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Analyzing Passenger Incidence Behavion

in Heterogeneous Transit Services

Using Smartcard Data and

Schedule-Based Assignment

| Michael Frumin and Jinhua Zhao|

lPassenger incidence (station arrival) behavior has been studied primar-l
’ ily to understand how changes to a transit service will affect passenger

waiting times. The impact of one intervention (e.g., increasing frequency)
could be overestimated when compared with another (e.g., improving

the relationship between the departure times of public transport‘
vehicles and the passenger loads on those vehicles. Understanding]

l passenger incidence behaviors allows management interventions to‘

be based on realistic behavioral assumptions. As pointed out in one

[reliability), depending on the assumption of incidence behavior. Under-

of the seminal investigations on the topic by Bowman and Turnquist,

standing passenger incidence allows management decisions to be based on

the effects on passenger waiting time of one particular intervention

realistic behavioral assumptions. Earlier studies on passenger incidence
chose their data samples from stations with a single service pattern such

(e.g., increasing frequency) could be overestimated compared with al
different type of intervention (e.g., improving reliability), depending

hhat the linking of passengers to services was straightforward. This choice
lof data samples simplifies the analysis but heavily limits the stations thaﬁ
kan be studied. In any moderately complex network, many stations ma)%
have more than one service pattern. This limitation prevents the method

on which assumptions are made about incidence behaviorlm.
lEarlier studies on passenger incidence behavior chose their data

samples from stations or stops with a single service pattern such|

that the linking of passengers to scheduled or actual services was|

from being systematically applied to the whole network and constrains its
use in practice. This paper considers incidence behavior in stations with ‘

straightforward. This choice of data samples simplifies the analysis
and may suffice for an academic study. But such simplification also

heterogeneous services and proposes a method for estimating incidence]
headway and waiting time by integrating disaggregate smartcard data#
fwith published timetables using schedule-based assignment. This method
[is applied to stations in the entire London Overground to demonstrate
[its practicality; incidence behavior varies across the network and acros#
[times of day and reflects headways and reliability. Incidence is much
less timetable-dependent on the North London Line than on the other

lines because of shorter headways and poorer reliability. Where incidence
[is timetable-dependent, passengers reduce their mean scheduled waiting

’ time by more than 3 min compared with random incidence.

This paper is concerned with passenger incidence behavior, which|
1s defined as the act or event of a person’s being incident to a publid]
transport service with intent to use that service. A lexical convention|
is established here to avoid ambiguity between passenger incidence
to public transport services and arrival at certain destinations after]
using public transport services|

[ Passenger incidence behavior has been studied primarily for the
lsake of understanding how changes to a public transport service wil
’affect passenger waiting times. It is also of interest because it affects
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heavily limits the stations or stops that can be studied in the transif
network. In any moderately complex network, many stations mayj
have more than one service pattern. This limitation prevents the|
[method from being systematically applied to the entire network and
[therefore limits its use in transit management practice. In environ-
ments in which passengers at a given station have a choice of ser-
vices, a more sophisticated approach is needed to study passenger|
[incidence behavior,|

[This paper is concerned with the relationship between the times

of passenger incidence and published timetables in a rail network‘

[with heterogeneous service patterns. It proposes a method to studyi

’ this relationship by integrating disaggregate passenger journey data‘

[from automatic fare collection (AFC) smartcard systems with pub-|
lished timetables using schedule-based assignment. The purpose of
this paper is twofold: first, to develop a method that contributes to|
the study of passenger incidence behavior across a railway network|
lwith heterogeneous service patterns and frequencies using pub-

’ lished timetables and AFC data; and second, to apply this method

to the London Overground to demonstrate its practicality and shed
light on the incidence behavior of its passengers.

LITERATURE

Previous research has identified arich set of passenger incidence behav—‘
iors and related them to certain aspects of public transport servicesL
Using manually and automatically collected data sources, research|
has investigated the diversity of the behavior cross-sectionally and the
consistency of such behaviors longitudinally over time. It has beeﬂ
found that the randomness of passenger incidence behavior is highly]
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|dependent on the service headway and the reliability of the departure
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model. They also found that the empirical distributions of passenger

[time of the service to which passengers are incident.

incidence times (by time of day) had peaks just before the respec-

| |After briefly introducing the random incidence model, which is

tive average bus departure times. They hypothesized the existence

often assumed to hold at short headways, the balance of this section

of three classes of passengers: with propoﬂionlcﬂ passengers whose

reviews six studies of passenger incidence behavior that are moti- |

time of incidence is causally coincident with that of a bus departure

vated by understanding the relationships between service headway,

(e.g., because they saw the approaching bus from their home or a

service reliability, passenger incidence behavior, and passenger

shop window); with proportion|p(1 — ¢), passengers who time their

waiting time in a more nuanced fashion than is embedded in the

arrivals to minimize expected waiting time; and with proportion

random incidence assumption (2). Three of these studies depend on

|(1 — p)(1 — g), passengers who are randomly incident. The authors

manually collected data, two studies use data from AFC systems,

found thatl p| was positively correlated with the potential reduction

and one study analyzes the issue purely theoretically. These studies|

in waiting time (compared with arriving randomly) that resulted

reveal much about passenger incidence behavior, but all are found
to be Timited in their general applicability by the methods wit

from knowledge of the timetable and of service reliability. They also
found| p| to be higher in the peak commuting periods rather than in

hich they collect information about|passengers and the services

the off-peak periods, indicating more awareness of the timetable or

those passengers intend to use|

historical reliability, or both, by commuters.|
[Bowman and Turnquist built on the concept of aware and unaware

passengers of proportions| p| and[(l — p), respectively. They proposed

Random Passenger Incidence Behavior|

a utility-based model to estimate|p|and the distribution of incidence

| |
[OTe characterization of passenger mcidence benavior s that of rany

times, and thus the mean waiting time, of aware passengers over
a given headway as a function of the headway and reliability of]

[aom ncidence (3). The key assumption underlying the random incif

{ranSPOTt Service 1S Mdependent from the vehidgic departure procesy

i)

TerarTivals tothe Service fs umformrovera giverrperiod of time- et

bus departure times|(/)| They observed seven bus stops in Chicago
[llinois, each served by a single (different) bus route, between 6:00|
and|8:00 a.m|. for 5 to 10 days each. The bus routes had headways
of 5 t0[20 min| and a range of reliabilities. The authors found that
actual average waiting time was substantially less than predicted
by the random incidence model. They estimated that| pl was not
statistically significantly different from 1.0, which they explain by

and service h¢afdways, respectively. Under the random 1ncidenceg

the fact that all observations were taken during peak commuting
times. Their model predicts that the longer the headway and the

T T T o CET] T

(1+cv(n)) )

]
2E[H] 2

more reliable the departures, the more peaked the distribution of
incidence times will be and the closer that peak will be to the next
scheduled departure time. This prediction demonstrates what they
refer to as a safety margin that passengers add to reduce the chance
of missing their bus when the service is known to be somewhat]
unreliable. Such a safety margin can also result from unreliability in|

where E[X]|is the probabilistic expectation of some random variable
CV(H) is the coefficient of variation of| H| a unitless measure

of the variability of| H|defined as|

o

CV(H):?;I] 2)

where” GHIis the standard deviation ofIH (41. The second expression
in Equation 1 is particularly useful because it expresses the mean
passenger waiting time as the sum of two components: the waiting
time caused by the mean headway (i.e., the reciprocal of service fre{
| quency) and the waiting time caused by the variability of the head-
ways (which is one measure of service reliability). When the service
is perfectly reliable with constant headways, the mean waiting time
will be simply half the headway.|

|[More Behaviorally Realistic Incidence Models|

passengers’ journeys to the public transport stop or station. Bowman|
and Turnquist conclude from their model that the random incidence
model underestimates the waiting time benefits of improving reli-
ability and overestimates the waiting time benefits of increasing ser-
vice frequency. This is because as reliability increases passengers
can better predict departure times and so can time their incidence to|
decrease their waiting time

[Furth and Muller study the issue in a theoretical context and gener-|
|ally agree with the above findings (2). They are primarily concerned|
|with the use of data from automatic vehicle-tracking systems to assess
the impacts of reliability on passenger incidence behavior and wait-
ing times. They propose that passengers will react to unreliability by
departing earlier than they would with reliable services. Randomly;
incident unaware passengers will experience unreliability as a more
dispersed distribution of headways and simply allocate additional|
time to their trip plan to improve the chance of arriving at their des-
tination on time. Aware passengers, whose incidence is not entirely|
random, will react by timing their incidence somewhat earlier than

Jolliffe and Hutchinson studied bus passenger incidence in South|

the scheduled departure time to increase their chance of catching the

London suburbs (5). They observed 10 bus stops forll hﬂ per dayl

desired service. The authors characterize these reactions as the costs

over 8 days, recording the times of passenger incidence and actual

[of unreliability.

and scheduled bus departures. They limited their stop selection to
those served by only a single bus route with a single service pat-

Luethi et al. continued with the analysis of manually collected
data on actual passenger behavior (6). They use the language

| tern s0 as to avoid ambiguity about which service a passenger was

of probability to describe two classes of passengers. The first 15

waiting for. The authors found that the actual average passenger

timetable-dependent passengers (i.e., the aware passengers), whose

waiting time was|30%iless than predicted by the random incidence

incidence behavior is affected by awareness (possibly gained
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|through their own experience with the service) of the timetable or

it appears to be with respect to the timetable and to actual vehicle

service reliability, or both. The second class is timetable-independent

departure times. The appearance of randomness (or its lack) has

passengers, whose incidence behavior is random and so does not

been used to indicate the degree to which passengers have and use

reflect any such awareness (whether or not they have it). The lan-

knowledge of the published timetable and of actual departure times.

guage of timetable dependency is adopted for the balance of this

At longer headways, passengers have more to gain by gaining and

paper to describe the randomness of passenger incidence behavior]

using knowledge of the timetable; their behavior tends to be less

regardless of what exactly is driving the behavior on the part of

random, peaking somewhat before the scheduled departure time.

the passengers. This language is preferred because it expresses the

Passengers also appear to gain and use knowledge of the actual

probabilistic association between two observed variables (incidence

rather than scheduled, departure times. When departure times are

times and scheduled departure times) rather than some unobserved
passenger state of mind. Luethi et al. observed passenger incidence
during morning and evening peak hours and midday off-peak hours
at 28 bus, tram, and commuter rail stations in and around Zurich,
Switzerland, with headways of 2.33 to 30 min. To avoid ambiguity,
they limited their station selection to nonterminal, noninterchange
stations served by a single route with constant headways over the
period of observation. The authors observed that a substantial share
of passengers appear to be timetable dependent for headways as low
as 5 min. They proposed distributions of passenger incidence times
over a given headway to be the weighted superposition of two dis-
tributions: one for timetable-independent passengers, with weight
1 — p, distributed uniformly over the headway, and the other for
timetable-dependent passengers, with weight p, distributed accord-
ing to a Johnson SB distribution. The authors found the fit of their
distribution to the observed data to be statistically significant. This
distribution is parameterized in terms of the headway, but not in
terms of the reliability of the service. Estimations of their model
yield values of p for the different time periods of the day, which they
find to be highest in the morning peak and lowest in the off-peak
period, supporting the conclusion that the incidence of commuters
is more timetable dependent than the incidence of noncommuters.

reliable, even if they are reliably late (or early) by a particular
amount, incidence behavior tends to be less random, with more pas-
[sengers being incident shortly before the reliable departure time.
When departure times are inconsistent (i.e., unreliable), passengers
have less to gain from choosing any particular time of incidence, so|

their behavior tends to be more randoml

|METHODOLOGY]

|This section proposes a method for studying passenger incidencel
|with respect to scheduled departure times by using AFC smartcard

| data and schedule-based assignment. For a given passenger jour-

|ney, the method depends on the concepts of attractive departure)
| scheduled waiting time (SWT), and incidence headway.l

| An attractive departure is a departure scheduled from the passen-
ger’s station of incidence that the passenger is or would have been
willing to board, regardless of how willing is defined. The use of]
“attractive” is in the tradition of Spiess and Florian and Nguyen and|
Pallottino in their work on hyperpaths and optimal strategies (9, 10)]
They defined the attractive set of lines as the set that a passenger
is willing to board at a given location. This concept makes explicit

|Csikos and Currie studied this phenomenon, first cross—sectionally|
and then longitudinally, using data from the AFC system of the heavy|

the possibility that some scheduled departures may not be viable
alternatives for a given passenger as a function of that passenger’s

rail network in Melbourne, Australia (7, 8). In their first study the)l

destination and of the subsequent itinerary of those departures. For

used 4 weeks’ worth of data from 07:30 to 15:00, but limited them-

|examp1e, on a line with a trunk and branches, passengers bound for

selves to analyzing seven particular stations out of 209, for a total

one of the branches may experience longer headways than those|

of 38,000 observations over approximately| 1,470 hl The stations

traveling only on the trunk]

were, as in the other studies, selected to avoid ambiguity regard-

[SWT is the time the passenger should have to wait according|

ling which scheduled service each passenger intended to use. They

to the schedule, given his or her time of incidence and attractive]

also obtained high-level data about the aggregate reliability (6-min
terminal on-time performance) of the train lines serving the selected

departures. SWT is defined as the length of time between passenger]
incidence and the next attractive departurel

stations. Their findings generally confirm those of the other studies

[Incidence headway is the (scheduled) headway applicable to|

In their second study, they used the same 4-week data set, but tracked
individual ticket holders over time to study the consistency of behav

the passenger given his or her time of incidence and set of attrac
tive departures. Incidence headway is defined as the length of time

ior. They focused on the 15,000 trips made between 06:00 and 10:00|

[between the last attractive departure before the time of incidence

by 1,043 individual passengers who, as morning commuters, are

|and the next such departure after the time of incidence |

expected to exhibit the most consistent behavior patterns. They|

[ The above six studies of passenger incidence all selected places|

characterized the passengers by the times of incidence and the offset

and times of observation so as to avoid ambiguity with respect to|

times until the next scheduled departure. They classified passengers

each passenger’s attractive departures. They minimized the mea

into four distinct archetypes exhibiting various levels of consistency|

surement of SWT and incidence headways by selecting stations|

in these two variables, finding roughly equal numbers of passengers

served by only a single service pattern and, in some cases, with a|

in each category. On one end of the spectrum are clockwork-like
passengers who exhibit consistent behavior that often minimizes

constant headway. While this may be sufficient for modeling th
Ibehavior of certain group of passengers, it is clearly inadequate

[their waiting time with respect to the schedule. On the other end

[for understanding behavior across an entire network. In many real-

|1argely random passengers have very little consistency with respect

world public transport networks, the largest numbers of passengers

[to waiting time, exhibiting largely timetable-independent behavior.

are incident at large stations or terminals that provide access to|

The authors’ overall conclusion in this work is one of heterogeneity

heterogeneous services.

in passenger behavior, even under homogeneous conditions (i.e., at

|In the case of the London Overground, this incidence is most

the same station at the same time of day served by the same line).|

problematic on the North London Line (NLL). Consider, for exam-

|As a brief summary of the six studies, passenger incidence

ple, passengers incident to the NLL at Stratford, one of the Over-

[behavior has been characterized primarily in terms of how random

ground’s busiest stations. In 2008 peak-period timetables, the NLL|
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was running a mostly (but not perfectly) regular 15-min (i.e., four
trains per hour) service all day from Stratford to the end of the NLL
at Richmond. This service was augmented with occasional irregular
services, including a shuttle that ran only as far as Camden Road,
and one special that ran on the NLL to Willesden Junction but then
on the West London Line to Clapham Junction. It is not immediately
obvious which of these services would be attractive to a given pas-
senger at Stratford, and thus not clear what incidence headway each
passenger would experience. Earlier literature avoided this issue by
avoiding stations such as Stratford altogether.

|The method proposed here is designed as a tool to support the
study of passenger incidence behavior in general (i.e., by including
locations with heterogeneous services) and to facilitate its applica{
tion in practical transit management. The method does so by estimat-
ing SWT and incidence headway automatically from the integration
of published timetables with disaggregate AFC passenger journey
data via schedule-based assignment]

|Schedule-based assignment depends on a run-based model
[of public transport supply, which is very similar to the line-based
model of supply, but unfolded in the temporal dimension|(/7 m
such a model, each individual scheduled or actual run (or trip) of
the public transport service is represented individually by its own
subgraph. In the subgraph for a given run, the nodes represent the
arrival, departure, or transit of that run at a specific location at a
specific time. The links represent travel (or dwelling) on that run
between specific points in time and space. The combination of the
subgraphs of all runs is referred to as the service subgraph. Demand
is also modeled with temporal as well as spatial dimensions in the
demand subgraph. Nodes in this subgraph represent centroids of]
demand in time (according to user departure and arrival times)
and space (according to the physical network). The access—egress
subgraph joins the service and demand subgraphs with boarding
and alighting links. The union of these three subgraphs is referred|
to as the diachronic graph representation. One benefit of such a|
representation is that shortest travel time paths can be found via
standard shortest-path network algorithms such as Bellman-Ford 011
Dijkstra’s (12).]

| In this paper it is assumed that for a given origin, destination, and|
time of incidence, all passengers plan to use the single schedule{
based path (i.e., set of scheduled services) through the network that
minimizes total travel time. Additionally, it is assumed that passen-
gers plan itineraries to minimize the number of total boardings up|
to the point at which total travel time is not increased (e.g., in the
trunk-and-branch example, branch-bound passengers won’t board
a train bound for the wrong branch just to get to the end of the
trunk and transfer to the correct branch). These assumptions are
necessarily a simplification of the true behaviors and perceptions of]
passengers. The degree to which the assumptions hold is a function
|of the attributes of the particular network to which they are applied
and of the behavioral preferences of the passengers in question.
These assumptions are sufficient to determine, for each passenger
journey, the attractive departures before and subsequent to the time
of incidence. SWT and incidence headway can be determined once
the times of these two departures are known.|

[ALGORITHM AND TVIPLEMENTATION

|For a given passenger journey on a given public transport network, 1et|

| SW'I” =|scheduled waiting time for given journey,l
‘H, =|incidence headway for given journey,l
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1= timel of passenger incidence for givenl
[ journey,|

‘LO =[location of incidence of journey in ques—l
tion (i.e., the origin),|

‘LD =|destination of that journey,|
D,io =|time of last attractive departure before I,|
D, =|time of first attractive departure after I,|
H,,, =|maximum normal headway (i.e., time
|between any two successive departuresl
in same direction from same location) 0n|
network,|

H,;, =|minimum normal headway on network,|
[Path(from, to, time) =|function that finds shortest weighted travel]
[ time path from location from to location
to with departure time strictly greater than
time, with all travel time weights equal to
1 except for transfer or boarding penaltyl
that is positive but less than H,;,, and
Departure(path) =| function that returns scheduled departure
time of path path.

i

Equation Box 1 illustrates the algorithm to find H;and SWT for the
journey in question under the above assumptions. Lines 1 through 3
accomplish the simple task of finding the next attractive departure
and thus determining SWT. Lines 4 through 9 search backward in
time in increments of H,;, until either a new attractive departure
time d is found or the time has been moved by more than H,,.x. Hyin
is the largest step possible such that the search will never skip over
a possible attractive departure. In theory, the algorithm could use
the timetable to determine the next departure time in this backward
search process rather than blindly stepping in increments of H,,.
However, the algorithm is unaware of particular departure times
since the Path( ) function encapsulates all knowledge of the timetable
itself. This particular algorithmic design is motivated primarily by
implementation concerns that are discussed in the following section.

A 272-line Perl script was written to implement the algorithm for
individual Oyster passenger journey records. The Path( ) function

EQUATION BOX 1  Algorithm to Find SWT and Incidence Headway
for a Given Passenger Journey

1: p="Path(L,, L,, I)
2:D,,, = Depanure( p)
3:SWT =D, -1
4:i=1

5' d = Dnexl

6 or D,
7
8

next

et —-i<H_ do
i=i—-H,

: d= Departure(Path(Lo, L,, z))
9: end while
10: if d # D, then
11: D, =d
12: H,=D
13: else

14: D, =null
15: H, =null
16: end if

: while d = D

next D prior
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encapsulates the complexity of conducting a schedule-based assign-
ment for a single passenger trip. The Path( ) function will either find
the earlier attractive departure time| Dpﬁm{ or determine that there is
no prior attractive departure in at mosthmax/Hmin|steps. If the Path( )
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APPLICATION TO LONDON
OVERGROUND NETWORK

This section applies the proposed methodology to examine pas-

function does ﬁnd”me,,{ the function uses that result to determine

senger incidence behavior on the London Overground network by

|H); Embedded in this function is the algorithm for finding the short]

using a large sample of passenger journey data from the Oyster]|

est weighted travel time paths in a schedule-based network. The

smartcard ticketing system

travel time weightings are such as to enforce the assumption that

|Figure 1 shows a schematic map of the rail services for Trans-

|passengers minimize the number of boardings (without affecting

port for London (TfL) as of spring 2010, including London Under-

total travel time). A robust implementation of Path( ) function using

ground, Dockland Light Rail, and Overground. The Overground

a modified Dijkstra’s algorithm is available in the free open-source

[network is for the most part circumferential, primarily orbiting

software library Graphserver (/3). Graphserver reads timetables in

[London to the north and west, with the majority of stations in Zones

the widely used general transit feed specification (/4). This speci-
fication was defined by Google to facilitate the transfer of publig

[2 and 3. The Overground is very much part of the integrated net
work of TfL services, with 19 of its stations offering interchanges

transport schedules from operators to Google to power its own web}

to London Underground or Dockland Light Rail services. In 2010

based journey planning software. The specification has become a de|

the Overground ran 407 scheduled weekday train trips with 27 units

[facto standard for public distribution of public transport timetables|

of rolling stock (A. Brimbacombe, personal communication, 2010).

| Unfortunately, London Overground timetables do not come in gen{

[Services on the Overground are divided into four service patterns

|eral transit feed specification format, so another 302-line Perl script

(Table 1). The core of this network is the NLL, which runs|28 km

|was written to do the transformation (/5). This algorithm improves

between Stratford in the northeast of London and Richmond in the

| on the previous approaches to finding SWT and H“by considering the

southwest, connecting to every other Overground service and to

|tirnetab1e in the context of each individual journey. The origin, des{

numerous other TfL and National Rail services along the way. The

tination, and incidence time of each individual journey determine]

NLL is by far the busiest Overground line, with the most frequent ser-

Wwhich departures will be attractive|

vice and an estimated 58%] of all Overground boardings (C. Smales
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TABLE 1 London Overground Services

Frequency
Service Pattern Code Primary Terminals (Peak tph)
North London Line NLL Stratford < Richmond 4-6
Gospel Oak to Barking Line GOB Gospel Oak < Barking
Watford DC Line WAT Watford Junction < London Euston
West London Line WLL Clapham Junction < Willesden Junction 2-3

NOTE: tpH = trains per hour.

[personal communication, 2010). The NLL runs four (end-to-end)]

estimate which services the journey was incident to. This processing

trains per hour over most of the day, with some segments receiving

took some number of hours for the entire data set, but it was fully|

six trains per hour during peak periods. The other Overground lines

automated. A large set of observations was obtained for which the

run at lower frequencies (three trains per hour during the peak periods

following data were measured or estimated:

and two to three trains per hour during other periods)l

|On November 11, 2007, overall management and revenue respon-l

o - —
e Incidence headway,

¢ SWT]
® [ ocation (i.e., station) of incidence (i.e., the journey’s origin),|
e Journey’s destination, and|

lsibility for this set of services was transferred to TfL from the
Silverlink, which held the prior National Rail franchise. At that

| e Overground line to which the passenger was incident.|

time, the network was rebranded as the Overground and became
fully Oyster enabled. Oyster is TfL's AFC smartcard system. London’s
fare policy and technologies require most Oyster users to validate
their cards on all entries and exits to the system. The centralized
computer system archives these Oyster entry and exit transactions,

|F0r journeys that required an interchange within the Overground
system (of which there are relatively few), the above data were
measured or estimated for only the first incidence event]

| As a point of validation, Figure 2 plots distributions of incidence
headway for passengers on the Gospel Oak to Barking (GOB) and|

including their location, time stamp, and Oyster ID, in an easily|
accessible database. As a result, disaggregate Oyster journey dataj

North London Lines. The findings are consistent with expectations
On the NLL, the mode of all the distributions is|15 min| reflect

are cheap to gather in large volumes and provide a prime source of]|
data on individual passenger journeys.|

i The data analyzed here are ai IUU%i s'ample of all Oyster journeys
between all pairs of London Overground stations for the 52 business
days from March 31, 2008, through June 10, 2008, inclusive. Pub-|
lic timetables were obtained for the Overground network. The data
set was filtered to include only those journeys for which it can be

ing the core service. The distribution is more concentrated during
the interpeak period, when there are no scheduled shuttles or spe-
|cials. The opposite is true on the GOB, which runs a regular 20-min|
[service in the peak periods but transitions to and from a|30-min
|service in the interpeak period. The morning peak distribution is|
somewhat more dispersed than that of the evening peak because the
morning peak includes a transition from 30-min headways in the

assumed with relative certainty that the passenger in question used
only Overground services; that is, this data set does not include joury
neys that interchanged to the Overground but with initial Oyster val-
idations elsewhere in the railway system. The data set also excludes

early morning,

Results

journeys initially incident to the Overground but interchanging to
other railway services. Journeys with interchanges to or from buses

|Consistent with the reviewed studies of passenger incidence behav-

will be included here, since the Oyster system effectively separates
the recording of bus and rail journeys. Passengers transferring from

ior, the first results of interest are distributions of passenger inci-
dence time over a given headway. Figure 3 plots these distributions

buses to London Overground may exhibit a different incidence

for the London Overground network by line and by time period.

behavior because they do not have control over the time when the

In this plot, incidence times are normalized by the incidence head-

|bus arrives at the transfer stops. Their incidences at London Over-|
ground stations are only a function of the timetable coordination|

|way because different passengers experience different incidence|
|headwaysl

between bus and Overground services, if there is any such coordina—|

[Tt is clear from Figure 3 that passenger incidence behavior, with|

tion. In general these journeys may demonstrate random incidence

respect to published timetables, varies spatially and temporally across|

behavior. The resulting data set contains nearly 1,670,000 journeys

the Overground network. Passenger incidence on the GOB and|

[from 54 stations on 1,442 origin—destination pairs made by more

Watford DC lines is much more peaked (i.e., timetable-dependent)

| than 290,000 passengers. The data set constitutes approximately

each with 20-min headways, than on the NLL, with 7- to 15-min

[53,000 station-hours of observation of passenger incidence to
[ Overground services|

headways, during any time period. Also, the NLL is acknowledged by
Overground management to have the most serious reliability problems

|The methodology described in the previous section was applied

(O. Bratton, personal communication, 2010). These variations are con-

to each Oyster journey in the data set: the transaction time of the

sistent with the literature that passenger incidence is more timetable-

Oyster entry was taken as the time of incidence, and the origin and

dependent with a more peaked distribution for longer headways and|

destination of the journey were used along with the timetable to

for more reliable services|
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FIGURE 2 Distributions of passenger incidence headways by line and time period.

|Also consistent with the literature is that, for all lines, the distri

[ The peaks of all of the distributions are somewhat before the very|

bution is more peaked in the morning peak period than in the eve

end of the headway, indicating some type of safety margin or wait-

ning peak or midday interpeak periods. It appears that Overground

ing time—minimization behavior on the part of passengers. Many of|

commuters in the morning peak period, more likely to have knowl-

edge of the timetable and the service and more sensitive to time

the distributions have small spikes at the beginning of the headway.
indicating possible late running awareness among some passengers

saving, exhibit less random incidence behavior than do passengers

While such awareness may in fact be found on the Overground, it i

in other time periods, despite the shorter headways and less reliable

also possible that it is the passengers themselves who are running late.

service found in the morning peak. The distribution in the late-night

|They may be planning to take a train scheduled to depart at a certain

period is also very peaked because of longer headways and possibly|

[time but, because of uncontrollable circumstances or their own poor|

higher sensitivity to time. |

[

Eary

| planning, arrive at the station shortly after that departure time.|
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FIGURE 3 Distributions of passenger incidence by line and time period.
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[Figure 4 shows the mean waiting time, for each line and time period)

|[DISCUSSION AND CONCLUSIONS|

under two models of passenger behavior and train operations: random
incidence versus timetable-dependent incidence. In the first case, it is
fassumed that all passengers are randomly incident to constant head-|

[This paper developed a methodology to relate disageresate AFC|
| journey data to published timetables for the purpose of studying

(way services, so the mean waiting time is calculated as half the mean
|incidence headway. In the second case, no behavioral assumption is

|passenger incidence behavior and applied this methodology to the
|I ndon Overground (/6) !

imade and all trains are assumed to run as per the timetable, so the

The following conclusions are drawn about the methodology

|observed mean waiting time is calculated as the mean SWT. Figure 4|

developed here. First, it can be used to study passenger incidence

[thus indicates the effects of the observed incidence behaviors|

behavior using large samples of disaggregate journey data from|

|(compared with random incidence) on passenger waiting times.|

AFC systems such as the Oyster smartcard system. Second, the

[On the NLL, the relatively slight skew in the incidence distribu]

[methodology can for each passenger journey estimate SWT and|

tions translates into relatively small impacts on waiting time. In th

|incidence headway under heterogeneous conditions. Finally, this

morning peak, timetable dependence decreases waiting time by 7.2%

[methodology is able to efficiently process millions of data records

from 6.82 t0] 6.33 min|(about 30 s). In the interpeak and evening peak

and can be implemented using open standard timetable formats and

periods, the reductions are only| 0.2%@[2.2%[, respectively. On the

free software tools|

GOB, however, the implications of timetable dependence are substan:

|As a limitation the proposed method hinges on the schedule-|

tial. In the morning peak, the waiting time decreases by] 29% {3.1 min

based assignment, for which there are unsolved methodological

from 10.5 to] 7.4 min| In the interpeak and evening peak periods, the|

issues such as station congestion or train crowding. The London

reductions are| 20.4%| andl 17.5% respectively.|
| Transit assignment models often make an assumption that no ser-

Overground is a relatively simple network (i.e., compared with the

London Underground), so that the methodology would not be sub-

vice would be assigned a mean passenger waiting time over a certain

ject to those issues. As the inner workings of schedule-based assign-

threshold, say,|10 minin the London Overground case. The results

ment improve, the method of this paper will continue to become|

of this section lend support to this assumption. Regular weekday

more broadly applicable]l

headways on the Overground network go as high as|30 min| but the

With respect to the London Overground, the following conclu-

observed mean SWT is above| 11 minin only two cases (on the West

sions can be drawn. Generally, passenger incidence behavior varies

London Line during the interpeak and evening time periods) and is

across the network and across times of day, and the differences reflect

never above]12.1 min.

different headways, reliability of service, and time of day (indicating
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different knowledge of the network and sensitivity to time); these
findings reflect the findings in the literature to date. Specifically, inci-
dence appears to be much less timetable dependent on the NLL than
on the other Overground lines because of shorter headways and less
reliable service on this line as compared with others. The method
and results of the paper also provide one service quality measure,
SWT, for the entire Overground network. On the GOB, Watford DC,
and West London lines, where incidence behavior is more timetable-
dependent, passengers reduce their mean SWT by more than 3 min,
or up to 30%, during daytime hours compared with random inci-
dence behavior. On the NLL, such reductions are much smaller, in
some cases nearly zero, in both relative and absolute terms.

|The method developed in this paper can support further study
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Rail Operations Ltd for insight into the issues and the dynamics of]
the London Overground network.|
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