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the relationship between the departure times of public transport 
vehicles and the passenger loads on those vehicles. Understanding 
passenger incidence behaviors allows management interventions to 
be based on realistic behavioral assumptions. As pointed out in one 
of the seminal investigations on the topic by Bowman and Turnquist, 
the effects on passenger waiting time of one particular intervention 
(e.g., increasing frequency) could be overestimated compared with a 
different type of intervention (e.g., improving reliability), depending 
on which assumptions are made about incidence behavior (1).

Earlier studies on passenger incidence behavior chose their data 
samples from stations or stops with a single service pattern such 
that the linking of passengers to scheduled or actual services was 
straightforward. This choice of data samples simplifies the analysis 
and may suffice for an academic study. But such simplification also 
heavily limits the stations or stops that can be studied in the transit 
network. In any moderately complex network, many stations may 
have more than one service pattern. This limitation prevents the 
method from being systematically applied to the entire network and 
therefore limits its use in transit management practice. In environ-
ments in which passengers at a given station have a choice of ser-
vices, a more sophisticated approach is needed to study passenger 
incidence behavior.

This paper is concerned with the relationship between the times 
of passenger incidence and published timetables in a rail network 
with heterogeneous service patterns. It proposes a method to study 
this relationship by integrating disaggregate passenger journey data 
from automatic fare collection (AFC) smartcard systems with pub-
lished timetables using schedule-based assignment. The purpose of 
this paper is twofold: first, to develop a method that contributes to 
the study of passenger incidence behavior across a railway network 
with heterogeneous service patterns and frequencies using pub-
lished timetables and AFC data; and second, to apply this method 
to the London Overground to demonstrate its practicality and shed 
light on the incidence behavior of its passengers.

Literature

Previous research has identified a rich set of passenger incidence behav-
iors and related them to certain aspects of public transport services. 
Using manually and automatically collected data sources, research 
has investigated the diversity of the behavior cross-sectionally and the 
consistency of such behaviors longitudinally over time. It has been 
found that the randomness of passenger incidence behavior is highly 
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Passenger incidence (station arrival) behavior has been studied primar-
ily to understand how changes to a transit service will affect passenger 
waiting times. The impact of one intervention (e.g., increasing frequency) 
could be overestimated when compared with another (e.g., improving 
reliability), depending on the assumption of incidence behavior. Under-
standing passenger incidence allows management decisions to be based on 
realistic behavioral assumptions. Earlier studies on passenger incidence 
chose their data samples from stations with a single service pattern such 
that the linking of passengers to services was straightforward. This choice 
of data samples simplifies the analysis but heavily limits the stations that 
can be studied. In any moderately complex network, many stations may 
have more than one service pattern. This limitation prevents the method 
from being systematically applied to the whole network and constrains its 
use in practice. This paper considers incidence behavior in stations with 
heterogeneous services and proposes a method for estimating incidence 
headway and waiting time by integrating disaggregate smartcard data 
with published timetables using schedule-based assignment. This method 
is applied to stations in the entire London Overground to demonstrate 
its practicality; incidence behavior varies across the network and across 
times of day and reflects headways and reliability. Incidence is much 
less timetable-dependent on the North London Line than on the other 
lines because of shorter headways and poorer reliability. Where incidence 
is timetable-dependent, passengers reduce their mean scheduled waiting 
time by more than 3 min compared with random incidence.

This paper is concerned with passenger incidence behavior, which 
is defined as the act or event of a person’s being incident to a public 
transport service with intent to use that service. A lexical convention 
is established here to avoid ambiguity between passenger incidence 
to public transport services and arrival at certain destinations after 
using public transport services.

Passenger incidence behavior has been studied primarily for the 
sake of understanding how changes to a public transport service will 
affect passenger waiting times. It is also of interest because it affects 
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dependent on the service headway and the reliability of the departure 
time of the service to which passengers are incident.

After briefly introducing the random incidence model, which is 
often assumed to hold at short headways, the balance of this section 
reviews six studies of passenger incidence behavior that are moti-
vated by understanding the relationships between service headway, 
service reliability, passenger incidence behavior, and passenger 
waiting time in a more nuanced fashion than is embedded in the 
random incidence assumption (2). Three of these studies depend on 
manually collected data, two studies use data from AFC systems, 
and one study analyzes the issue purely theoretically. These studies 
reveal much about passenger incidence behavior, but all are found 
to be limited in their general applicability by the methods with 
which they collect information about passengers and the services 
those passengers intend to use.

Random Passenger Incidence Behavior

One characterization of passenger incidence behavior is that of ran-
dom incidence (3). The key assumption underlying the random inci-
dence model is that the process of passenger arrivals to the public 
transport service is independent from the vehicle departure process 
of the service. This implies that passengers become incident to the 
service at a random time, and thus the instantaneous rate of passen-
ger arrivals to the service is uniform over a given period of time. Let 
W and H be random variables representing passenger waiting times 
and service headways, respectively. Under the random incidence 
assumption and the assumption that vehicle capacity is not a binding 
constraint, a classic result of transportation science is that
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where E[X] is the probabilistic expectation of some random variable 
X and CV(H) is the coefficient of variation of H, a unitless measure 
of the variability of H defined as
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where σH is the standard deviation of H (4). The second expression 
in Equation 1 is particularly useful because it expresses the mean 
passenger waiting time as the sum of two components: the waiting 
time caused by the mean headway (i.e., the reciprocal of service fre-
quency) and the waiting time caused by the variability of the head-
ways (which is one measure of service reliability). When the service 
is perfectly reliable with constant headways, the mean waiting time 
will be simply half the headway.

More Behaviorally Realistic Incidence Models

Jolliffe and Hutchinson studied bus passenger incidence in South 
London suburbs (5). They observed 10 bus stops for 1 h per day 
over 8 days, recording the times of passenger incidence and actual 
and scheduled bus departures. They limited their stop selection to 
those served by only a single bus route with a single service pat-
tern so as to avoid ambiguity about which service a passenger was 
waiting for. The authors found that the actual average passenger 
waiting time was 30% less than predicted by the random incidence 

model. They also found that the empirical distributions of passenger 
incidence times (by time of day) had peaks just before the respec-
tive average bus departure times. They hypothesized the existence 
of three classes of passengers: with proportion q, passengers whose 
time of incidence is causally coincident with that of a bus departure 
(e.g., because they saw the approaching bus from their home or a 
shop window); with proportion p(1 − q), passengers who time their 
arrivals to minimize expected waiting time; and with proportion 
(1 − p)(1 − q), passengers who are randomly incident. The authors 
found that p was positively correlated with the potential reduction 
in waiting time (compared with arriving randomly) that resulted 
from knowledge of the timetable and of service reliability. They also 
found p to be higher in the peak commuting periods rather than in 
the off-peak periods, indicating more awareness of the timetable or 
historical reliability, or both, by commuters.

Bowman and Turnquist built on the concept of aware and unaware 
passengers of proportions p and (1 − p), respectively. They proposed 
a utility-based model to estimate p and the distribution of incidence 
times, and thus the mean waiting time, of aware passengers over 
a given headway as a function of the headway and reliability of 
bus departure times (1). They observed seven bus stops in Chicago, 
Illinois, each served by a single (different) bus route, between 6:00 
and 8:00 a.m. for 5 to 10 days each. The bus routes had headways 
of 5 to 20 min and a range of reliabilities. The authors found that 
actual average waiting time was substantially less than predicted 
by the random incidence model. They estimated that p was not 
statistically significantly different from 1.0, which they explain by 
the fact that all observations were taken during peak commuting 
times. Their model predicts that the longer the headway and the 
more reliable the departures, the more peaked the distribution of 
incidence times will be and the closer that peak will be to the next 
scheduled departure time. This prediction demonstrates what they 
refer to as a safety margin that passengers add to reduce the chance 
of missing their bus when the service is known to be somewhat 
unreliable. Such a safety margin can also result from unreliability in 
passengers’ journeys to the public transport stop or station. Bowman 
and Turnquist conclude from their model that the random incidence 
model underestimates the waiting time benefits of improving reli-
ability and overestimates the waiting time benefits of increasing ser-
vice frequency. This is because as reliability increases passengers 
can better predict departure times and so can time their incidence to 
decrease their waiting time.

Furth and Muller study the issue in a theoretical context and gener-
ally agree with the above findings (2). They are primarily concerned 
with the use of data from automatic vehicle-tracking systems to assess 
the impacts of reliability on passenger incidence behavior and wait-
ing times. They propose that passengers will react to unreliability by 
departing earlier than they would with reliable services. Randomly 
incident unaware passengers will experience unreliability as a more 
dispersed distribution of headways and simply allocate additional 
time to their trip plan to improve the chance of arriving at their des-
tination on time. Aware passengers, whose incidence is not entirely 
random, will react by timing their incidence somewhat earlier than 
the scheduled departure time to increase their chance of catching the 
desired service. The authors characterize these reactions as the costs 
of unreliability.

Luethi et al. continued with the analysis of manually collected 
data on actual passenger behavior (6). They use the language 
of probability to describe two classes of passengers. The first is 
timetable-dependent passengers (i.e., the aware passengers), whose 
incidence behavior is affected by awareness (possibly gained 
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through their own experience with the service) of the timetable or 
service reliability, or both. The second class is timetable-independent 
passengers, whose incidence behavior is random and so does not 
reflect any such awareness (whether or not they have it). The lan-
guage of timetable dependency is adopted for the balance of this 
paper to describe the randomness of passenger incidence behavior, 
regardless of what exactly is driving the behavior on the part of 
the passengers. This language is preferred because it expresses the 
probabilistic association between two observed variables (incidence 
times and scheduled departure times) rather than some unobserved 
passenger state of mind. Luethi et al. observed passenger incidence 
during morning and evening peak hours and midday off-peak hours 
at 28 bus, tram, and commuter rail stations in and around Zurich, 
Switzerland, with headways of 2.33 to 30 min. To avoid ambiguity, 
they limited their station selection to nonterminal, noninterchange 
stations served by a single route with constant headways over the 
period of observation. The authors observed that a substantial share 
of passengers appear to be timetable dependent for headways as low 
as 5 min. They proposed distributions of passenger incidence times 
over a given headway to be the weighted superposition of two dis-
tributions: one for timetable-independent passengers, with weight 
1 − p, distributed uniformly over the headway, and the other for 
timetable-dependent passengers, with weight p, distributed accord-
ing to a Johnson SB distribution. The authors found the fit of their 
distribution to the observed data to be statistically significant. This 
distribution is parameterized in terms of the headway, but not in 
terms of the reliability of the service. Estimations of their model 
yield values of p for the different time periods of the day, which they 
find to be highest in the morning peak and lowest in the off-peak 
period, supporting the conclusion that the incidence of commuters 
is more timetable dependent than the incidence of noncommuters.

Csikos and Currie studied this phenomenon, first cross-sectionally 
and then longitudinally, using data from the AFC system of the heavy 
rail network in Melbourne, Australia (7, 8). In their first study they 
used 4 weeks’ worth of data from 07:30 to 15:00, but limited them-
selves to analyzing seven particular stations out of 209, for a total 
of 38,000 observations over approximately 1,470 h. The stations 
were, as in the other studies, selected to avoid ambiguity regard-
ing which scheduled service each passenger intended to use. They 
also obtained high-level data about the aggregate reliability (6-min 
terminal on-time performance) of the train lines serving the selected 
stations. Their findings generally confirm those of the other studies. 
In their second study, they used the same 4-week data set, but tracked 
individual ticket holders over time to study the consistency of behav-
ior. They focused on the 15,000 trips made between 06:00 and 10:00 
by 1,043 individual passengers who, as morning commuters, are 
expected to exhibit the most consistent behavior patterns. They 
characterized the passengers by the times of incidence and the offset 
times until the next scheduled departure. They classified passengers 
into four distinct archetypes exhibiting various levels of consistency 
in these two variables, finding roughly equal numbers of passengers 
in each category. On one end of the spectrum are clockwork-like 
passengers who exhibit consistent behavior that often minimizes 
their waiting time with respect to the schedule. On the other end, 
largely random passengers have very little consistency with respect 
to waiting time, exhibiting largely timetable-independent behavior. 
The authors’ overall conclusion in this work is one of heterogeneity 
in passenger behavior, even under homogeneous conditions (i.e., at 
the same station at the same time of day served by the same line).

As a brief summary of the six studies, passenger incidence 
behavior has been characterized primarily in terms of how random 

it appears to be with respect to the timetable and to actual vehicle 
departure times. The appearance of randomness (or its lack) has 
been used to indicate the degree to which passengers have and use 
knowledge of the published timetable and of actual departure times. 
At longer headways, passengers have more to gain by gaining and 
using knowledge of the timetable; their behavior tends to be less 
random, peaking somewhat before the scheduled departure time. 
Passengers also appear to gain and use knowledge of the actual, 
rather than scheduled, departure times. When departure times are 
reliable, even if they are reliably late (or early) by a particular 
amount, incidence behavior tends to be less random, with more pas-
sengers being incident shortly before the reliable departure time. 
When departure times are inconsistent (i.e., unreliable), passengers 
have less to gain from choosing any particular time of incidence, so 
their behavior tends to be more random.

Methodology

This section proposes a method for studying passenger incidence 
with respect to scheduled departure times by using AFC smartcard 
data and schedule-based assignment. For a given passenger jour-
ney, the method depends on the concepts of attractive departure, 
scheduled waiting time (SWT), and incidence headway.

An attractive departure is a departure scheduled from the passen-
ger’s station of incidence that the passenger is or would have been 
willing to board, regardless of how willing is defined. The use of 
“attractive” is in the tradition of Spiess and Florian and Nguyen and 
Pallottino in their work on hyperpaths and optimal strategies (9, 10). 
They defined the attractive set of lines as the set that a passenger 
is willing to board at a given location. This concept makes explicit 
the possibility that some scheduled departures may not be viable 
alternatives for a given passenger as a function of that passenger’s 
destination and of the subsequent itinerary of those departures. For 
example, on a line with a trunk and branches, passengers bound for 
one of the branches may experience longer headways than those 
traveling only on the trunk.

SWT is the time the passenger should have to wait according 
to the schedule, given his or her time of incidence and attractive 
departures. SWT is defined as the length of time between passenger 
incidence and the next attractive departure.

Incidence headway is the (scheduled) headway applicable to 
the passenger given his or her time of incidence and set of attrac-
tive departures. Incidence headway is defined as the length of time 
between the last attractive departure before the time of incidence 
and the next such departure after the time of incidence.

The above six studies of passenger incidence all selected places 
and times of observation so as to avoid ambiguity with respect to 
each passenger’s attractive departures. They minimized the mea-
surement of SWT and incidence headways by selecting stations 
served by only a single service pattern and, in some cases, with a 
constant headway. While this may be sufficient for modeling the 
behavior of certain group of passengers, it is clearly inadequate 
for understanding behavior across an entire network. In many real-
world public transport networks, the largest numbers of passengers 
are incident at large stations or terminals that provide access to 
heterogeneous services.

In the case of the London Overground, this incidence is most 
problematic on the North London Line (NLL). Consider, for exam-
ple, passengers incident to the NLL at Stratford, one of the Over-
ground’s busiest stations. In 2008 peak-period timetables, the NLL 
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was running a mostly (but not perfectly) regular 15-min (i.e., four 
trains per hour) service all day from Stratford to the end of the NLL 
at Richmond. This service was augmented with occasional irregular 
services, including a shuttle that ran only as far as Camden Road, 
and one special that ran on the NLL to Willesden Junction but then 
on the West London Line to Clapham Junction. It is not immediately 
obvious which of these services would be attractive to a given pas-
senger at Stratford, and thus not clear what incidence headway each 
passenger would experience. Earlier literature avoided this issue by 
avoiding stations such as Stratford altogether.

The method proposed here is designed as a tool to support the 
study of passenger incidence behavior in general (i.e., by including 
locations with heterogeneous services) and to facilitate its applica-
tion in practical transit management. The method does so by estimat-
ing SWT and incidence headway automatically from the integration 
of published timetables with disaggregate AFC passenger journey 
data via schedule-based assignment.

Schedule-based assignment depends on a run-based model 
of public transport supply, which is very similar to the line-based 
model of supply, but unfolded in the temporal dimension (11). In 
such a model, each individual scheduled or actual run (or trip) of 
the public transport service is represented individually by its own 
subgraph. In the subgraph for a given run, the nodes represent the 
arrival, departure, or transit of that run at a specific location at a 
specific time. The links represent travel (or dwelling) on that run 
between specific points in time and space. The combination of the 
subgraphs of all runs is referred to as the service subgraph. Demand 
is also modeled with temporal as well as spatial dimensions in the 
demand subgraph. Nodes in this subgraph represent centroids of 
demand in time (according to user departure and arrival times) 
and space (according to the physical network). The access–egress 
subgraph joins the service and demand subgraphs with boarding 
and alighting links. The union of these three subgraphs is referred 
to as the diachronic graph representation. One benefit of such a 
representation is that shortest travel time paths can be found via 
standard shortest-path network algorithms such as Bellman-Ford or 
Dijkstra’s (12).

In this paper it is assumed that for a given origin, destination, and 
time of incidence, all passengers plan to use the single schedule-
based path (i.e., set of scheduled services) through the network that 
minimizes total travel time. Additionally, it is assumed that passen-
gers plan itineraries to minimize the number of total boardings up 
to the point at which total travel time is not increased (e.g., in the 
trunk-and-branch example, branch-bound passengers won’t board 
a train bound for the wrong branch just to get to the end of the 
trunk and transfer to the correct branch). These assumptions are 
necessarily a simplification of the true behaviors and perceptions of 
passengers. The degree to which the assumptions hold is a function 
of the attributes of the particular network to which they are applied 
and of the behavioral preferences of the passengers in question. 
These assumptions are sufficient to determine, for each passenger 
journey, the attractive departures before and subsequent to the time 
of incidence. SWT and incidence headway can be determined once 
the times of these two departures are known.

Algorithm and Implementation

For a given passenger journey on a given public transport network, let

	 SWT	=	scheduled waiting time for given journey,
	 HI	=	 incidence headway for given journey,

	 I	=	� time of passenger incidence for given 
journey,

	 LO	=	� location of incidence of journey in ques-
tion (i.e., the origin),

	 LD	=	destination of that journey,
	 Dprior	=	 time of last attractive departure before I,
	 Dnext	=	 time of first attractive departure after I,
	 Hmax	=	� maximum normal headway (i.e., time 

between any two successive departures 
in same direction from same location) on 
network,

	 Hmin	=	minimum normal headway on network,
	Path(from, to, time)	=	� function that finds shortest weighted travel 

time path from location from to location 
to with departure time strictly greater than 
time, with all travel time weights equal to 
1 except for transfer or boarding penalty 
that is positive but less than Hmin, and

	 Departure(path)	=	� function that returns scheduled departure 
time of path path.

Equation Box 1 illustrates the algorithm to find HI and SWT for the 
journey in question under the above assumptions. Lines 1 through 3 
accomplish the simple task of finding the next attractive departure 
and thus determining SWT. Lines 4 through 9 search backward in 
time in increments of Hmin until either a new attractive departure  
time d is found or the time has been moved by more than Hmax. Hmin 
is the largest step possible such that the search will never skip over 
a possible attractive departure. In theory, the algorithm could use 
the timetable to determine the next departure time in this backward 
search process rather than blindly stepping in increments of Hmin. 
However, the algorithm is unaware of particular departure times 
since the Path(  ) function encapsulates all knowledge of the timetable 
itself. This particular algorithmic design is motivated primarily by 
implementation concerns that are discussed in the following section.

A 272-line Perl script was written to implement the algorithm for 
individual Oyster passenger journey records. The Path(  ) function 

EQUATION BOX 1    Algorithm to Find SWT and Incidence Headway 
for a Given Passenger Journey
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encapsulates the complexity of conducting a schedule-based assign-
ment for a single passenger trip. The Path(  ) function will either find 
the earlier attractive departure time Dprior or determine that there is 
no prior attractive departure in at most Hmax/Hmin steps. If the Path(  ) 
function does find Dprior, the function uses that result to determine 
HI. Embedded in this function is the algorithm for finding the short-
est weighted travel time paths in a schedule-based network. The 
travel time weightings are such as to enforce the assumption that 
passengers minimize the number of boardings (without affecting 
total travel time). A robust implementation of Path(  ) function using 
a modified Dijkstra’s algorithm is available in the free open-source 
software library Graphserver (13). Graphserver reads timetables in 
the widely used general transit feed specification (14). This speci-
fication was defined by Google to facilitate the transfer of public 
transport schedules from operators to Google to power its own web-
based journey planning software. The specification has become a de 
facto standard for public distribution of public transport timetables. 
Unfortunately, London Overground timetables do not come in gen-
eral transit feed specification format, so another 302-line Perl script 
was written to do the transformation (15). This algorithm improves 
on the previous approaches to finding SWT and HI by considering the 
timetable in the context of each individual journey. The origin, des-
tination, and incidence time of each individual journey determine 
which departures will be attractive.

APPLICATION TO LONDON 
OVERGROUND NETWORK

This section applies the proposed methodology to examine pas-
senger incidence behavior on the London Overground network by 
using a large sample of passenger journey data from the Oyster 
smartcard ticketing system.

Figure 1 shows a schematic map of the rail services for Trans-
port for London (TfL) as of spring 2010, including London Under-
ground, Dockland Light Rail, and Overground. The Overground 
network is for the most part circumferential, primarily orbiting 
London to the north and west, with the majority of stations in Zones 
2 and 3. The Overground is very much part of the integrated net-
work of TfL services, with 19 of its stations offering interchanges 
to London Underground or Dockland Light Rail services. In 2010, 
the Overground ran 407 scheduled weekday train trips with 27 units 
of rolling stock (A. Brimbacombe, personal communication, 2010).

Services on the Overground are divided into four service patterns 
(Table 1). The core of this network is the NLL, which runs 28 km 
between Stratford in the northeast of London and Richmond in the 
southwest, connecting to every other Overground service and to 
numerous other TfL and National Rail services along the way. The 
NLL is by far the busiest Overground line, with the most frequent ser-
vice and an estimated 58% of all Overground boardings (C. Smales, 

FIGURE 1    Transport for London’s rail service map (spring 2010).
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personal communication, 2010). The NLL runs four (end-to-end) 
trains per hour over most of the day, with some segments receiving 
six trains per hour during peak periods. The other Overground lines 
run at lower frequencies (three trains per hour during the peak periods 
and two to three trains per hour during other periods).

Data

On November 11, 2007, overall management and revenue respon-
sibility for this set of services was transferred to TfL from the  
Silverlink, which held the prior National Rail franchise. At that 
time, the network was rebranded as the Overground and became 
fully Oyster enabled. Oyster is TfL’s AFC smartcard system. London’s 
fare policy and technologies require most Oyster users to validate 
their cards on all entries and exits to the system. The centralized 
computer system archives these Oyster entry and exit transactions, 
including their location, time stamp, and Oyster ID, in an easily 
accessible database. As a result, disaggregate Oyster journey data 
are cheap to gather in large volumes and provide a prime source of 
data on individual passenger journeys.

The data analyzed here are a 100% sample of all Oyster journeys 
between all pairs of London Overground stations for the 52 business 
days from March 31, 2008, through June 10, 2008, inclusive. Pub-
lic timetables were obtained for the Overground network. The data 
set was filtered to include only those journeys for which it can be 
assumed with relative certainty that the passenger in question used 
only Overground services; that is, this data set does not include jour-
neys that interchanged to the Overground but with initial Oyster val-
idations elsewhere in the railway system. The data set also excludes 
journeys initially incident to the Overground but interchanging to 
other railway services. Journeys with interchanges to or from buses 
will be included here, since the Oyster system effectively separates 
the recording of bus and rail journeys. Passengers transferring from 
buses to London Overground may exhibit a different incidence 
behavior because they do not have control over the time when the 
bus arrives at the transfer stops. Their incidences at London Over-
ground stations are only a function of the timetable coordination 
between bus and Overground services, if there is any such coordina-
tion. In general these journeys may demonstrate random incidence 
behavior. The resulting data set contains nearly 1,670,000 journeys 
from 54 stations on 1,442 origin–destination pairs made by more 
than 290,000 passengers. The data set constitutes approximately 
53,000 station-hours of observation of passenger incidence to 
Overground services.

The methodology described in the previous section was applied 
to each Oyster journey in the data set: the transaction time of the 
Oyster entry was taken as the time of incidence, and the origin and 
destination of the journey were used along with the timetable to 

estimate which services the journey was incident to. This processing 
took some number of hours for the entire data set, but it was fully 
automated. A large set of observations was obtained for which the 
following data were measured or estimated:

•	 Date and time of incidence,
•	 Incidence headway,
•	 SWT,
•	 Location (i.e., station) of incidence (i.e., the journey’s origin),
•	 Journey’s destination, and
•	 Overground line to which the passenger was incident.

For journeys that required an interchange within the Overground 
system (of which there are relatively few), the above data were 
measured or estimated for only the first incidence event.

As a point of validation, Figure 2 plots distributions of incidence 
headway for passengers on the Gospel Oak to Barking (GOB) and 
North London Lines. The findings are consistent with expectations. 
On the NLL, the mode of all the distributions is 15 min, reflect-
ing the core service. The distribution is more concentrated during 
the interpeak period, when there are no scheduled shuttles or spe-
cials. The opposite is true on the GOB, which runs a regular 20-min 
service in the peak periods but transitions to and from a 30-min 
service in the interpeak period. The morning peak distribution is 
somewhat more dispersed than that of the evening peak because the 
morning peak includes a transition from 30-min headways in the 
early morning.

Results

Consistent with the reviewed studies of passenger incidence behav-
ior, the first results of interest are distributions of passenger inci-
dence time over a given headway. Figure 3 plots these distributions 
for the London Overground network by line and by time period. 
In this plot, incidence times are normalized by the incidence head-
way because different passengers experience different incidence 
headways.

It is clear from Figure 3 that passenger incidence behavior, with 
respect to published timetables, varies spatially and temporally across 
the Overground network. Passenger incidence on the GOB and 
Watford DC lines is much more peaked (i.e., timetable-dependent), 
each with 20-min headways, than on the NLL, with 7- to 15-min 
headways, during any time period. Also, the NLL is acknowledged by 
Overground management to have the most serious reliability problems 
(O. Bratton, personal communication, 2010). These variations are con-
sistent with the literature that passenger incidence is more timetable-
dependent with a more peaked distribution for longer headways and 
for more reliable services.

TABLE 1    London Overground Services

Service Pattern Code Primary Terminals
Frequency  
(Peak tph)

North London Line NLL Stratford ⇔ Richmond 4–6

Gospel Oak to Barking Line GOB Gospel Oak ⇔ Barking 3

Watford DC Line WAT Watford Junction ⇔ London Euston 3
West London Line WLL Clapham Junction ⇔ Willesden Junction 2–3

Note: tph = trains per hour.
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Also consistent with the literature is that, for all lines, the distri-
bution is more peaked in the morning peak period than in the eve-
ning peak or midday interpeak periods. It appears that Overground 
commuters in the morning peak period, more likely to have knowl-
edge of the timetable and the service and more sensitive to time 
saving, exhibit less random incidence behavior than do passengers 
in other time periods, despite the shorter headways and less reliable 
service found in the morning peak. The distribution in the late-night 
period is also very peaked because of longer headways and possibly 
higher sensitivity to time.

The peaks of all of the distributions are somewhat before the very 
end of the headway, indicating some type of safety margin or wait-
ing time–minimization behavior on the part of passengers. Many of 
the distributions have small spikes at the beginning of the headway, 
indicating possible late running awareness among some passengers. 
While such awareness may in fact be found on the Overground, it is 
also possible that it is the passengers themselves who are running late. 
They may be planning to take a train scheduled to depart at a certain 
time but, because of uncontrollable circumstances or their own poor 
planning, arrive at the station shortly after that departure time.
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FIGURE 2    Distributions of passenger incidence headways by line and time period.

FIGURE 3    Distributions of passenger incidence by line and time period.
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Figure 4 shows the mean waiting time, for each line and time period, 
under two models of passenger behavior and train operations: random 
incidence versus timetable-dependent incidence. In the first case, it is 
assumed that all passengers are randomly incident to constant head-
way services, so the mean waiting time is calculated as half the mean 
incidence headway. In the second case, no behavioral assumption is 
made and all trains are assumed to run as per the timetable, so the 
observed mean waiting time is calculated as the mean SWT. Figure 4 
thus indicates the effects of the observed incidence behaviors 
(compared with random incidence) on passenger waiting times.

On the NLL, the relatively slight skew in the incidence distribu-
tions translates into relatively small impacts on waiting time. In the 
morning peak, timetable dependence decreases waiting time by 7.2% 
from 6.82 to 6.33 min (about 30 s). In the interpeak and evening peak 
periods, the reductions are only 0.2% and 2.2%, respectively. On the 
GOB, however, the implications of timetable dependence are substan-
tial. In the morning peak, the waiting time decreases by 29% (3.1 min) 
from 10.5 to 7.4 min. In the interpeak and evening peak periods, the 
reductions are 20.4% and 17.5%, respectively.

Transit assignment models often make an assumption that no ser-
vice would be assigned a mean passenger waiting time over a certain 
threshold, say, 10 min in the London Overground case. The results 
of this section lend support to this assumption. Regular weekday 
headways on the Overground network go as high as 30 min, but the 
observed mean SWT is above 11 min in only two cases (on the West 
London Line during the interpeak and evening time periods) and is 
never above 12.1 min.

Discussion and Conclusions

This paper developed a methodology to relate disaggregate AFC 
journey data to published timetables for the purpose of studying 
passenger incidence behavior and applied this methodology to the 
London Overground (16).

The following conclusions are drawn about the methodology 
developed here. First, it can be used to study passenger incidence 
behavior using large samples of disaggregate journey data from 
AFC systems such as the Oyster smartcard system. Second, the 
methodology can for each passenger journey estimate SWT and 
incidence headway under heterogeneous conditions. Finally, this 
methodology is able to efficiently process millions of data records 
and can be implemented using open standard timetable formats and 
free software tools.

As a limitation the proposed method hinges on the schedule-
based assignment, for which there are unsolved methodological 
issues such as station congestion or train crowding. The London 
Overground is a relatively simple network (i.e., compared with the 
London Underground), so that the methodology would not be sub-
ject to those issues. As the inner workings of schedule-based assign-
ment improve, the method of this paper will continue to become 
more broadly applicable.

With respect to the London Overground, the following conclu-
sions can be drawn. Generally, passenger incidence behavior varies 
across the network and across times of day, and the differences reflect 
different headways, reliability of service, and time of day (indicating 

FIGURE 4    Mean scheduled passenger waiting time by line and period (horizontal lines highlight waiting time of 10 min).
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different knowledge of the network and sensitivity to time); these 
findings reflect the findings in the literature to date. Specifically, inci-
dence appears to be much less timetable dependent on the NLL than 
on the other Overground lines because of shorter headways and less 
reliable service on this line as compared with others. The method 
and results of the paper also provide one service quality measure, 
SWT, for the entire Overground network. On the GOB, Watford DC, 
and West London lines, where incidence behavior is more timetable-
dependent, passengers reduce their mean SWT by more than 3 min, 
or up to 30%, during daytime hours compared with random inci-
dence behavior. On the NLL, such reductions are much smaller, in 
some cases nearly zero, in both relative and absolute terms.

The method developed in this paper can support further study 
of passenger incidence behavior in a more systematic way; that is, 
researchers no longer need to select a special subset of stations with 
only one service pattern. The work of Bowman and Turnquist has 
been influential in shaping the understanding of the relationships 
between headway, reliability, passenger behavior, and waiting time 
(1). Their work should be updated by using the method of this paper so 
that large samples of passenger data across heterogeneous networks 
can be easily analyzed. The London Overground network represents 
an ideal opportunity to conduct such a study because its passengers 
can clearly be studied via Oyster data, and its trains are tracked by a 
computerized signaling system. After the East London Line opened, 
the network has headways ranging from 5 to 30 min during most 
hours of the day, thus providing a good range of variation.

Another application is to study the impact of real-time informa-
tion. Many strides have been made toward informing passengers in 
real time about the status of public transport services. Such infor-
mation is now often distributed via in-station signs and announce-
ments, as well as over the Internet to passengers’ computers and, 
more importantly, mobile devices. It is crucial to advance the 
understanding of passenger incidence to include the effects of real-
time information. Such an advance in understanding will require 
careful thinking and research designs, but it should be able to take 
advantage of the methodology developed here. For example, actual 
recorded train arrival and departure times (rather than published 
timetables) could be used in the schedule-based assignment.
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