*]}; do
_save_log_path="${_log_path}/lite_${_rec_model}_${cls_model}_runtime_device_${runtime_device}_precision_${_precision}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log"
command="${_script} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${rec_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1"
eval ${command}
status_check $? "${command}" "${status_log}"
done
done
}
function func_test_system(){
IFS='|'
_script=$1
_det_model=$2
_rec_model=$3
_cls_model=$4
_log_path=$5
_img_dir=$6
_config=$7
_rec_dict_dir=$8
if [[ $_det_model =~ "slim" ]]; then
_precision="INT8"
else
_precision="FP32"
fi
# lite inference
for num_threads in ${cpu_threads_list[*]}; do
for det_batchsize in ${det_batch_size_list[*]}; do
for rec_batchsize in ${rec_batch_size_list[*]}; do
_save_log_path="${_log_path}/lite_${_det_model}_${_rec_model}_${_cls_model}_runtime_device_${runtime_device}_precision_${_precision}_det_batchsize_${det_batchsize}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log"
command="${_script} ${_det_model} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1"
eval ${command}
status_check $? "${command}" "${status_log}"
done
done
done
}
echo "################### run test ###################"
if [[ $inference_cmd =~ "det" ]]; then
IFS="|"
det_model_list=(${det_model_list[*]})
for i in {0..1}; do
#run lite inference
for img_dir in ${infer_img_dir_list[*]}; do
func_test_det "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}"
done
done
elif [[ $inference_cmd =~ "rec" ]]; then
IFS="|"
rec_model_list=(${rec_model_list[*]})
cls_model_list=(${cls_model_list[*]})
for i in {0..1}; do
#run lite inference
for img_dir in ${infer_img_dir_list[*]}; do
func_test_rec "${inference_cmd}" "${rec_model}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${rec_dict_dir}" "${config_dir}"
done
done
elif [[ $inference_cmd =~ "system" ]]; then
IFS="|"
det_model_list=(${det_model_list[*]})
rec_model_list=(${rec_model_list[*]})
cls_model_list=(${cls_model_list[*]})
for i in {0..1}; do
#run lite inference
for img_dir in ${infer_img_dir_list[*]}; do
func_test_system "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${rec_model_list[i]}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}" "${rec_dict_dir}"
done
done
fi
#!/bin/bash
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(cat ${FILENAME})
lines=(${dataline})
# common params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
# parser params
dataline=$(awk 'NR==1, NR==12{print}' $FILENAME)
IFS=$'\n'
lines=(${dataline})
# parser paddle2onnx
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
padlle2onnx_cmd=$(func_parser_value "${lines[3]}")
infer_model_dir_key=$(func_parser_key "${lines[4]}")
infer_model_dir_value=$(func_parser_value "${lines[4]}")
model_filename_key=$(func_parser_key "${lines[5]}")
model_filename_value=$(func_parser_value "${lines[5]}")
params_filename_key=$(func_parser_key "${lines[6]}")
params_filename_value=$(func_parser_value "${lines[6]}")
save_file_key=$(func_parser_key "${lines[7]}")
save_file_value=$(func_parser_value "${lines[7]}")
opset_version_key=$(func_parser_key "${lines[8]}")
opset_version_value=$(func_parser_value "${lines[8]}")
enable_onnx_checker_key=$(func_parser_key "${lines[9]}")
enable_onnx_checker_value=$(func_parser_value "${lines[9]}")
# parser onnx inference
inference_py=$(func_parser_value "${lines[10]}")
use_gpu_key=$(func_parser_key "${lines[11]}")
use_gpu_value=$(func_parser_value "${lines[11]}")
det_model_key=$(func_parser_key "${lines[12]}")
image_dir_key=$(func_parser_key "${lines[13]}")
image_dir_value=$(func_parser_value "${lines[13]}")
LOG_PATH="./test_tipc/output"
mkdir -p ./test_tipc/output
status_log="${LOG_PATH}/results_paddle2onnx.log"
function func_paddle2onnx(){
IFS='|'
_script=$1
# paddle2onnx
_save_log_path="${LOG_PATH}/paddle2onnx_infer_cpu.log"
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_save_model=$(func_set_params "${save_file_key}" "${save_file_value}")
set_opset_version=$(func_set_params "${opset_version_key}" "${opset_version_value}")
set_enable_onnx_checker=$(func_set_params "${enable_onnx_checker_key}" "${enable_onnx_checker_value}")
trans_model_cmd="${padlle2onnx_cmd} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_save_model} ${set_opset_version} ${set_enable_onnx_checker}"
eval $trans_model_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${trans_model_cmd}" "${status_log}"
# python inference
set_gpu=$(func_set_params "${use_gpu_key}" "${use_gpu_value}")
set_model_dir=$(func_set_params "${det_model_key}" "${save_file_value}")
set_img_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
infer_model_cmd="${python} ${inference_py} ${set_gpu} ${set_img_dir} ${set_model_dir} --use_onnx=True > ${_save_log_path} 2>&1 "
eval $infer_model_cmd
status_check $last_status "${infer_model_cmd}" "${status_log}"
}
echo "################### run test ###################"
export Count=0
IFS="|"
func_paddle2onnx
\ No newline at end of file
#!/bin/bash
source PTDN/common_func.sh
source test_tipc/common_func.sh
FILENAME=$1
dataline=$(awk 'NR==67, NR==83{print}' $FILENAME)
dataline=$(awk 'NR==1, NR==18{print}' $FILENAME)
# parser params
IFS=$'\n'
......@@ -35,9 +35,11 @@ web_use_trt_list=$(func_parser_value "${lines[14]}")
web_precision_key=$(func_parser_key "${lines[15]}")
web_precision_list=$(func_parser_value "${lines[15]}")
pipeline_py=$(func_parser_value "${lines[16]}")
image_dir_key=$(func_parser_key "${lines[17]}")
image_dir_value=$(func_parser_value "${lines[17]}")
LOG_PATH="../../PTDN/output"
mkdir -p ./PTDN/output
LOG_PATH="../../test_tipc/output"
mkdir -p ./test_tipc/output
status_log="${LOG_PATH}/results_serving.log"
function func_serving(){
......@@ -51,67 +53,98 @@ function func_serving(){
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval $trans_model_cmd
cd ${serving_dir_value}
echo $PWD
unset https_proxy
unset http_proxy
for use_gpu in ${web_use_gpu_list[*]}; do
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
_save_log_path="${LOG_PATH}/server_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
for python in ${python[*]}; do
if [ ${python} = "cpp"]; then
for use_gpu in ${web_use_gpu_list[*]}; do
if [ ${use_gpu} = "null" ]; then
web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293"
eval $web_service_cmd
sleep 2s
pipeline_cmd="${python} ${pipeline_py} > ${_save_log_path} 2>&1"
_save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log"
pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
PID=$!
kill $PID
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
else
web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293 --gpu_id=0"
eval $web_service_cmd
sleep 2s
_save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log"
pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/"
eval $pipeline_cmd
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
fi
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
# python serving
for use_gpu in ${web_use_gpu_list[*]}; do
echo ${ues_gpu}
if [ ${use_gpu} = "null" ]; then
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ]; then
continue
fi
for threads in ${web_cpu_threads_list[*]}; do
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &"
eval $web_service_cmd
sleep 2s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_${pipeline%_client*}_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} ${set_image_dir} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
done
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
elif [ ${use_gpu} = "0" ]; then
for use_trt in ${web_use_trt_list[*]}; do
for precision in ${web_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & "
eval $web_service_cmd
sleep 2s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_gpu_${pipeline%_client*}_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} ${set_image_dir}> ${_save_log_path} 2>&1"
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}"
sleep 2s
done
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
fi
done
}
......
#!/bin/bash
source tests/common_func.sh
source test_tipc/common_func.sh
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
MODE=$2
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
......@@ -59,6 +59,7 @@ export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")
inference_dir=$(func_parser_value "${lines[35]}")
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[36]}")
......@@ -88,38 +89,40 @@ infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer
if [ ${MODE} = "klquant_infer" ]; then
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME)
if [ ${MODE} = "klquant_whole_infer" ]; then
dataline=$(awk 'NR==1 NR==17{print}' $FILENAME)
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
# parser inference model
infer_model_dir_list=$(func_parser_value "${lines[1]}")
infer_export_list=$(func_parser_value "${lines[2]}")
infer_is_quant=$(func_parser_value "${lines[3]}")
infer_model_dir_list=$(func_parser_value "${lines[3]}")
infer_export_list=$(func_parser_value "${lines[4]}")
infer_is_quant=$(func_parser_value "${lines[5]}")
# parser inference
inference_py=$(func_parser_value "${lines[4]}")
use_gpu_key=$(func_parser_key "${lines[5]}")
use_gpu_list=$(func_parser_value "${lines[5]}")
use_mkldnn_key=$(func_parser_key "${lines[6]}")
use_mkldnn_list=$(func_parser_value "${lines[6]}")
cpu_threads_key=$(func_parser_key "${lines[7]}")
cpu_threads_list=$(func_parser_value "${lines[7]}")
batch_size_key=$(func_parser_key "${lines[8]}")
batch_size_list=$(func_parser_value "${lines[8]}")
use_trt_key=$(func_parser_key "${lines[9]}")
use_trt_list=$(func_parser_value "${lines[9]}")
precision_key=$(func_parser_key "${lines[10]}")
precision_list=$(func_parser_value "${lines[10]}")
infer_model_key=$(func_parser_key "${lines[11]}")
image_dir_key=$(func_parser_key "${lines[12]}")
infer_img_dir=$(func_parser_value "${lines[12]}")
save_log_key=$(func_parser_key "${lines[13]}")
benchmark_key=$(func_parser_key "${lines[14]}")
benchmark_value=$(func_parser_value "${lines[14]}")
infer_key1=$(func_parser_key "${lines[15]}")
infer_value1=$(func_parser_value "${lines[15]}")
inference_py=$(func_parser_value "${lines[6]}")
use_gpu_key=$(func_parser_key "${lines[7]}")
use_gpu_list=$(func_parser_value "${lines[7]}")
use_mkldnn_key=$(func_parser_key "${lines[8]}")
use_mkldnn_list=$(func_parser_value "${lines[8]}")
cpu_threads_key=$(func_parser_key "${lines[9]}")
cpu_threads_list=$(func_parser_value "${lines[9]}")
batch_size_key=$(func_parser_key "${lines[10]}")
batch_size_list=$(func_parser_value "${lines[10]}")
use_trt_key=$(func_parser_key "${lines[11]}")
use_trt_list=$(func_parser_value "${lines[11]}")
precision_key=$(func_parser_key "${lines[12]}")
precision_list=$(func_parser_value "${lines[12]}")
infer_model_key=$(func_parser_key "${lines[13]}")
image_dir_key=$(func_parser_key "${lines[14]}")
infer_img_dir=$(func_parser_value "${lines[14]}")
save_log_key=$(func_parser_key "${lines[15]}")
benchmark_key=$(func_parser_key "${lines[16]}")
benchmark_value=$(func_parser_value "${lines[16]}")
infer_key1=$(func_parser_key "${lines[17]}")
infer_value1=$(func_parser_value "${lines[17]}")
fi
LOG_PATH="./tests/output"
LOG_PATH="./test_tipc/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"
......@@ -202,7 +205,7 @@ function func_inference(){
done
}
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
......@@ -243,7 +246,7 @@ else
export Count=0
USE_GPU_KEY=(${train_use_gpu_value})
for gpu in ${gpu_list[*]}; do
use_gpu=${USE_GPU_KEY[Count]}
train_use_gpu=${USE_GPU_KEY[Count]}
Count=$(($Count + 1))
ips=""
if [ ${gpu} = "-1" ];then
......@@ -301,11 +304,20 @@ else
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
if [ ${#ips} -le 26 ];then
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
nodes=1
else
IFS=","
ips_array=(${ips})
IFS="|"
nodes=${#ips_array[@]}
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
fi
# load pretrain from norm training if current trainer is pact or fpgm trainer
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
set_pretrain="${load_norm_train_model}"
fi
......@@ -315,7 +327,7 @@ else
elif [ ${#ips} -le 26 ];then # train with multi-gpu
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
else # train with multi-machine
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${set_use_gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
fi
# run train
eval "unset CUDA_VISIBLE_DEVICES"
......@@ -324,7 +336,7 @@ else
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ]; then
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval
......@@ -347,7 +359,13 @@ else
#run inference
eval $env
save_infer_path="${save_log}"
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
infer_model_dir="${save_infer_path}/${inference_dir}"
else
infer_model_dir=${save_infer_path}
fi
func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
eval "unset CUDA_VISIBLE_DEVICES"
fi
done # done with: for trainer in ${trainer_list[*]}; do
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -27,7 +27,7 @@ from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import print_dict
import tools.program as program
......@@ -60,7 +60,7 @@ def main():
else:
model_type = None
best_model_dict = load_dygraph_params(config, model, logger, None)
best_model_dict = load_model(config, model)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
......
......@@ -27,7 +27,7 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model, load_dygraph_params
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import print_dict
import tools.program as program
......@@ -57,7 +57,7 @@ def main():
model = build_model(config['Architecture'])
best_model_dict = load_dygraph_params(config, model, logger, None)
best_model_dict = load_model(config, model)
if len(best_model_dict):
logger.info('metric in ckpt ***************')
for k, v in best_model_dict.items():
......
......@@ -26,7 +26,7 @@ from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import load_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
......@@ -107,7 +107,7 @@ def main():
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
init_model(config, model)
load_model(config, model)
model.eval()
save_path = config["Global"]["save_inference_dir"]
......
......@@ -47,6 +47,7 @@ class TextClassifier(object):
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, _ = \
utility.create_predictor(args, 'cls', logger)
self.use_onnx = args.use_onnx
def resize_norm_img(self, img):
imgC, imgH, imgW = self.cls_image_shape
......@@ -100,10 +101,16 @@ class TextClassifier(object):
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
self.predictor.try_shrink_memory()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
prob_out = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
self.predictor.try_shrink_memory()
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
for rno in range(len(cls_result)):
......
......@@ -38,6 +38,7 @@ class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
......@@ -100,7 +101,12 @@ class TextDetector(object):
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
if self.use_onnx:
pre_process_list[0] = {
'DetResizeForTest': {
'image_shape': [640, 640]
}
}
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
......@@ -198,15 +204,19 @@ class TextDetector(object):
if self.args.benchmark:
self.autolog.times.stamp()
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.args.benchmark:
self.autolog.times.stamp()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
else:
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.args.benchmark:
self.autolog.times.stamp()
preds = {}
if self.det_algorithm == "EAST":
......
......@@ -38,6 +38,7 @@ class TextE2E(object):
def __init__(self, args):
self.args = args
self.e2e_algorithm = args.e2e_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{
'E2EResizeForTest': {}
}, {
......@@ -67,7 +68,6 @@ class TextE2E(object):
postprocess_params["character_dict_path"] = args.e2e_char_dict_path
postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
postprocess_params["mode"] = args.e2e_pgnet_mode
self.e2e_pgnet_polygon = args.e2e_pgnet_polygon
else:
logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
sys.exit(0)
......@@ -106,21 +106,31 @@ class TextE2E(object):
img = img.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
preds = {}
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list)
points, strs = post_result['points'], post_result['texts']
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
......
......@@ -73,6 +73,7 @@ class TextRecognizer(object):
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger)
self.benchmark = args.benchmark
self.use_onnx = args.use_onnx
if args.benchmark:
import auto_log
pid = os.getpid()
......@@ -106,8 +107,9 @@ class TextRecognizer(object):
return norm_img.astype(np.float32) / 128. - 1.
assert imgC == img.shape[2]
max_wh_ratio = max(max_wh_ratio, imgW / imgH)
imgW = int((32 * max_wh_ratio))
if self.use_onnx:
imgW = 100
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
......@@ -297,51 +299,72 @@ class TextRecognizer(object):
gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list,
]
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[
i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors,
input_dict)
preds = {"predict": outputs[2]}
else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(
input_names[i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
elif self.rec_algorithm == "SAR":
valid_ratios = np.concatenate(valid_ratios)
inputs = [
norm_img_batch,
valid_ratios,
]
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[
i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors,
input_dict)
preds = outputs[0]
else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(
input_names[i])
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
else:
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors,
input_dict)
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
......
......@@ -49,11 +49,19 @@ class TextSystem(object):
if self.use_angle_cls:
self.text_classifier = predict_cls.TextClassifier(args)
def print_draw_crop_rec_res(self, img_crop_list, rec_res):
self.args = args
self.crop_image_res_index = 0
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
os.makedirs(output_dir, exist_ok=True)
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
logger.info(bno, rec_res[bno])
cv2.imwrite(
os.path.join(output_dir,
f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
img_crop_list[bno])
logger.debug(f"{bno}, {rec_res[bno]}")
self.crop_image_res_index += bbox_num
def __call__(self, img, cls=True):
ori_im = img.copy()
......@@ -80,7 +88,9 @@ class TextSystem(object):
rec_res, elapse = self.text_recognizer(img_crop_list)
logger.debug("rec_res num : {}, elapse : {}".format(
len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
if self.args.save_crop_res:
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
rec_res)
filter_boxes, filter_rec_res = [], []
for box, rec_reuslt in zip(dt_boxes, rec_res):
text, score = rec_reuslt
......@@ -135,17 +145,17 @@ def main(args):
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
logger.debug("error in loading image:{}".format(image_file))
continue
starttime = time.time()
dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime
total_time += elapse
logger.info(
logger.debug(
str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
for text, score in rec_res:
logger.info("{}, {:.3f}".format(text, score))
logger.debug("{}, {:.3f}".format(text, score))
if is_visualize:
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
......@@ -160,19 +170,17 @@ def main(args):
scores,
drop_score=drop_score,
font_path=font_path)
draw_img_save = "./inference_results/"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
draw_img_save_dir = args.draw_img_save_dir
os.makedirs(draw_img_save_dir, exist_ok=True)
if flag:
image_file = image_file[:-3] + "png"
cv2.imwrite(
os.path.join(draw_img_save, os.path.basename(image_file)),
os.path.join(draw_img_save_dir, os.path.basename(image_file)),
draw_img[:, :, ::-1])
logger.info("The visualized image saved in {}".format(
os.path.join(draw_img_save, os.path.basename(image_file))))
logger.debug("The visualized image saved in {}".format(
os.path.join(draw_img_save_dir, os.path.basename(image_file))))
logger.info("The predict total time is {}".format(time.time() - _st))
logger.info("\nThe predict total time is {}".format(total_time))
if args.benchmark:
text_sys.text_detector.autolog.report()
text_sys.text_recognizer.autolog.report()
......
......@@ -17,7 +17,7 @@ import os
import sys
import cv2
import numpy as np
import json
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
......@@ -96,7 +96,6 @@ def init_args():
parser.add_argument(
"--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
# params for text classifier
......@@ -110,7 +109,13 @@ def init_args():
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--cpu_threads", type=int, default=10)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
parser.add_argument("--warmup", type=str2bool, default=True)
parser.add_argument("--warmup", type=str2bool, default=False)
#
parser.add_argument(
"--draw_img_save_dir", type=str, default="./inference_results")
parser.add_argument("--save_crop_res", type=str2bool, default=False)
parser.add_argument("--crop_res_save_dir", type=str, default="./output")
# multi-process
parser.add_argument("--use_mp", type=str2bool, default=False)
......@@ -121,6 +126,7 @@ def init_args():
parser.add_argument("--save_log_path", type=str, default="./log_output/")
parser.add_argument("--show_log", type=str2bool, default=True)
parser.add_argument("--use_onnx", type=str2bool, default=False)
return parser
......@@ -144,25 +150,14 @@ def create_predictor(args, mode, logger):
if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0)
model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams"
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(model_file_path))
if not os.path.exists(params_file_path):
raise ValueError("not find params file path {}".format(
params_file_path))
config = inference.Config(model_file_path, params_file_path)
if hasattr(args, 'precision'):
if args.precision == "fp16" and args.use_tensorrt:
precision = inference.PrecisionType.Half
elif args.precision == "int8":
precision = inference.PrecisionType.Int8
else:
precision = inference.PrecisionType.Float32
else:
precision = inference.PrecisionType.Float32
if args.use_onnx:
import onnxruntime as ort
model_file_path = model_dir
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
sess = ort.InferenceSession(model_file_path)
return sess, sess.get_inputs()[0], None, None
if args.use_gpu:
gpu_id = get_infer_gpuid()
......@@ -250,47 +245,154 @@ def create_predictor(args, mode, logger):
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams"
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
if not os.path.exists(params_file_path):
raise ValueError("not find params file path {}".format(
params_file_path))
config = inference.Config(model_file_path, params_file_path)
if hasattr(args, 'precision'):
if args.precision == "fp16" and args.use_tensorrt:
precision = inference.PrecisionType.Half
elif args.precision == "int8":
precision = inference.PrecisionType.Int8
else:
precision = inference.PrecisionType.Float32
else:
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 1000, 1000]}
opt_input_shape = {"x": [1, 3, 500, 500]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
precision = inference.PrecisionType.Float32
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
logger.warning(
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph
if mode == "det":
min_input_shape = {
"x": [1, 3, 50, 50],
"conv2d_92.tmp_0": [1, 120, 20, 20],
"conv2d_91.tmp_0": [1, 24, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
"conv2d_124.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
"elementwise_add_7": [1, 56, 2, 2],
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
}
max_input_shape = {
"x": [1, 3, 1280, 1280],
"conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
"conv2d_124.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
"elementwise_add_7": [1, 56, 400, 400],
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
}
opt_input_shape = {
"x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 120, 160, 160],
"conv2d_91.tmp_0": [1, 24, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
"conv2d_124.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
"elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
}
min_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
}
max_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
}
opt_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
}
min_input_shape.update(min_pact_shape)
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1024]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else:
min_input_shape = {"x": [1, 3, 10, 10]}
max_input_shape = {"x": [1, 3, 512, 512]}
opt_input_shape = {"x": [1, 3, 256, 256]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
else:
config.disable_gpu()
if hasattr(args, "cpu_threads"):
config.set_cpu_math_library_num_threads(args.cpu_threads)
else:
# default cpu threads as 10
config.set_cpu_math_library_num_threads(10)
if args.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
# enable memory optim
config.enable_memory_optim()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'table':
config.delete_pass("fc_fuse_pass") # not supported for table
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
for name in input_names:
input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors, config
config.disable_gpu()
if hasattr(args, "cpu_threads"):
config.set_cpu_math_library_num_threads(args.cpu_threads)
else:
# default cpu threads as 10
config.set_cpu_math_library_num_threads(10)
if args.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
if args.precision == "fp16":
config.enable_mkldnn_bfloat16()
# enable memory optim
config.enable_memory_optim()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'table':
config.delete_pass("fc_fuse_pass") # not supported for table
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
for name in input_names:
input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors, config
def get_infer_gpuid():
......@@ -593,5 +695,12 @@ def get_rotate_crop_image(img, points):
return dst_img
def check_gpu(use_gpu):
if use_gpu and not paddle.is_compiled_with_cuda():
use_gpu = False
return use_gpu
if __name__ == '__main__':
pass
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment