rec_mv3_none_bilstm_ctc.yml 2.38 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
Global:
WenmuZhou's avatar
WenmuZhou committed
2
3
  use_gpu: false
  epoch_num: 500
LDOUBLEV's avatar
LDOUBLEV committed
4
5
  log_smooth_window: 20
  print_batch_step: 10
WenmuZhou's avatar
WenmuZhou committed
6
7
8
9
10
11
12
13
14
  save_model_dir: ./output/rec/test/
  save_epoch_step: 500
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 127
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints: #output/rec/rec_crnn/best_accuracy
15
  save_inference_dir:
WenmuZhou's avatar
WenmuZhou committed
16
17
18
19
20
21
22
23
24
25
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  max_text_length: 80
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  character_type: 'ch'
  use_space_char: False
  infer_mode: False
  use_tps: False

LDOUBLEV's avatar
LDOUBLEV committed
26
27

Optimizer:
WenmuZhou's avatar
WenmuZhou committed
28
  name: Adam
LDOUBLEV's avatar
LDOUBLEV committed
29
30
  beta1: 0.9
  beta2: 0.999
WenmuZhou's avatar
WenmuZhou committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  learning_rate:
    name: Cosine
    lr: 0.001
    warmup_epoch: 4
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [ 1, 2, 2, 2 ]
  Neck:
    name: SequenceEncoder
    encoder_type: fc
    hidden_size: 96
  Head:
    name: CTC
    fc_decay: 0.00001

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

TRAIN:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/rec
    file_list:
      - /home/zhoujun20/rec/real_data.txt # dataset1
    ratio_list: [ 0.4,0.6 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecAug:
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    batch_size: 256
    shuffle: True
    drop_last: True
WenmuZhou's avatar
WenmuZhou committed
87
    num_workers: 8
WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

EVAL:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/rec
    file_list:
      - /home/zhoujun20/rec/label_val_all.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    shuffle: False
    drop_last: False
    batch_size: 256
WenmuZhou's avatar
WenmuZhou committed
108
    num_workers: 8